
IPSJ SIG Technical Report

Efficient enumeration of minimal multiway cuts

Kazuhiro Kurita1,a) Yasuaki Kobayashi2

Abstract: Let G = (V, E) be an undirected graph and let T ⊆ V be the set of terminals. A multiway cut of (G,T) is a
set of edges M ⊆ E that leaves each of terminals in a separate component, that is there is no path between any pair of
vertices of T in G′ = (V, E \ M). In this paper, we give an efficient algorithm for enumerating inclusion-wise minimal
multiway cuts of (G,T) in O(|T | · |V | · |E|) delay and in polynomial space.

Keywords: Minimal multiway cuts, Output-sensitive enumeration, Polynomial delay, Reverse search.

1. Introduction
Let G = (V, E) be an undirected graph and T ⊆ V . A multi-

way cut of (G,T) is a set of edges M ⊆ E such that there is no
path between any pair of vertices of T in G′ = (V, E \ M). The
minimum multiway cut problem is of finding a smallest cardi-
nality multiway cut of (G,T). This problem is a natural exten-
sion of the minimum s-t cut problem. Unfortunately, the problem
is known to be NP-hard [7] even for planar graphs and for gen-
eral graphs with fixed |T | ≥ 3. Due to numerous applications
(e.g. [9, 11, 18]), a lot of efforts have been devoted to solving
this problem from several perspectives such as approximation al-
gorithms [1, 5, 12], parameterized algorithms [6, 10, 15, 21], and
restricting input [3, 4, 7, 14, 16].

In this paper, we tackle this problem from yet another view
point, which we focus on enumeration. Since the problem of
finding a minimum multiway cut is intractable, we rather enumer-
ates minimal multiway cuts. We say that a multiway cut M of
(G = (V, E),T) is minimal if M′ is not a multiway cut of (G,T)
for every proper subset M′ ⊂ M. Since finding a minimal multi-
way cut is easy, the goal of our problem is to find all the minimal
multiway cuts of a given graph G and T . In this context, there are
several results related to our problem. For example, there are lin-
ear delay algorithms for enumerating all minimal s-t cuts [17,19],
which is a special case of our problem, where T contains exactly
two vertices s and t. Here, an enumeration algorithm has delay
f (n) if the algorithm outputs all the solutions without duplication
and for each pair of consecutive two outputs (including prepro-
cessing and postprocessing), the running time between them is
upper bounded by f (n), where n is the size of input.

Khachiyan et al. [13] studied a highly related problem, called
the minimum multicut problem, in the context of enumeration.
Given an undirected graph G = (V, E) and a set of pairs of
S ⊆ V × V , the goal of this problem to enumerate all minimal S -
cuts M of G, that is, G′ = (V, E \ M) has no paths between every

1 Hokkaido University
2 Kyoto University
a) k-kurita@ist.hokudai.ac.jp

vertex pair in S and M is inclusion-wise minimal with respect to
this property. The cut M is called a multicut of (G, S). Our prob-
lem is indeed a special case of this problem, where S = T × T .
They gave an efficient algorithm for this problem. Their algo-
rithm runs in incremental polynomial time, that is, if M is the
set of minimal S -cuts of (G, S) that are generated so far, then the
algorithm decides whether there is a minimal S -cut of G not in-
cluded inM in time polynomial in |V | + |E| + |M|. Moreover, if
such a minimal S -cut exists, the algorithm outputs one of them
within the same running time bound. Since our problem is a spe-
cial case of their problem, there algorithm works for our problem
as well. However, there can be exponentially many minimal mul-
ticuts in a graph. Therefore, the delay of their algorithm cannot
be upper bounded by a polynomial in terms of input size.

In this paper, we give a polynomial delay algorithm for enu-
merating minimal multiway cut of (G = (V, E),T).
Theorem 1. There is an algorithm enumerates all the minimal
multiway cuts of G in O(|T | · |V | · |E|) delay.

