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Approximation of the Independent Feedback Vertex Set
Problem

Yuma Tamura1,a) Takehiro Ito1,b) Xiao Zhou1,c)

Abstract: Given a graph G with n vertices, the independent feedback vertex set problem is to find a vertex subset F of
G with the minimum number of vertices such that F is both an independent set and a feedback vertex set of G, if it ex-
ists. This problem is known to be NP-hard for bipartite planar graphs. In this paper, we study the approximability of the
problem. We first show that, for any fixed ε > 0, unless P = NP, there exists no polynomial-time n1−ε-approximation
algorithm even for bipartite planar graphs. This gives a contrast to the existence of a polynomial-time 2-approximation
algorithm for the original feedback vertex set problem on general graphs. We then give an α(Δ − 1)/2-approximation
algorithm for bipartite graphs G of maximum degree Δ, which runs in O(t(G) + Δn) time, under the assumption that
there is an α-approximation algorithm for the original feedback vertex set problem on bipartite graphs which runs in
O(t(G)) time.
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1. Introduction
A feedback vertex set F of an undirected graph G = (V, E) is a

vertex subset of G such that the subgraph of G induced by V \ F
is a forest. (See Fig. 1(b) as an example.) For a given graph G,

the feedback vertex set problem is to find a feedback vertex set

of G with the minimum number of vertices. The feedback vertex

set problem is one of the most classical NP-hard problems, and

many algorithms have been developed from various viewpoints

over the years.

Misra et al. [13] introduced an independence variant of the

feedback vertex set problem. An independent set I of a graph

G is a vertex subset of G such that the subgraph of G induced

by I contains no edge. A vertex subset F′ of G is said to be an

independent feedback vertex set of G if it is both an independent

set and a feedback vertex set of G. (See Fig. 1(c).) Note that an

independent feedback vertex set of a graph does not always exist;

for example, consider a complete graph with four or more ver-

tices. For a given graph G, the independent feedback vertex set
problem is to find an independent feedback vertex set of G with

the minimum number of vertices, if it exists. For convenience,

we sometimes call the feedback vertex set problem the original
problem, and the independent feedback vertex set problem the

independence variant.

1.1 Related results and known results
The original problem is APX-complete for general graphs [2].

This means that the problem is unlikely to have a polynomial-
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time approximation scheme (PTAS). Moreover, it remains NP-

hard even for bipartite planar graphs of maximum degree

four [14]. The original problem has been intensively studied

from various viewpoints, such as of approximation [1], [2], [4],

fixed-parameter tractability (FPT) [10], and tractability on special

graph classes [8], [9], [15].

As Misra et al. pointed out in [13], by inserting a new vertex

in every edge of a graph, the original problem can be reduced

to the independence variant without changing the size of optimal

solutions. This implies that the independence variant is APX-

hard for bipartite graphs, and remains NP-hard even for bipar-

tite planar graphs of maximum degree four. In the same paper,

Misra et al. also developed a fixed-parameter algorithm whose

running time is O(5knO(1)), where n is the number of vertices in a

graph and k is the solution size as the parameter. Recently, Li and

Pilipczuk improved this running time to O(3.619knO(1)) [11]. The

independence variant has been also studied from the viewpoint

of graph classes; for example, it is solvable in polynomial time

for bounded treewidth graphs [16], chordal graphs [16], P5-free

graphs [7], and graphs of diameter two [6]. Interestingly, for the

latter two graph classes, their polynomial-time solvabilities of the

original problem remain open.

The independence variant is strongly related to the near-
bipartiteness problem [5], [7], [17]. In the problem, for a given

graph G, our task is to decide whether G has at least one indepen-

dent feedback vertex set. Therefore, the intractability of the inde-

pendence variant is inherited from the near-bipartiteness problem.

The near-bipartiteness problem is known to be NP-complete even

for graphs of maximum degree four [17], graphs of diameter at

most three [5], and for line graphs of bipartite planar subcubic

graphs [7]. Note that, since any bipartite graph has an indepen-

dent feedback vertex set, the near-bipartiteness problem is triv-
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Fig. 1 (a) A graph G, (b) a minimum feedback vertex set of G, and (c) a minimum independent feedback

vertex set of G, where each vertex in the feedback vertex sets is depicted by a black circle.

ially solvable for bipartite graphs.

