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Enumerating 2-Edge-Connected Induced Subgraphs ∗

Yusuke Sano1,a) Katsuhisa Yamanaka1,b) Takashi Hirayama1,c)

Abstract: The problem of enumerating connected induced subgraphs of a given graph is one of classic enumeration
problems and studied well. It is known that connected induced subgraphs can be enumerated in constant time for
each. In this paper, we focus on highly connected induced subgraphs. The most major concept of connectivity on
graphs is vertex connectivity. For vertex connectivity, some enumeration problem settings are proposed and enumer-
ation algorithms are proposed, such as k-vertex connected spanning subgraphs. In this paper, we focus on another
major concept of graph connectivity, edge-connectivity. This is motivated by the problem of finding evacuation routes
in road networks. In evacuation routes, edge-connectivity is important, since highly edge-connected subgraphs en-
sure multiple routes between two vertices. In this paper, we consider the problem of enumerating 2-edge-connected
induced subgraphs of a given graph. We present an algorithm that enumerates 2-edge-connected induced subgraphs
of an input graph G with n vertices and m vertices. Our algorithm enumerates all the 2-edge-connected induced sub-
graphs in O(n3m |SG |) time, where SG is the set of the 2-edge-connected induced subgraphs of G. Moreover, by slightly
modifying the algorithm, we have a polynomial delay enumeration algorithm for 2-edge-connected induced subgraphs.

Keywords: Algorithms, Enumeration algorithms, 2-edge-connected induced subgraph, Reverse search, Family trees,
Polynomial delay.

1. Introduction
Enumerating substructures of enormous data is a fundamental

and important problem. An enumeration is one of the strong and
appealing strategies to discover some knowledge from enormous
data in various research areas such as data mining, bioinformatics
and artificial intelligence. From this viewpoint, various enumera-
tion algorithms have been designed.

Graphs are used to represent the relationship of objects. In
web-graphs, web pages are represented by vertices of graphs and
links between web pages are represented by edges. For social
network, users are represented by vertices of graphs and their
friendship relations are represented by edges. In the area of bioin-
formatics, molecular interactions are represented by graphs. To
discover valuable knowledge from practical graphs, enumeration
algorithms for subgraphs with some properties are studied, such
as simple/induced paths [3], [8], [16], [20], simple/induced cy-
cles [3], [8], [16], [20], subtrees [22], spanning trees [16], [17],
[19], k-vertex-connected spanning subgraphs [4], [10], k-edge-
connected spanning subgraphs [24], maximal k-edge-connected
subgraphs [1], cliques [7], [12], pseudo cliques [18], k-degenerate
subgraphs [5], matchings [19], induced matchings [11], con-
nected induced subgraphs [2], [14], [19], and so on. Several years
ago, a good textbook on enumeration has been published [13].
Very recently, Conte and Uno [6] proposed a framework for enu-
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merating maximal subgraphs with various properties in polyno-
mial delay.

Some of existing results above focus on closely related sub-
graphs. This comes from the fact that some applications on
knowledge discovery need to find closely related community
on graph structures. In this paper, we focus on highly edge-
connected induced subgraphs. This is motivated by the problem
of finding evacuation routes of road networks in time of disas-
ter. In the time of disaster, it is easy to imagine that many roads
are broken. In the situation that we know only one route from
the current position to a shelter, nobody can ensure that the route
can be passed through in safety. From this point of view, the
problem of finding subgraphs with high edge-connectivity is im-
portant, since high edge-connectivity of graphs ensure multiple
routes between two places. Now, we have the following question:
Can we efficiently enumerate all k-edge-connected induced sub-
graphs? Here, an efficient enumeration implies an output polyno-
mial or a polynomial delay enumeration.