This simultaneously improves the previous incremental poly-
nomial running time bound obtained by applying the algorithm
of [13] to our problem and extends enumeration algorithms for
minimal s-t cuts due to [17, 19]. The idea behind this result is
that we rather enumerate particular partitions of V than directly
enumerating minimal multiway cuts of (G,T). It is known that
an s-t cut of G is minimal if and only if the bipartition (V1,V2)
naturally defined from the s-t cut induces connected subgraphs
of G, that is, G[V1] and G[V2] are connected [8]. This fact is
highly exploited in enumerating minimal s-t cuts [17,19] and can
be extended for multiway cuts (See Section 2). To enumerate
such partitions of V , we use the reverse search paradigm due to
Avis and Fukuda [2]. It would be worth mentioning that the ap-
proaches for enumerating minimal s-t cuts of [17, 19] rely on the
fact that T contains exactly two vertices, and hence it would be
non-trivial to extend their approaches to the general case where
|T | > 2.

As a straightforward application of Theorem 1, we can enu-
merate minimal multicuts in polynomial delay for a special case.
For an instance (G, S) of the multicut problem, the demand graph

ⓒ 2020 Information Processing Society of Japan 1

Vol.2020-AL-177 No.6
2020/3/16

IPSJ SIG Technical Report

is an undirected simple graph H = (T, Est) such that T is the
set of vertices appeared in S , that is, T =

∪
(s,t)∈S {s, t}, and

Est = {{s, t} : (s, t) ∈ S }. Note that for multiway cuts, H is
exactly the complete graph on T . Provan and Shier [17] implic-
itly proved that if H is a star, then all the minimal multicuts can
be enumerated in polynomial delay since such a minimal multi-
cut forms a bipartition (X,V \ X) of V such that X contains the
center of H and V \ X contains the other leaves of H (See [17],
for details). The only remaining case for demand graphs of three
vertices is K3, which corresponds to our case. As an immediate
consequence from Theorem 1, we have the following.
Corollary 2. There is an algorithm enumerates all the minimal
multicuts of G in polynomial delay, provided that the demand
graph has at most three vertices.

2. Preliminaries
In this paper, we assume that a graph G = (V, E) is connected

and has no self-loops and no parallel edges. Let X ⊆ V . We de-
note by G[X] the subgraph of G induced by X. The neighbor set of
X is denoted by N(X) (i.e. N(X) = {y ∈ V \X : x ∈ X∧{x, y} ∈ E}.
For a set of edges F ⊆ E, the graph obtained from G by deleting
F is denoted by G − F.

Let T = {t1, t2, . . . , tk} be a set of vertices in V . A vertex ti ∈ T
is called a terminal and T is called a terminal set or terminals.
A set of edges M ⊆ E is a multiway cut of (G,T) if no pair of
terminals is connected in G − M. When T is clear from the con-
text, we simply call M a multiway cut of G. A multiway cut M
is minimal if M \ F is not a multiway cut of G for any F ⊂ M.
Note that this condition is equivalent to that M \ {e} is not a mul-
tiway cut of G for any e ∈ M. In the following lemma, we give a
characterization of a minimal multiway cut of G.
Lemma 3. Let M ⊆ E be a multiway cut of G. Then, M is min-
imal if and only if it satisfies the following two conditions: (I)
G − M has k connected components C1, . . . ,Ck, (II) the i-th con-
nected component Ci is an induced subgraph of G and contains
ti.

Proof. Suppose that M is a minimal multiway cut of G. From
the definition of a minimal multiway cut, G − M has at least k
connected components C1,C2, . . . ,Ck′ . We can assume without
loss of generality that each Ci contains ti. If Ci is not an induced
subgraph of G, we can simply remove an edge of M whose end-
points belong to Ci, which contradicts to the minimality of M.
Moreover, if k′ > k, there is at least one edge in M whose one
endpoint belongs to Ci for some i ≤ k and the other endpoint be-
longs to C j for some j > k. This edge is also removable from
M, contradicting to the minimality of M. Therefore, the “only if”
part follows.

Conversely, let C1,C2, . . .Ck be the connected components of
G −M that satisfies (I) and (II). Since every Ci is an induced sub-
graph of G, every edge e in M lies between two connected com-
ponents, say Ci and C j. This implies that there is a path between
ti and t j in G − (M \ {e}). Hence, M is minimal. □

Note that the lemma proves in fact that there is a bijection
between the set of minimal multiway cuts of G and the col-
lection of partitions of V satisfying (I) and (II). Therefore, in

what follows, we regard a minimal multiway cut M as a parti-
tion P = {C1,C2, . . .Ck} of V satisfying the conditions (I) and (II)
in Lemma 3. In this context, we call a partition of V satisfying (I)
and (II) in Lemma 3 a valid partition. We write Pi< and P<i to
denote

∪
i< j C j and

∪
j<i C j, respectively. For a vertex v ∈ V and

a valid partition P, the position of v in P, denoted by P(v), is the
index 1 ≤ i ≤ k with v ∈ Ci.

