
code2vec for C: The Acquisition Method of Distributed
Representation of the C Language with The TF-IDF

Method

Kotori Hieda2,a) Kenji Hisazumi1,b) Hirofumi Yagawa3 Akira Fukuda1,c)

Abstract: Code2vec is a method for obtaining a distributed representation of program code. It obtains the embed
vectors of reals of program code through machine learning and predicts the label such as “method body” representing
the functionality of the code snippets. Thus, it is possible to obtain a distributed representation of the code snippet
whose meaning is taken into account. In embedded system development, the non-object-oriented programming lan-
guage C is often used, however code2vec is intended for object-oriented programming languages such as Java and C#.
Therefore, to apply code2vec to the C language, there are some problems that must be solved: labelling is difficult
since the function name differs from that of the object-oriented language, and we need to develop a method of feature
amount extraction from C language. In the following paper, we propose a method for extracting feature values from
the C language programs and making use of the TF-IDF method for decomposing a given function name into both
module-specific names and general operation names, as found in object-oriented languages.

Keywords: code2vec, TF-IDF, C language, code snippet, function name estimation

1. Introduction
In natural language processing, methods for obtaining dis-

tributed representations that take into account their meanings
such as word2vec[1] have been proposed and applied in various
ways. Current software development is supported in various ways
using similar methods in program code. However, there is room
for improvement in both methods and applications.

Code2vec[2] has been proposed as a method for obtaining the
distributed representation of a given program code snippet. In
this approach, it is possible to numerically express the code snip-
pets and the relationship between them as vectors of reals. The
main application of the distributed representations obtained by
code2vec is to estimate the method name from the method body.
Code2vec is designed for object-oriented languages such as Java
and C#.

C language is often used in embedded systems. However, as
it is not an object-oriented language, it is not possible to directly
apply C language to code2vec. In particular, when estimating the
function name, estimation accuracy decreases because the func-
tion name itself contains both the module-specific name and gen-
eral operation name.

In this study, we apply TF-IDF (Term Frequency Inverse Doc-
ument Frequency)[3] to the function name to remove module-

1 Faculty of Information Science and Electrical Engineering, Kyushu Uni-
versity

2 Graduate School of Information Science and Electrical Engineering,
Kyushu University

3 Fujitsu Kyushu Network Technologies Limited
a) hieda@f.ait.kyushu-u.ac.jp
b) nel@slrc.kyushu-u.ac.jp
c) fukuda@f.ait.kyushu-u.ac.jp

Table 1 Result of using TF-IDF method

!"#$%" &#'"%

!"#$%&!#$%'()(*+,- &!#$%'()(*+,-

!"#$%.*#$%'()(*+,- .*#$%'()(*+,-

!"#$%/0!1$%2#,3# /0!1$%2#,3#

!"#$%2#,3#$%24 2#,3#$%24

!"#$%2#(. 2#(.

!"#$%2#,3#$%3!2!35!6 2#,3#$%3!2!35!6

!"#$%,4(3#$%0,'6-! ,4(3#$%0,'6-!

!"#$%&!#$%/3!,#!$%,//!22 &!#$%/3!,#!$%,//!22

!"#$%0,'6-!$%673#8$%+!#,6,#, 0,'6-!$%673#8$%+!#,6,#,

!"#$%0,'6-!$%673#8$%2*.!3 0,'6-!$%673#8$%2*.!3

specific names based on the TF-IDF value as shown in Table 1.
The TF-IDF value increases when a certain word frequently ap-
pears in a specific document, whilst only appearing infrequently
in other documents. Since the module-specific name is unique
within a document, its TF-IDF value is high. Therefore, we set a
threshold for the TF-IDF value and delete the one with the highest
value to leave only the operation name. By learning only opera-
tion names as function names, we aim to improve the accuracy of
function name estimation.

2. Related research
The CMU-SEI group[4] has implemented a C parser for

code2vec. They paid attention to syntactic differences between
parsers of C and Java, such as function declarations which exist
in C but not in Java. They used Clang and LLVM[5], and tried to

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2020 Information Processing Society of Japan 21

apply code2vec to C language by abstracting the functions. In this
case, the accuracy of function name estimation may not improve
because the module name and operation name are not separated.

3. Analytical method
In this section, we describe the analysis procedure of C lan-

guage program code. Since a C language program is made up
of multiple different files, the program performs the processing
for each file individually. First, it extracts a function definition,
which consists of a function name, arguments, return values, and
a function body.

The function name is usually a compound word, so we extract
only the general terms. Since camel case and underscore are used
to represent word breaks, we extract words by separating them.
Furthermore, numerical values are often inappropriate as general
words, so we delete them. We do this for all prepared C language
programming code files.