As the first step toward the question, we focus on 2-edge-
connected induced subgraphs as highly edge-connected induced
subgraphs. In this paper, we propose an algorithm that enumer-
ates all 2-edge-connected induced subgraphs of a given graph.
The algorithm is based on reverse search [2]. First, we define a
tree structure, called a family tree, on a set of 2-edge-connected
induced subgraphs of a given graph. Then, by traversing the tree,
we enumerate all the 2-edge-connected induced subgraphs. For
an input graph G with n vertices and m edges, our algorithm runs
in O(n3m |SG |), where SG is the set of the 2-edge-connected in-
duced subgraphs. By applying the alternative output technique
by Nakano and Uno [15], we have an enumeration algorithm that
runs in polynomial delay.
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In this report, we omit some proofs.

2. Preliminary
2.1 Graphs and notations

In this paper, we assume that all graphs are simple, undirected,
and unweighted. Let G = (V(G), E(G)) be a graph with ver-
tex set V(G) and edge set E(G). We define n = |V(G)| and
m = |E(G)|. The neighbor set of a vertex v, denoted by N(v),
is the set of vertices adjacent to v. The degree of v, denoted by
d(v), is the number of vertices in N(v). A subgraph of a graph
G is a graph H = (V(H), E(H)) such that V(H) ⊆ V(G) and
E(H) ⊆ {{u, v} | u, v ∈ V(H) and {u, v} ∈ E(G)}.

A path of G is an alternating sequence
⟨v1, e1, v2, e2, . . . , ek−1, vk⟩ of vertices and edges, where
ei = {vi, vi+1} for 1 ≤ i ≤ k − 1, such that ei ∈ E(G) holds. The
length, denoted by |P|, of a path P is the number of the edges in
the path. The path is simple if the path contains distinct vertices
and distinct edges. Let P = ⟨v1, e1, v2, e2, . . . , ek−1, vk⟩ be a simple
path. We write P = ⟨v1, v2, . . . , vk⟩ by omitting the internal edges
of P. A simple path P is an open ear of G if d(v) = 2 for each
internal vertex v and d(u) > 2 for each endpoint u holds. A path
P = ⟨v1, v2, . . . , vk⟩ is a cycle if v1 = vk holds. A cycle is simple if
a cycle has distinct internal vertices and distinct edges. A simple
cycle P is a closed ear of G if d(vi) = 2 for i = 2, 3, . . . , k − 1 and
d(vi) > 2 for i = 1 (or i = k).

Let G1 = (V(G1), E(G1)) and G2 = (V(G2), E(G2)) be two
graphs. The union of G1 and G2 is the graph G1 ∪G2 = (V(G1)∪
V(G2), E(G1) ∪ E(G2)). A decomposition of a graph G is a list
H1,H2, . . . ,Hk of subgraphs such that each edge appears in ex-
actly one subgraph in the list and G = H1∪H2∪· · ·∪Hk holds. A
closed-ear decomposition of G is a decomposition P1, P2, . . . , Pk

such that P1 is a cycle and Pi for i ≥ 2 is either an open ear or a
closed ear in P1 ∪ P2 ∪ · · · ∪ Pi. *1 See Fig. 1 for an example.

An edge-cut of G is a set F ⊆ E(G) if the removal of edges in
F makes G unconnected. A graph is k-edge-connected if every
edge-cut has at least k edges. A bridge is an edge-cut consisting
of one edge. For bridges we have the following characterization:

Theorem 1 ([23],p.23). An edge is a bridge if and only if it be-
longs to no cycle.

From the above theorem, if there is a cycle including an edge
e, e is not a bridge. From the definition, we have the following
observation.

Observation 1. A graph is 2-edge-connected if and only if the
graph has no bridge.

A 2-edge-connected graph has another characterization:

Theorem 2 ([23],p.164). A graph is 2-edge-connected if and only
if it has a closed-ear decomposition and every cycle in a 2-edge-
connected graph is the initial cycle in some such decomposition.

An induced subgraph of G is a subgraph H = (V(H), E(H))
such that V(H) ⊆ V(G) and E(H) = {{u, v} | u, v ∈ V(H) and

*1 A closed-ear decomposition is an ear decomposition if every ear in the
decomposition is an open ear.