3. The algorithm
Fix a graph G = (V, E) and a terminal set T ⊆ V . Our proposed

algorithm follows the reverse search paradigm due to [2]. In this
paradigm, algorithms inductively enumerate solutions from a spe-
cial solution. For our problem, we inductively define this special
solution R =

{
Cr

1, . . . ,C
r
k

}
as follows: Let Cr

i be the component in
G[V \ (R<i ∪ {ti+1, . . . , tk})] including ti. Note that R<1 is defined
as the empty set and hence Cr

1 is well-defined.
Lemma 4. R is a valid partition.

Proof. Clearly, Cr
i satisfies (II) in Lemma 3 for all 1 ≤ i ≤ k.

Thus, we show that R is a partition of V . Let v be an arbitrary
vertex of G. Since G is connected, we can assume that v is adja-
cent to a vertex in Cr

i for some 1 ≤ i ≤ k. This implies that v is
included in Cr

j for some j ≤ i. □

This partition R is called the root partition.
Lemma 5. Let P = {C1, . . . ,Ck} be an arbitrary valid partition.
Then, Ci ∩Cr

j = ∅ holds for every 1 ≤ i < j ≤ k.

Proof. Suppose for contradiction that v is a vertex in Ci ∩Cr
j for

some i and j with i < j. Assume, without loss of generality, there
is no component Cr

j′ satisfying Ci ∩Cr
j′ , ∅ with j′ > j. Let P be

a path in G[Ci] between ti and v. Assume moreover that there is
no vertex in Cr

j on the path other than v. From these assumptions,
for every w on P except for v, we have R(w) < j. Let w be the
vertex on P adjacent to v. By the definition of R, both w and v are
included in the same component Cr

R(w), which contradicts to the
fact that R(w) < j. □

Corollary 6. Let P = {C1, . . . ,Ck} be an arbitrary valid parti-
tion. Then, Ci ⊆ R≤i holds for every 1 ≤ i ≤ k.

We define the farness of P as:∑
v∈V

(P(v) − R(v)).

Intuitively, the farness of a valid partition is the sum of the “dif-
ference” of the indices of v in P and in R. Note that the farness
of P is at most kn for every valid partition P. One may think that
the farness or more specifically P(v) − R(v) can be negative. The
following lemma ensures that it is always non-negative.
Lemma 7. Let P = {C1, . . . ,Ck} be a valid partition. Then, the
farness of P is equal to zero if and only if P is the root partition.

Proof. Obviously, the farness of the root partition R is zero.
Thus, in the following, we consider the “only if” part. By Corol-
lary 6, every vertex v ∈ Ci is included in R≤i. This implies that
P(v)−R(v) is non-negative. Since the farness ofP is equal to zero,
we have P(v) = R(v) for every v ∈ V . Hence, we have Ci = Cr

i

for every 1 ≤ i ≤ k. □

ⓒ 2020 Information Processing Society of Japan 2

Vol.2020-AL-177 No.6
2020/3/16

IPSJ SIG Technical Report

Let P = {C1, . . . ,Ck} be a valid partition. We say that a vertex
v ∈ (N(Ci)∩Pi<) \ T is shiftable into Ci (or simply, shiftable). In
words, a vertex is shiftable into Ci if it is non-terminal, adjacent
to a vertex in Ci, and included in C j for some j > i (See Figure 1).

t1

t2

t3

t4

Fig. 1 The figure illustrates a valid partition of a graph with four termi-
nals. Squares indicate terminals and circle indicate other vertices.
Shiftable vertices are depicted by white circles.

Lemma 8. Let P be a valid partition with P , R. Then, P has
at least one shiftable vertex.