1.2 Our contribution
In this paper, we study the approximability of the independent

feedback vertex set problem for bipartite graphs.

We first show that, unless P = NP, the independence variant ad-

mits no polynomial-time approximation algorithm within a factor

n1−ε for any fixed ε > 0, even on bipartite planar graphs, where n
is the number of vertices in the graph. This gives a contrast to the

existence of polynomial-time 2-approximation algorithms for the

original problem on general graphs [2], [4]. One might think that

this hardness result is straightforward, because the independence

variant has the constraint of independent sets. In fact, the inde-

pendent set problem, which finds a maximum-size independent

set of a given graph, is also hard to approximate within a factor

n1−ε in polynomial time, for any fixed ε > 0 [18]. However, since

the independent set problem is a maximization problem whereas

the independent feedback vertex set problem is a minimization

problem, it is not straightforward to give our hardness result. We

also point out that the independent set problem admits a PTAS for

planar graphs [3], and is solvable in polynomial time for bipartite

graphs (from König’s theorem).

We then give an α(Δ − 1)/2-approximation algorithm for bi-

partite graphs G of n vertices and maximum degree Δ, which

runs in O(t(G) + Δn) time, under the assumption that there is an

α-approximation algorithm for the original problem on bipartite

graphs which runs in O(t(G)) time. (In this paper, we omit the

details.) Notice that, from our inapproximability result, unless

P = NP, there is no polynomial-time Δ1−ε-approximation algo-

rithm for any fixed ε > 0. In this sense, our approximation factor

is best possible with respect to the exponent of Δ.

2. Preliminaries
In this paper, we assume that graphs are undirected, un-

weighted, simple and connected. Let G = (V, E) be a graph; we

sometimes denote by V(G) and E(G) the vertex set and edge set of

G, respectively. For a vertex subset V ′ of a graph G = (V, E), let

G[V ′] be the subgraph of G induced by V ′. For a subset W ⊆ V ,

we denote simply by G −W the induced subgraph G[V \W].

For a graph G, a vertex subset I of G is called an independent
set of G if G[I] contains no edge, and a vertex subset F of G is

called a feedback vertex set of G if G − F is a forest. We some-

times say that a feedback vertex set F of G is independent if G[F]

forms an independent set of G. Let

OPT(G) = min{|F| :F is an independent feedback vertex set

of G};

and let OPT(G) = +∞ if G has no independent feedback vertex

set. Given a graph G, the independent feedback vertex set prob-
lem is to find an independent feedback vertex set F of G such that

|F| = OPT(G). Analogously, we define OPTFVS(G) for feedback

vertex sets; notice that OPTFVS(G) < |V(G)| − 1 always holds.

3. Inapproximability
As mentioned before, the independent feedback vertex set

problem is APX-hard even for bipartite graphs. In this section,

we give the following stronger result.

Theorem 1. Let ε > 0 be any fixed constant. The independent
feedback vertex set problem admits no polynomial-time approxi-
mation algorithm within a factor n1−ε for bipartite planar graphs
of n vertices, unless P = NP.

We prove the theorem in the remainder of this section, by

giving a gap-producing reduction from the planar 3-satisfiability

problem.

Recall that the 3-satisfiability problem (3-SAT, for short) is the

problem of asking if there exists a satisfying assignment for a

given 3-CNF formula φ. The associated graph Gφ = (X ∪ C, E)

of φ is a bipartite graph such that

(i) each vertex in X corresponds to a variable in φ, and each

vertex in C corresponds to a clause of φ; and

(ii) two vertices v ∈ X and w ∈ C are joined by an edge in E if

and only if the variable corresponding to v appears in the

clause corresponding to w.

For example, we illustrate the associated graph of 3-CNF formula

φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ ¬x4) in

Fig. 2(a). The formula φ is said to be planar if its associated

graph is planar. The graph Gφ in Fig. 2(a) has a plane embed-

ding as shown in Fig. 2(b), and hence the formula φ is planar.