{u, v} ∈ E(G)}. We say that H is a subgraph of G induced by
V(H) and denoted by G[V(H)]. Let S be a subset of V(G). We
define H + S as the subgraphs induced by V(H) ∪ S . Similarly,
we define H − S as the subgraph induced by V(H) \ S . Let
H1 = (V(H1), E(H1)) and H2 = (V(H2), E(H2)) be two induced
subgraphs of G. We define H1 + H2 as the subgraphs induced
by V(H1) ∪ V(H2). We define H1 − H2 as the subgraphs induced
by V(H1) \ V(H2). An induced subgraph is an induced path and
induced cycle if it forms a simple path and simple cycle, respec-
tively.

Observation 2. Let G = (V(G), E(G)) be a 2-edge-connected
graph. Then, G has a closed-ear decomposition that ends up with
an induced cycle of G.

Proof. Let C be a induced cycle of G. Since G is 2-edge-
connected, from Theorem 2, there exists a closed-ear decomposi-
tion that ends up with C. Therefore, the claim is proved. □

Now, let H = (V(H), E(H)) be a 2-edge-connected induced
subgraph of G, and let S ⊆ V(H) be a subset of V(H). A vertex
v in S is a boundary if v is adjacent to a vertex in V(H) \ S . A
vertex subset S is removable if H − S is 2-edge-connected.

Lemma 1. Let G be a graph, and let H be a 2-edge-connected
induced subgraph of G. Suppose that H is not an induced cycle.
Then, H has a removable set.

Proof. From Observation 2, H has a closed decomposition that
ends up with an induced cycle. Let C = (V(C), E(C)) be such an
induced cycle of G. Then, we can observe that V(H) \ V(C) is a
removable set. □

A removable set S of H is minimal if any S ′ ⊂ S is not a re-
movable set of H. We have the following properties of minimal
removable sets.

Lemma 2. Let G be a graph, and let H be a 2-edge-connected
induced subgraph of G. Let S be a minimal removable set of H.
Then, G[S ] is connected.

Proof. Suppose for a contradiction that G[S ] is unconnected.
Let S ′ be a subset of S such that G[S ′] is a connected component
in G[S ]. Then, S ′ is a removable set, which contradicts to the
minimality of S . □

Lemma 3. Let G be a graph, and let H be a 2-edge-connected
induced subgraph of G. Any minimal removable set S , |S | ≥ 2, of
H has exactly two boundaries.

Proof. Omitted. □

Now, we have the following key lemma.

Lemma 4. Let G be a graph, and let H be a 2-edge-connected
induced subgraph of G. Let S , |S | ≥ 2, be a minimal removable
set of H. Then, G[S ] is a path of length |S | − 1.

Proof. Omitted. □

c⃝ 2020 Information Processing Society of Japan 2

Vol.2020-AL-177 No.7
2020/3/16



IPSJ SIG Technical Report

G P5P1 P2 P3 P4

v1 v2

v4 v3

v4

v3

v7 v6

v5

v1 v2

v4 v3

v2

v4

v4

v3

v3

v6

v5

v2

v5

v4

v7 v6

Fig. 1 An example of a closed-ear decomposition. The graph G has a closed-ear decomposition
P1, P2, P3, P4, P5.

From Lemma 3 and Lemma 4, we can write a minimal remov-
able set as a sequence S = ⟨u1, u2, . . . , uk⟩. Moreover, any inter-
nal vertex is not boundary of S . That is, the endpoints of a path
are boundaries. Otherwise, since G[S ] is a path, an endpoint has
degree 1 in H, which contradict to the 2-edge-connectivity of H.
From now on, we assume that the two endpoints u1 and uk are
boundaries of S .

A path P = ⟨w1, w2, . . . , wℓ⟩ with |V(P)| ≥ 2 of H is an inter-
nal ear if (1) w1 and wk are the two boundaries of V(P) and (2)
d(wi) = 2 in H holds for i = 1, 2, . . . , ℓ. An internal ear P is max-
imal if there is no internal ear P′ such that P′ includes P as its
subpath. We have the following observation on forms of minimal
removable sets.