Proof. By Lemma 7, the farness of P is more than zero. This
implies that there is a vertex v ∈ C j ∩Cr

i , ∅ for some i , j. Note
that v is not a terminal. By Lemma 5, we have i < j. Observe
that Cr

i \ C j is not empty since Cr
i contains terminal ti that is not

contained in C j. Since G[Cr
i] is connected, there is at least one

vertex w ∈ Cr
i \ C j that is adjacent to v. Note that w is not in-

cluded in C j, which implies that j , P(w). If j < P(w), we have
w , ti and hence w is shiftable into C j. Otherwise, j > P(w),
we can conclude that v is shiftable into CP(w). Hence the lemma
follows. □

Let P = {C1, . . . ,Ck} be a valid partition with P , R. By
Lemma 8, P has at least one shiftable vertex. The largest index i
of a component Ci into which there is a shiftable vertex is denoted
by ℓ (P). There can be more than one vertices that are shiftable
into Cℓ(P). We say that a vertex v is the pivot of P if v is shiftable
into Cℓ(P), and moreover, if there are more than one such vertices,
we select the pivot in the following algorithmic way:
(1) Let Q be the set of vertices, each of which is shiftable into

Cℓ(P).
(2) If Q contains more than one vertices, we replace Q as Q :=

Q ∩Cs, where s is the maximum index with Q ∩Cs , ∅.
(3) If Q contains more than one vertices, we compute the cut

vertices in G[Cs]. If there is at least one vertex in Q that is
not a cut vertex of G[Cs], remove all the cut vertices of G[Cs]
from Q. Otherwise, that is, Q contains only cut vertices of
G[Cs], remove a cut vertex v ∈ Q from Q if there is another
cut vertex w ∈ Q of G[Cs] such that every path between w
and ts hits v.

(4) If Q contains more than one vertices, remove all but one ver-
tex that is the minimum with respect to some prescribed total
order on V .

Note that if we apply this algorithm to Q, Q contains exactly one
vertex that is shiftable into Cℓ(P). We select this vertex as the pivot
of P.
Lemma 9. Let p be the pivot ofP = {C1, . . .Ck} and let s = P(p).
Then, for every connected component C of G[Cs \ {p}], either C
contains terminal ts or C has no any shiftable vertex into Cℓ(P).

Proof. If p is not a cut vertex in G[Cs], clearly G[Cs \ {p}] has
exactly one component that has terminal ts. Suppose otherwise.
If there is a component C of G[Cs\{p}] that has no terminal ts and
has a shiftable vertex v into Cℓ(P). Then, since p is the cut vertex
of G[Cs], every path between v and ts hits p. This contradicts to
the choice of p. □

To completely enumerate all the valid partitions from the root
partition, we define a tree whose node corresponds to a valid
partition and the root corresponds to the root partition. Once
we can define this tree structure on the set of valid partitions,
we can enumerate all the valid partitions from the root parti-
tion without duplication. To this end, we define the parent of
a valid partition P = {C1,C2, . . . ,Ck} with P , R, denoted by
par (P) =

{
C′1, . . . ,C

′
k

}
, as follows:

C′i =

Ci (i , ℓ (P),P(p))
Ci ∪ (CP(p) \C) (i = ℓ (P)))
C (i = P(p)),

where p is the pivot of P and C is the component in G[CP(p) \ {p}]
including terminal tP(p). Since p has a neighbor in Cℓ(P), G[C′ℓ(P)]
is connected, and hence par (P) is a valid partition as well. If
P = par (P′) for some P′, P′ is called a child of P.

Observe that for every valid partition P that is not the root par-
tition R, the farness of par (P) is strictly smaller than that of P
since par (P) (v) ≤ P(v) for every v ∈ V and par (P) (p) < P(p)
holds for the pivot p of P. This infers that for every valid parti-
tion P with P , R, we can eventually obtain R by tracing their
parents at most kn times. Therefore, this parent-children relation
defines a tree whose root is the root partition and contains all the
valid partitions as its nodes.

From a valid partition that is not the root partition, we can eas-
ily find its parent. However, to traverse the tree to enumerate the
valid partitions, we need to compute the set of children from their
parent. For a valid partition P, we denote by ch (P) the set of all
children of P. Let C be a set of vertices that induces a connected
subgraph in G. The boundary of C, denoted by B(C), is the set of
vertices in C that has a neighbor outside of C.
Lemma 10. Let P = {C1, . . . ,Ck} be a valid partition and P′ a
child of P. Then, the pivot p of P′ belongs to the boundary of
Cℓ(P′) and is adjacent to a vertex in CP′(p).