Given a planar 3-CNF formula φ, the planar 3-satisfiability prob-
lem (PLANAR 3-SAT, for short) is to determine whether there

exists a satisfying assignment of φ. PLANAR 3-SAT is known to

be NP-complete [12].

x1 x2 x3 x4

C1 C2 C3

(a)

C1 x1 C2 x4 C3

x2

x3

(b)

Fig. 2 (a) An associated graph Gφ of a 3-CNF formula φ = C1 ∧ C2 ∧ C3,

where C1 = (x1 ∨ ¬x2 ∨ x3),C2 = (¬x1 ∨ ¬x3 ∨ x4) and C3 =

(x2 ∨ ¬x3 ∨ ¬x4). (b) A plane embedding of Gφ.
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Fig. 3 (a) A forbidding gadget, where some petals are omitted. (b) The sim-

plified illustration of a forbidding gadget, where the core vertex and

all petals are simply illustrated as a black triangle.

3.1 Gadgets
In this subsection, we construct five kinds of gadgets for our

reduction.

We first define a forbidding gadget, which consists of three

parts: a root vertex, a core vertex, and petals. (See Fig. 3(a).)

The root vertex will be identified with a vertex of another gad-

get defined later. Each petal is a cycle of four vertices, and the

forbidding gadget has p petals that share the core vertex. We use

the simplified illustration shown in Fig. 3(b) for the forbidding

gadget. The forbidding gadget forbids adding the root vertex to a

minimum independent feedback vertex set, and forces to choose

the core vertex. To see this, notice that we cannot choose both

root and core vertices at the same time, because they are adjacent.

Therefore, if we choose the root vertex, we must choose at least

p vertices additionally, each of which comes from a petal in the

forbidding gadget. An independent feedback vertex set is said to

be proper if it contains only the core vertex for every forbidding

gadget.

Using the forbidding gadget, we will define the other gadgets.

The variable gadget Xi is illustrated in Fig. 4(a), and corresponds

to a variable xi of a given 3-CNF formula φ. Every proper inde-

pendent feedback vertex set must contain � or v′i of Xi. We regard

� ∈ F as setting xi = true, and say that Xi is the true-state. Con-

versely, we regard � � F as setting xi = false, and say that Xi is

the false-state.

The clause gadget C j is illustrated in Fig. 4(b). This gadget

corresponds to a clause (c j,1 ∨ c j,2 ∨ c j,3) in φ, and the three ver-

tices u j,1, u j,2 and u j,3 of C j correspond to the three literals in the

clause. Every proper independent feedback vertex set must con-

tain at least one of u j,1, u j,2, and u j,3.

The positive and negative edge gadgets are illustrated in

Fig. 4(c) and (d), respectively. The purpose of these edge gadgets

is to propagate the state of a variable gadget to a clause gadget;

note that the negative edge gadget propagates the opposite state of

the variable gadget. The positive edge gadget has only two proper

independent feedback vertex sets, as shown in Fig. 5. Similarly,

the negative edge gadget has only two proper independent feed-

back vertex sets {v�} and {u�} (together with all core vertices of

forbidden gadgets). Observe that for every proper independent

feedback vertex set F, v� ∈ F if and only if u� ∈ F for the positive

edge gadget, and v� ∈ F if and only if u� � F for the negative

edge gadget.

v�

u�

(a)

v�

u�

(b)

Fig. 5 The two proper independent feedback vertex sets of the positive edge

gadget, formed by the black vertices together with all core vertices

of forbidding gadgets.

3.2 Reduction
In this subsection, we construct the corresponding graph Gφ,p

for the independent feedback vertex set problem, from a given

instance φ of PLANAR 3-SAT.