Observation 3. Let G be a graph, and let H be a 2-edge-
connected induced subgraph of G. Let S = ⟨u1, u2, . . . , uk⟩ be
a minimal removable set of H with two boundaries u1, uk. Then,

1. if |S | = 1, S forms a path in H with length 0 (in this case,
u1 = uk) and

2. if |S | ≥ 2, S forms a maximal internal ear of H.

Proof. Omitted. □

From Observation 3, a minimal removable set of a 2-edge-
connected induced subgraph H forms a maximal internal ear of
H. However, note that the reverse direction is always not true.

2.2 Enumeration algorithms and analysis of its time-
complexity

For algorithms of normal decision problem or optimization
problems, we estimate the running time of the whole algorithm as
a function of input size. On the other hands, in enumeration prob-
lems, we sometimes have exponential outputs for input-size. For
enumeration algorithms, we use particular running-time analysis.
In this subsection, we introduce some analysis ways for enumer-
ation algorithms.

Let A be an enumeration algorithm for an enumeration prob-
lem Π with input size n and output size α. The algorithm A is
output polynomial if A solves Π in O(ncαd) time, where c, d are
some constants. The algorithmA P-enumerates ifA solves Π in
O(ncα) [21]. Then, we say that A enumerates every solution of
Π in O(nc) time for each. A delay of A is a computation time
between two consecutive outputs. The algorithm A is polyno-
mial delay if (1) the first solution is output in O(nc) time for some
constant c and (2) the delay ofA is bounded above by O(nc) [9].

Then, we say that,A enumerates every solution in O(nc) delay.

3. Family tree of 2-edge-connected induced
subgraphs

In this section, we define a tree structure among the set of
2-edge-connected induced subgraphs of an input graph. The
vertices of the tree structure corresponds to the set of 2-edge-
connected induced subgraphs, each edge corresponds to a parent-
child relation between two 2-edge-connected induced subgraphs,
and the root is the empty graph.

We define some notations. Let G = (V(G), E(G)) be a graph
with a labeled-vertex set V(G) = {v1, v2, . . . , vn} and an edge set
E(G). Let SG be the set of the 2-edge-connected induced sub-
graphs of G, and let CG ⊆ SG be the set of the induced cycles
of G. We say that vi is smaller than v j, denoted by vi ≺ v j, if
i < j holds. Let H = (V(H), E(H)) be a 2-edge-connected in-
duced subgraph of G. Let S 1 = ⟨u1, u2, . . . , uk⟩, (u1 ≺ uk), and
S 2 = ⟨w1, w2, . . . , wk⟩, (w1 ≺ wk), be two minimal removable sets
of H. S 1 is smaller than S 2 if u1 ≺ w1 holds. Note that, for two
minimal removable sets S 1 and S 2, S 1 ∩ S 2 = ∅ holds.

Let S be the smallest minimal removable set of H. Then, we
define the parent of H, as follows.

P(H) :=

∅ (H ∈ CG)

H − S (H ∈ SG \ CG),

where ∅ reperesents the empty graph, which is the graph with
0 vertex and 0 edge. We say that H is a child of the parent of
P(H). Examples of parents are shown in Fig. 2 If H ∈ SG \ CG

holds, H has a removable set from Lemma 1. Hence, H always
has its parent. Moreover, the parent is defined uniquely, since the
smallest minimal removable set is unique in H. Note that P(H)
is also a 2-edge-connected induced subgraph of G. For a 2-edge-
connected induced subgraph in CG, we define its parent as the
empty graph ∅. By repeatedly finding parents from H, we obtain
a sequence of 2-edge-connected induced subgraphs of G or the
empty graph. We define the sequence PS(H) = ⟨H1,H2, . . . ,Hℓ⟩,
where H1 = H and Hi = P(Hi−1) for i = 2, 3, . . . , ℓ, the parent
sequence of H. An example of a parent sequence is shown in
Fig. 3. This sequence ends up with the empty graph, as shown in
the following lemma.