Proof. Let P′ =
{
C′1, . . . ,C

′
k

}
and let s = P′(p). Since p is

shiftable, it belongs to the boundary of C′s. Moreover, p belongs
to Cℓ(P′). Since G[C′s] is connected and has at least two vertices
(p and ts), p has a neighbor w in C′s. We can choose w as a vertex
in the component of G[C′s \ {p}] including terminal ts. This im-
plies that P(w) = s and hence p belongs to the boundary of Cℓ(P′)
and is adjacent to w ∈ Cs. □

Our algorithm EMC is described in Algorithm 1. For enumerat-
ing valid partitions, call EMC (G,R, 0), where R is the root parti-
tion for G.
Lemma 11. Given the root partition R for G, Algorithm 1 enu-
merates all the valid partitions for G.

Proof. To prove the correctness of Algorithm 1, it suffices to

ⓒ 2020 Information Processing Society of Japan 3

Vol.2020-AL-177 No.6
2020/3/16

IPSJ SIG Technical Report

Algorithm 1: An algorithm to enumerate minimal multi-
way cuts in O(knm) delay and O

(
kn2 + m

)
space.

1 Procedure EMC(G,P = {C1, . . . ,Ck} , d)
2 if d is even then Output P
3 for Ci ∈ P do
4 for v ∈ B(Ci) with v , ti do
5 ID← ∅
6 for u ∈ N(v) \Ci do ID← ID ∪ {P(u)}
7 P′ ← P // P′ =

{
C′1, . . . ,C

′
k

}
8 C′i ← the component including ti in G[Ci \ {v}]
9 C ← Ci \C′i

10 for j ∈ ID with j > i do
11 C′j ← C j ∪C
12 if par (P′) = P then EMC(G,P′, d + 1)
13 C′j ← C j

14 if d is odd then Output P

show that given a valid partition P = {C1, . . . ,Ck}, every child
of P is generated in line 3 to 13 in EMC. Basically, EMC tries
to find a child P′ =

{
C′1, . . . ,C

′
k

}
of a given valid partition

P = {C1, . . . ,Ck}. For a valid partition P and its child P′, every
component Ci except two is equal to the corresponding compo-
nent C′i . The only difference between them is two pairs of compo-
nents (Cℓ(P′),C′ℓ(P′)) and (CP′(p),C′P′(p)). Line 3 guesses the com-
ponent Cℓ(P′). By Lemma 10, the pivot of P′ is included in the
boundary of Cℓ(P′). Thus, line 4 correctly guesses the pivot p of
P′. Moreover, since, by Lemma 10, p has a neighbor in C′P′(p),
lines 10-13 correctly guess the index P′(p).

Now, consider two components Cℓ(P′) and CP′(p). Let ℓ = ℓ (P′)
and s = P′(p). By the definition of a parent, Cℓ = C′ℓ ∪ (C′s \ Cs)
and Cs is the component of G[C′s \ {p}] including terminal ts.
Since C′ℓ ∩C′s = ∅ and Cℓ ∩Cs = ∅, we have C′ℓ = Cℓ \ (C′s \Cs).
By Lemma 9, C′s \Cs has only one shiftable vertex into C′ℓ, which
is the pivot p of P. By the definition of shiftable vertex, there are
no edges between a vertex in C′s \Cs \ {p} and a vertex in C′l . This
means that either C′s \ Cs \ {p} is empty or p is a cut vertex in
G[Cℓ \ {p}] that separates C′s \Cs \ {p} from C′ℓ. Therefore, C′ℓ is
the component of G[C′l \ {p}] including terminal tℓ. Moreover, by
the definition of a parent, we have C′s = Cs ∪ (Cℓ \C′ℓ).

Hence, Algorithm 1 correctly computes all the valid partitions
for G. □

Lemma 12. Given the root partition R for G, Algorithm 1 runs
in O(knm) delay and O

(
kn2 + m

)
space.

Proof. Let T be the enumeration tree defined by the recursive
calls of EMC.

First, we analyze the total running time of EMC. Let P =
{C1, . . . ,Ck} be a valid partition. In each node ofT , line 3 guesses
the component Ci ∈ P and line 4 guesses the vertex in the bound-
ary B(Ci). The loop procedure from line 4 to line 13 is executed
at most n times since the total size of boundaries is at most n.
Since the computation of P′ and par (P′) can be done in O(m)
time for each C j, each node needs O(knm) time. Since the algo-
rithm outputs exactly one valid partition in each node of T , the
total computation time is O(Mknm), where M is the number of
valid partitions.