We calculate the number of occurences of documents contain-
ing a specific word (DF) and consider this as an entire dictionary.
We also make a dictionary of the frequency of appearance of each
word (TF) for each file. Based on these dictionaries, we calculate
the TF-IDF value.

t f id fi, j = t fi, j · id fi t fi, j =
ni, j∑
k nk, j

id fi = log
|D|

|d : d ∋ ti|
with
・ni, j: number of occurrences of the word ti in the document d j.
・
∑

k nk, j: sum of occurrences of all words in document d j.
・|D|: total number of documents in the corpus.
・|d : d ∋ ti|: number of documents where the term ti appears.

After calculating all the words’ TF-IDF, we obtain a function
name with the deletion of words below the threshold.

Next, we extract features from the function body and analyze
code2vec following other language’s implementation method.
We parse the function body, convert it to an abstract syntax tree,
and extract all terminal symbols in the tree. We consider all
combinations of the extracted terminal symbols and extract a se-
quence of non-terminal symbols and terminal symbols connect-
ing terminal symbols as a path. Code2vec learns the function
name consisting of only common words and the feature value ex-
tracted from the function body.

4. Result
Table 2 shows a comparison between the results of CMU-SEI

and our function name estimation. We compare the top 50 C lan-
guage repositories on GitHub as learning data. According to our
result, it is found that CMU-SEI had better accuracy. The reason
for this is that CMU-SEI considers these differences.

1. CMU-SEI limited the maximum number of leaves in an AST
to 32, but we did not do this. The more leaf nodes there are, the
more complex it becomes, so we should limit it.
2. We think that the AST that we create is different from the AST
that CMU-SEI creates. It may be related to accuracy.
3. CMU-SEI rearranged the training data randomly and divided it
into training data, test data, and validation data, but we sorted the

Table 2 Comparison between CMU-SEI and proposed method[6] [7]

!"#$%&' ()*(*+,-./,01*-
(),23+3*4 567899 565:;7
),2<== 567>:? 5659>
@7 567::; 56588.

Precision - Precision is the proportion of true positives among the positive
predictions.
Recall - Recall is the ratio of true positive.
F1 score - F1 Score is the harmony mean of Precision and Recall.

data in alphabetical order. Since similar names are in the same
group, the accuracy may have dropped.

We believe that CMU-SEI presents better accuracy due to its’
implementation which considers the above factors. As such, we
will apply TF-IDF to the research of CMU-SEI in an attempt to
improve our results.

5. Conclusion
In this paper, we showed how to extract features using LLVM

and Clang to apply code2vec to C language. In tasks that esti-
mate function names from function bodies, identifiers such as C
language function names are often composed of compound words
consisting of module-specific names and general operation names
so we argued that this could be an obstacle. To solve this prob-
lem, we proposed a method for classifying function names in C
language into module-specific names and operation names using
TF-IDF. As a result, we found that we can extract only general
operation names from function names even in C language.

Future work includes applying TF-IDF to the research of
CMU-SEI, and evaluating the application of our proposed method
to other identifiers such as variable names and function names
with the goal being the estimation of the function from the func-
tion name. Besides, since the accuracy may change depending
on the threshold for the TF-IDF method, it is also significant to
consider where the threshold to be set is. We will set various
thresholds to find the best one to improve accuracy.

References
[1] Lian, Z.: Exploration of the Working Principle and Application of

Word2vec, Sci-Tech Information Development & Economy, Vol. 2, pp.
145–148 (2015).

[2] Alon, U., Zilberstein, M., Levy, O. and Yahav, E.: code2vec: Learning
distributed representations of code, Proceedings of the ACM on Pro-
gramming Languages, Vol. 3, pp. 1–29 (2019).

[3] Zhang, W., Yoshida, T. and Tang, X.: A comparative study of TF* IDF,
LSI and multi-words for text classification, Expert Systems with Appli-
cations, Vol. 38, No. 3, pp. 2758–2765 (2011).

[4] Software Engineering Institute: code2vec-c, Carnegie Mellon Univer-
sity (online), available from ⟨https://github.com/cmu-sei/code2vec-c⟩
(accessed 2019).

[5] Balogh, G. D., Mudalige, G. R., Reguly, I. Z., Antao, S. and Bertolli, C.:
OP2-Clang: A source-to-source translator using Clang/LLVM LibTool-
ing, 2018 IEEE/ACM 5th Workshop on the LLVM Compiler Infrastruc-
ture in HPC (LLVM-HPC), IEEE, pp. 59–70 (2018).

[6] Flach, P. and Kull, M.: Precision-recall-gain curves: PR analysis done
right, Advances in neural information processing systems, pp. 838–846
(2015).

[7] Sasaki, Y.: The truth of the F-measure, Teach Tutor mater, Vol. 1, No. 5,
pp. 1–5 (2007).

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2020 Information Processing Society of Japan 22