Lemma 5. Let H be a 2-edge-connected induced subgraph of
a graph G, and let PS(H) = ⟨H1,H2, . . . ,Hℓ⟩ be the parent se-
quence of H. Then, Hℓ is the empty graph ∅.
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Fig. 2 (a) A 2-edge-connected induced subgraph H1. (b) The parent P(H1) of H1. P(H1) is obtained
from H1 by removing {4, 5, 8, 10, 9}, which is the smallest minimal removable set of H1. (c) A
2-edge-connected induced subgraph H2. (d) The parent P(H2) of H2. P(H2) is obtained from H2
by removing {3}, which is the smallest minimal removable set of H2.
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Fig. 3 An example of the parent sequence of a 2-edge-connected induced subgraph. (a) A 2-edge-
connected induced subgraph H. (b) The parent P(H) of H. P(H) is obtained from H by removing
{2}. (c) The parent P(P(H)) of P(H). P(P(H)) is obtained by removing {3}. (d) The parent
P(P(P(H))) of P(P(H)). P(P(P(H))) is obtained by removing {4, 5, 8, 10, 9}. (e) Finally, the root,
the empty graph, is obtained by removing {1, 6, 7}.

Proof. Omitted □

From Lemma 5, by merging the parent sequences of all 2-edge-
connected induced subgraphs of G, we have the tree structure,
called family tree, in which (1) the root is the empty graph, (2) the
vertices except the root are 2-edge-connected induced subgraphs
of G, and (3) each edge corresponds to a parent-child relation of
two induced subgraphs of G. An example of the family tree is
shown in Fig. 4.

4. Enumeration algorithm and estimation of
its time-complexity

In this section, we present an enumeration algorithm for the
2-edge-connected induced subgraphs of an input graph. In the
previous section, we defined the family tree rooted at the empty
graph. Our algorithm enumerates 2-edge-connected induced sub-
graphs by traversing the tree. The children of the root in the tree
are the induced cycles of an input graph. Our algorithm first enu-
merates the induced cycles of an input graph. Then, for each
induced cycle, we traverse the subtree rooted at the cycle. To
traverse the family tree, we have to design an enumeration al-
gorithm for induced cycles of a graph and a child-enumeration
algorithm for any 2-edge-connected induced subgraph. Fortu-
nately, an efficient induced-cycle-enumeration algorithm is al-
ready known [20]. In our algorithm, we use the existing algo-

rithm for enumerating the induced cycles of a graph. Now, in this
section, we present a child-enumeration algorithm for 2-edge-
connected induced subgraphs of a graph, below.

Let G = (V(G), E(G)) be a graph with a labeled-vertex set
V = ⟨v1, v2, . . . , vn⟩ and an edge set E. Let SG be the set of 2-
edge-connected induced subgraphs of G, and let CG ⊆ SG be the
set of the induced cycles of G. To generate a child, we do the
reverse operation for finding parents which is to attach a maximal
internal ear to H. If the vertex set S of the attached path is the
smallest minimal removable set in H + S , then H + S is a child
of H. Otherwise, H + S is not a child. Let I(H, s, t) be the set of
paths P such that P is a maximal internal ear in H + P from s to t
for s, t ∈ N(H), where N(H) :=

∪
u∈V(H) N(u)∩(V(G)\V(H)). For

any different two s, t ∈ N(H) and for any P ∈ I(H, s, t), H + P is
a candidate of a child, that is H + P may be a child. Therefore, if
we generate all the paths in I(H, s, t) for every s, t ∈ N(H), then
all the children of H are enumerated by checking whether or not
H + P for each P ∈ I(H, s, t) is a child. However, this method
may take exponential time. It can be observed that |I(H, s, t)| can
be an exponential of the number of vertices in V(G) \ V(H) when
G−H has a “ladder” subgraph, as shown in Fig. 5 (one can choose
to pass or not each rung in a ladder subgraph). Hence, there may
be exponential child-candidates. If all the exponential candidates
are non-children, the above child-enumeration method takes ex-
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Fig. 4 An example of family tree of the input graph, drawn in the upper-left of the figure.