Next, we analyze the delay of EMC. To show a delay bound, we

a

b

c d

e

f

g

h i

(III) hgi

(II) fea

(I) abc

Fig. 2 The figure depicts the three cases of consecutive three events ei, ei+1,
and ei+2.

use the alternative output method due to [20]. We replace each
edge of T with a pair of parallel edges. Then, the traversal of
T naturally defines an Eulerian tour on this replaced graph. Let
S = (n1, . . . , nt) be the sequence of nodes that appear on this tour
in this order. Note that each leaf node appears exactly once in S
and each internal node appears more than once in S . From now
on, we may call each ni an event and denote by ei the i-th event in
S . Observe that if the depth of ni is even (resp. odd) in T , then
the first (resp. last) event in S corresponding to this node outputs
a valid partition. Now, let us consider three consecutive events
ei, ei+1, and ei+2 in S . Since each node is processed in O(knm)
time, it suffices to show that at least one of these events outputs
a valid partition. If at least one of these events corresponds to a
leaf node, this claim obviously holds. Hence, we assume not in
this case. Since each of ei, ei+1, and ei+2 corresponds to an inter-
nal node of T , there are three possibilities (Figure 2): (I) ni+1 is
a child of ni and ni+2 is a child of ni+1. (II) ni+1 is a parent of ni

and ni+2 is a parent of ni+1. (III) ni+1 is a parent of both ni and
ni+2. Note that these three nodes must be distinct since none of
them is a leaf of T . For case (I), the events ei+1 and ei+2 are the
first events for distinct nodes ni+1 and ni+2, respectively. Since
exactly one of ni+1 and ni+2 has even depth, therefore, either ei+1

or ei+2 outputs a valid partition. For case (II), the events ei+1 and
ei+2 are the last events for those nodes, and hence exactly one of
them outputs a valid partition as well. For case (III), suppose first
that ni+1 has even depth. Then ni has odd depth, and hence ei is
the last event for ni and hence ei outputs a valid partition. Sup-
pose otherwise that ni+1 has odd depth. Then, ni+2 has even depth
and ei+2 is the first event for this node. This, ei+2 outputs a valid
partition. Therefore, the delay of EMC is O(knm).

Finally, we analyze the space complexity. Let P be a solution
and P be a path between P and R in T . In each node, we store
the solution P′, the boundary for each C′i ∈ P′ and a set of in-
dices ID. Since the size of each set and partition is O(n) and the
depth of T is kn, the space complexity is O

(
kn2 + m

)
. Hence, the

statement holds. □

References
[1] Arora, S., Karger, D. and Karpinski, M.: Polynomial Time Approxi-

mation Schemes for Dense Instances of NP-Hard Problems, Journal of
Computer and System Sciences, Vol. 58, No. 1, pp. 193 – 210 (online),
DOI: https://doi.org/10.1006/jcss.1998.1605 (1999).

[2] Avis, D. and Fukuda, K.: Reverse search for enumeration, Discrete
Applied Mathematics, Vol. 65, No. 1, pp. 21 – 46 (online), DOI:
https://doi.org/10.1016/0166-218X(95)00026-N (1996).

[3] Bateni, M., Hajiaghayi, M., Klein, P. N. and Mathieu, C.: A
Polynomial-Time Approximation Scheme for Planar Multiway Cut,

ⓒ 2020 Information Processing Society of Japan 4

Vol.2020-AL-177 No.6
2020/3/16

IPSJ SIG Technical Report

Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’12, USA, Society for Industrial and Ap-
plied Mathematics, p. 639–655 (2012).

[4] Chen, D. Z. and Wu, X.: Efficient Algorithms for k-Terminal Cuts on
Planar Graphs, Algorithmica, Vol. 38, No. 2, pp. 299–316 (online),
DOI: 10.1007/s00453-003-1061-2 (2004).

[5] Cǎlinescu, G., Karloff, H. and Rabani, Y.: An Improved Approxi-
mation Algorithm for MULTIWAY CUT, Journal of Computer and
System Sciences, Vol. 60, No. 3, pp. 564 – 574 (online), DOI:
https://doi.org/10.1006/jcss.1999.1687 (2000).

[6] Cygan, M., Pilipczuk, M., Pilipczuk, M. and Wojtaszczyk, J. O.: On
Multiway Cut Parameterized above Lower Bounds, ACM Trans. Com-
put. Theory, Vol. 5, No. 1 (online), DOI: 10.1145/2462896.2462899
(2013).