Let Gφ = (X ∪C, E) be the associated graph of a given 3-CNF

formula φ for PLANAR 3-SAT. We fix a plane embedding of Gφ
arbitrarily. Then, we replace each vertex xi ∈ X with a variable

gadget Xi, and each vertex c j ∈ C with a clause gadget C j. Next,

consider an edge xic j ∈ E, and assume that xic j appears as the

k-th edge, where k ∈ {1, 2, 3}, if we see the three edges incident to

c j in the clockwise direction. We replace the edge xic j ∈ E with a

positive edge gadget if the corresponding variable of xi appears as

a positive literal; otherwise we replace xic j with a negative edge

gadget. In either case, we identify the vertex v� in the edge gadget

with � of Xi, and also identify the vertex u� with u j,k of C j. (See

also Fig. 6.) Let Gφ,p be the resulting graph, where p is the num-

ber of petals in each forbidding gadget. Since Gφ and all gadgets

v′i

vi
(a)

uj,1

uj,2

uj,3
(b)

v�

u�

(c)

v�

u�

(d)

Fig. 4 (a) A variable gadget, (b) a clause gadget, (c) a positive edge gadget, and (d) a negative edge

gadget.
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v� = vi

u� = uj,1

uj,2uj,3

(a)

v� = vi

u� = uj,1

uj,2uj,3

(b)

Fig. 6 This illustrates a replacement of the edge xic j which appears as the

first edge of c j with (a) a positive edge gadget, and (b) a negative

edge gadget. In either case, we identify the vertex v� in the edge gad-

get with � of the variable gadget Xi, and also identify the vertex u�
with u j,1 of the clause gadget C j.

are bipartite and planar, Gφ,p is also a bipartite planar graph. In

addition, we can construct Gφ,p in polynomial time.

Let qφ be an arbitrary integer such that qφ ≥ 81(s + t), where s
and t are the numbers of variables and clauses in φ, respectively.

We denote by nφ,p the number of vertices in Gφ,p. Then, we have

the following lemma.

Lemma 1. It holds that nφ,p < (p + 1)qφ.

Proof. For each forbidding gadget, the number of vertices is ex-

actly 3p + 1 except for the root vertex. In addition,

• for each variable gadget Xi,

|V(Xi)| = 2 · (3p + 1) + 4 = 6(p + 1);

• for each clause gadget C j,

|V(C j)| = 3 · (3p + 1) + 6 = 9(p + 1); and

• for each edge gadget E�,
|V(E�)| ≤ 8 · (3p + 1) + 14 < 24(p + 1).

Note that, since φ is 3-CNF formula, the number of edge gadgets

is exactly 3t. Therefore, we have the following inequality:

nφ,p < 6(p + 1) · s + 9(p + 1) · t + 24(p + 1) · 3t

= 3(p + 1)(2s + 27t)

< (p + 1)qφ.

�
The following lemma is the key for the proof of Theorem 1.

Lemma 2. For any integer p ≥ qφ, the following (I) and (II) hold:

(I) if OPT(Gφ,p) < p + 1, then φ has a satisfying assignment;
and

(II) if OPT(Gφ,p) > qφ, then φ has no satisfying assignment.

Proof. [The proof of (I).] We take a minimum independent

feedback vertex set F of G arbitrarily. Then, F is proper, be-

cause the size of F is less than p+1 and thus F must contain only

a core vertex for every forbidding gadget. Recall that the proper

independent feedback vertex set F must contain � or v′i of each

variable gadget Xi, and contain at least one of u j,1, u j,2, and u j,3 of

each clause gadget C j. In addition, each edge gadget propagates

the state of a variable gadget to a clause gadget. Therefore, this

implies that we can form a satisfying assignment of φ from F if

we regard � ∈ F as setting xi = true, and regard � � F as setting

xi = false.

[The proof of (II).] We proceed by contraposition, that is, we

show that if φ has a satisfying assignment, then OPT(Gφ,p) ≤ qφ.
We will construct a proper independent feedback vertex set F of

the graph Gφ,p from a satisfying assignment in accordance with

the following steps.

Step 0. We prepare an empty set F.

Step 1. We add cores of all forbidden gadgets of Gφ,p to F.

Step 2. For 1 ≤ i ≤ s, each variable gadget Xi and the corre-

sponding variable xi of φ, we add � of Xi to F if xi = true.

Conversely, we add v′i of Xi to F if xi = false.

Step 3. For each positive edge gadget E� and � of a variable

gadget Xi identified with v� of E�, we add the black vertices

shown in Fig. 5(a) to F if � ∈ F. Otherwise, we add the black

vertices shown in Fig. 5(b) to F.