G

H

Fig. 5 A case that 2-edge-connected induced subgraph H of an input graph
G has exponential child-candidates.

ponential time. However, fortunately, we can check whether or
not H has at least one child in polynomial time, as follows.
M(H) denotes the set of minimal removable sets of H. We can

observe that, for any P, P′ ∈ I(H, s, t),M(H + P) = M(H + P′)
holds. Therefore, if any P ∈ I(H, s, t) is the smallest minimal
removable set amongM(H + P), then every P′ ∈ I(H, s, t) \ {P}
is also the smallest one amongM(H + P′). Therefore, if H + P
for P ∈ I(H, s, t) is a child of H, then H + P′ for every P′ ∈
I(H, s, t) \ {P} is also a child of H. Hence, we focus on deter-
mining whether or not H + P for a path P ∈ I(H, s, t), where
s, t ∈ N(H) and s ≺ t, is a child of H. In the following case-
analysis, we consider whether or not attaching P ∈ I(H, s, t) to H
produces a child.

Case 1: s ≺ v for every v ∈ V(H).
Obviously, for any path P ∈ I(H, s, t), V(P) is the smallest

minimal removable set in H + P. Therefore, H + P is a child of
H.

Case 2: Otherwise.

Let P be any path in I(H, s, t). If V(P) is the smallest one
among M(H + P), then H + P is a child, and hence every
P′ ∈ I(H, s, t) \ {P} is also a child. Otherwise, H + P is a non-
child, and hence every P′ ∈ I(H, s, t) \ {P} is also a non-child.

Examples of children are shown in Fig. 6. The figure includes
three child-candidates of a 2-edge-connected induced subgraph.

Now, from the above case-analysis, we have the algorithm de-
scribed in Algorithm 1 and Algorithm 2. In Algorithm 1, we
are required to enumerate the induced cycles in an input graph G.
This enumeration can be done using an existing algorithm [8],
which enumerates all the induced cycles in CG in Õ(m + n |CG |)
time, where Õ( f ) is a shorthand for O( f · polylog n).

For each generated induced cycle, we traverse the subtree
rooted at the cycle using Algorithm 2. In the line 10 in Algo-
rithm 2, the algorithm constructsM(H + P). This can be done,
as follows. For each vertex u with degree 3 or more in H + P,
we check whether or not H + P − {u} is 2-edge-connected. If
the answer is yes, {u} is a member of M(H + P). This check
can be done in O(m) time using a depth-first search. For each
vertex u with degree 2 in H + P, we first find the maximal in-
ternal ear including u by traversing from u (This can be found in
O(n) time). Let P′ be the found path. Then, we check whether
or not H + P − P′ is 2-edge-connected. If the answer is yes,
V(P′) is a member of M(H + P). The above process can list
all the members of M(H + P) up and done in O(nm) + O(nm).
Note that the number of the internal ears in H + P is bounded
by O(n). All the paths in I(H, s, t) can be enumerated using an
enumeration algorithm for induced paths [8], which enumerates
all the paths in I(H, s, t) in Õ(m + n |I(H, s, t)|) time. Now, we

c⃝ 2020 Information Processing Society of Japan 5

Vol.2020-AL-177 No.7
2020/3/16



IPSJ SIG Technical Report

1

36 8

52

9 10
Input Graph

4

7

1

6 3

5

4

8

7

1

6 3

7

1

6 3

7 2

1

6 3

109

8

7

Fig. 6 Examples of children. (a) An input graph G. (b) A 2-edge-connected
induced subgraph H of G. The smallest minimal removable set of H
is {3}. (c) The induced subgraph obtained from H by inserting {2}.
This is a child, since the smallest minimal removable set is {2}. (d)
The induced subgraph obtained from H by inserting {4, 5, 6}. This
subgraph is a child, since {4, 5, 6} is the smallest minimal removable
set. Note that, in this case, although 3 ≺ 4 holds, {3} turns non-
removable. (e) The induced subgraph obtained from H by inserting
{8, 10, 9}. Here, the smallest minimal removable set is {1}. Hence,
this is not a child. Note that, in this case, the set {1} turns removal.