[7] Dahlhaus, E., Johnson, D. S., Papadimitriou, C. H., Seymour,
P. D. and Yannakakis, M.: The Complexity of Multiterminal Cuts,
SIAM J. Comput., Vol. 23, No. 4, p. 864–894 (online), DOI:
10.1137/S0097539792225297 (1994).

[8] Diestel, R.: Graph Theory, 4th Edition, Graduate texts in mathematics,
Vol. 173, Springer (2012).

[9] Fireman, L., Petrank, E. and Zaks, A.: New Algorithms for SIMD
Alignment, Compiler Construction, Berlin, Heidelberg, Springer
Berlin Heidelberg, pp. 1–15 (2007).

[10] Guillemot, S.: FPT algorithms for path-transversal and cycle-
transversal problems, Discrete Optimization, Vol. 8, No. 1, pp. 61–71
(online), DOI: https://doi.org/10.1016/j.disopt.2010.05.003 (2011).

[11] Kappes, J. H., Speth, M., Andres, B., Reinelt, G. and Schnörr, C.:
Globally Optimal Image Partitioning by Multicuts, Proceedings of
the 8th International Conference on Energy Minimization Methods in
Computer Vision and Pattern Recognition, EMMCVPR ’11, Berlin,
Heidelberg, Springer-Verlag, p. 31–44 (2011).

[12] Karger, D. R., Klein, P., Stein, C., Thorup, M. and Young, N. E.:
Rounding Algorithms for a Geometric Embedding of Minimum Mul-
tiway Cut, Math. Oper. Res., Vol. 29, No. 3, p. 436–461 (online), DOI:
10.1287/moor.1030.0086 (2004).

[13] Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V. and
Makino, K.: Generating Cut Conjunctions in Graphs and Related
Problems, Algorithmica, Vol. 51, No. 3, p. 239–263 (2008).

[14] Klein, P. N. and Marx, D.: Solving Planar K-Terminal Cut in O(Nc
√

k)
Time, Proceedings of the 39th International Colloquium Confer-
ence on Automata, Languages, and Programming - Volume Part I,
ICALP’12, Berlin, Heidelberg, Springer-Verlag, p. 569–580 (online),
DOI: 10.1007/978-3-642-31594-7 48 (2012).

[15] Marx, D.: Parameterized Graph Separation Problems, Theor.
Comput. Sci., Vol. 351, No. 3, p. 394–406 (online), DOI:
10.1016/j.tcs.2005.10.007 (2006).

[16] Marx, D.: A Tight Lower Bound for Planar Multiway Cut with Fixed
Number of Terminals, Proceedings of the 39th International Col-
loquium Conference on Automata, Languages, and Programming -
Volume Part I, ICALP ’12, Berlin, Heidelberg, Springer-Verlag, p.
677–688 (online), DOI: 10.1007/978-3-642-31594-7 57 (2012).

[17] Provan, J. S. and Shier, D. R.: A Paradigm for Listing (s, t)-Cuts
in Graphs, Algorithmica, Vol. 15, No. 4, p. 351–372 (online), DOI:
10.1007/BF01961544 (1996).

[18] Stone, H. S.: Multiprocessor Scheduling with the Aid of Network
Flow Algorithms, IEEE Trans. Softw. Eng., Vol. 3, No. 1, p. 85–93
(online), DOI: 10.1109/TSE.1977.233840 (1977).

[19] Tsukiyama, S., Shirakawa, I., Ozaki, H. and Ariyoshi, H.: An
Algorithm to Enumerate All Cutsets of a Graph in Linear Time
per Cutset, J. ACM, Vol. 27, No. 4, p. 619–632 (online), DOI:
10.1145/322217.322220 (1980).

[20] Uno, T.: Two general methods to reduce delay and change of enumer-
ation algorithms, Technical report, National Institute of Informatics
Technical Report E (2003).

[21] Xiao, M.: Simple and Improved Parameterized Algorithms for Multi-
terminal Cuts, Theor. Comp. Sys., Vol. 46, No. 4, p. 723–736 (online),
DOI: 10.1007/s00224-009-9215-5 (2010).

ⓒ 2020 Information Processing Society of Japan 5

Vol.2020-AL-177 No.6
2020/3/16