Step 4. For each negative edge gadget E� and � of a variable

gadget Xi identified with v� of E�, we add u� to F if � � F. (In

the case that � ∈ F, since the negative edge gadget is already

acyclic, there is no need to add any vertices to F on this step.)

It is easy to see that the set F obtained from the above steps

forms an independent set of Gφ,p. We will show that F also forms

a feedback vertex set of Gφ,p. For every variable gadget Xi and ev-

ery edge gadget E�, F removes all cycles in these gadgets. More-

over, by Steps 3 and 4, F is constructed so that v� ∈ F if and only

if u� ∈ F for the positive edge gadget, and v� ∈ F if and only if

u� � F for the negative edge gadget. Since F is obtained from

a satisfying assignment of φ, F must contain at least one of uj,1,

u j,2, and u j,3 for each clause gadget C j, that is, F removes all cy-

cles in every clause gadget. Our remaining task is to verify that F
also removes every cycle passing through several gadgets. It suf-

fices to notice that such a cycle must contain the vertices included

in F on Steps 3 and 4. (See also Fig. 5.)

Now, we will bound the size of F. We denote by Fi a set

of vertices added to F during Step i. The size of F1 equals to

the number of forbidden gadgets in Gφ,p because, for each for-

bidden gadget, F contains only its core. Recall that, since φ

is 3-CNF formula, the number of edge gadgets is exactly 3t.
It follows that |F1| ≤ 2s + 8 · 3t + 3t = 2s + 27t. In addi-

tion, |F2| = s, |F3| + |F4| ≤ 3 · 3t = 9t. Thus, we conclude

|F| = ∑4
i=1 |Fi| ≤ 3s + 36t ≤ qφ. �

Note: The number of vertices calculated in the above proofs of

Lemmas 1 and 2 is obviously overestimated in order to simplify

the following proof.

We now prove Theorem 1. Assume for a contradiction that

there exists a polynomial-time approximation algorithm within a

factor n1−ε for some fixed ε > 0, where n is the number of ver-

tices in a given graph. Observe that ε ≤ 1 must hold. We denote

by APX(Gφ,p) the size of a solution for Gφ,p produced by the ap-

proximation algorithm. Then, we have

OPT(Gφ,p) ≤ APX(Gφ,p) ≤ n1−ε
φ,p · OPT(Gφ,p). (1)

We set

p =
⌈
q(2−ε)/ε
φ

⌉
− 1.
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Consider the case where APX(Gφ,p) < p + 1 holds. By (1) it

holds in this case that OPT(Gφ,p) < p + 1. Then, Lemma 2(I)

says that φ has a satisfying assignment. Consider the other case,

where APX(Gφ,p) ≥ p + 1 holds. By (1) it holds in this case that

n1−ε
φ,p · OPT(Gφ,p) ≥ p + 1. Then, by Lemma 1 we have

OPT(Gφ,p) ≥ p + 1

n1−ε
φ,p

>
p + 1

((p + 1)qφ)1−ε =
(p + 1)ε

q1−ε
φ

≥
(
q(2−ε)/ε
φ

)ε

q1−ε
φ

= qφ.

Then, Lemma 2(II) says that φ has no satisfying assignment.

In this way, APX(Gφ,p) < p+ 1 if and only if φ has a satisfying

assignment. Since we have assumed that APX(Gφ,p) can be com-

puted in polynomial time, this means that we can solve PLANAR

3-SAT in polynomial time. This is a contradiction unless P = NP.

This completes the proof of Theorem 1.

4. Conclusion
In this paper, we have shown that the independent feedback

vertex set problem for bipartite planar graphs of n vertices ad-

mits no polynomial-time approximation algorithm within a fac-

tor n1−ε, for any fixed ε > 0, unless P = NP. This gives a contrast

to the fact that the original problem admits a polynomial-time 2-

approximation algorithm for general graphs. We also have devel-

oped an α(Δ−1)/2-approximation algorithm for the independence

variant on bipartite graphs of maximum degree Δ, where α is the

approximation factor of an algorithm for the original problem on

bipartite graphs.
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