estimate the running time of one recursive call of Algorithm 1.
Suppose that H has k children. For each O(n2) pairs of s and t,
we construct M(H + P). This takes O(n3m) time. Since H has
k children, the enumeration algorithm for induced paths runs at
most k times in lines 6 or 12. Let {s1, t1}, {s2, t2}, . . . , {sx, tx} be
pairs of vertices in N(H) such that, for P ∈ I(H, si, ti), H + P is
a child of H. Let ki = |I(H, si, ti)|. Note that there exists ki chil-
dren generated by attaching P ∈ I(H, si, ti). Then, k =

∑
1≤i≤x ki

holds. Now, the total running time for enumerating paths in
I(H, si, ti) is bounded by

∑
1≤i≤x Õ(m + nki), which is bounded

by k · Õ(m + n). Hence, each recursive call of Algorithm 2 takes
at most O(n3m) + k · Õ(m + n) time. Therefore, we have the fol-
lowing theorem.

Theorem 3. Let G = (V(G), E(G)) be a graph with n vertices
and m edges. Let SG be the set of the 2-edge-connected induced
subgraphs of G. One can enumerate all the 2-edge-connected
induced subgraphs of G in O(n3m |SG |) time.

Proof. All the children of the root of the family tree, namely
the induced cycles of G, can be enumerated in in Õ(m + n |CG |)
time [8]. The recursive call for any 2-edge-connected induced
subgraph H takes O(n3m) + k · Õ(m + n) if H has k children.
Hence, the total running time of our algorithm is bounded by
O(n3m |SG |). □

Using alternative output technique [15], we have a polyno-
mial delay enumeration algorithm for 2-edge-connected induced
subgraphs. First, we enumerate induced cycles in polynomial
delay using the algorithm [20]. Then, for each induced cycle,
we traverse the subtree rooted at the cycle. In that traversal,
we apply the alternative output technique. In the technique, 2-
edge-connected induced subgraphs with even-depth in the tree are

Algorithm 1: Enum-2-Edge-Conn-Ind-Subgraphs(G =

(V(G), E(G)))
1 begin
2 /* An input is a simple, unweighted, and undirected

graph G = (V(G), E(G)). Outputs are all the

2-edge-connected induced subgraphs of G. */

3 Let C(G) be the set of the induced cycles of G.
4 foreach C ∈ C(G) do
5 Call Find-Children(G,C)

Algorithm 2: Find-Children(G = (V(G), E(G)), H =

(V(H), E(H)))
1 begin
2 /* Find all the children of a given

2-edge-connected induced subgraph H. */

3 Output H.
4 foreach s, t ∈ N(H), s ≺ t do
5 if s ≺ v for every v ∈ V(H) then
6 foreach P ∈ I(H, s, t) do
7 Find-Children(G, H + P)

8 else
9 Let P be any path in I(H, s, t).

10 ConstructM(H + P).
11 if V(P) is the smallest one amongM(H + P) then
12 foreach P ∈ I(H, s, t) do
13 Find-Children(G, H + P)

output before their children and 2-edge-connected induced sub-
graphs with odd-depth in the tree are output after their children.
More precisely, for a 2-edge-connected induced subgraph H with
even-depth, we call recursive calls for children before output of
H. For a 2-edge-connected induced subgraph H with odd-depth,
we call recursive calls for children after output of H. In the above
traversal, we have an output per at most 3 edge traversals in each
subtree. Hence, we have the following corollary.

Corollary 1. Let G = (V(G), E(G)) be a graph with n vertices
and m edges. One can enumerate every 2-edge-connected in-
duced subgraph in polynomial delay.
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