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A Study on Motion-robust Video Deblurring

Jianfeng Xu1,a) Kazuyuki Tasaka1,b)

Abstract: Most existing video deblurring works focus on the use of temporal redundancy and lack uti-
lization of the prior information about data itself, resulting in strong dataset dependency and limited
generalization ability in handling challenging scenarios, like blur in low contrast or severe motion areas,
and non-uniform blur. Therefore, we propose a PRiOr-enlightened MOTION-robust video deblurring
model (PROMOTION) suitable for both global and local blurry scenarios. On the one hand, we use 3D
group convolution to efficiently encode heterogeneous prior information (including illumination, structure,
and motion priors), which enhances the model’s blur perception while mitigating the output’s artifacts.
On the other hand, we design the priors representing blur distribution, which enables our model to better
handle non-uniform blur in spatio-temporal domain. In addition to the classical camera shake caused
blurry scenes, we also prove the generalization of the model for local blur in real scenario, resulting in
better accuracy of hand pose estimation.
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1. Introduction
In recent years, more and more deblurring works have

emerged. In terms of image deblurring, a major trend
is to use multi-scale structure, such as [1], [12], [21], or
use pyramid structure, such as [11], for the purpose of en-
abling the network to have varying receptive fields, so as
to effectively deal with different degrees of blur. For more
complex video deblurring, in addition to conventionally
aligning multiple frames and deblurring the center frame
like EDVR [22] and DeBlurNet [20], it is often focused on
how to make full use of inter-frame redundancy, such as
using recurrent structure [7], [13], 3D convolution [4], [24],
or encoding each frame separately and then aggregating
them to decode [14]. Therefore, research on the utilization
of multi-scale receptive fields and inter-frame information
can be considered relatively mature. Different from the re-
search perspective of these works, we study the importance
of prior information to video deblurring.
Deblurring challenging blurs, including blur in low-

illumination and severe motion (e.g. close to cameras)
areas, non-uniform blur (e.g. local blur), and other spe-
cial cases, has been not well solved by conventional video
deblurring yet is a very important problem. This inspires
us to dig out the information of scenes themselves when
designing priors.
As the typical representative of conventional methods,

EDVR mainly consists of predeblur, alignment, fusion, and
reconstruction modules, as the golden background area
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Fig. 1 Performance illustration of our method. Compared with
EDVR [22] which has limited generalization ability of han-
dling challenging blurs and tends to introduce structural
distortion, due to the utilization of priors, our method can
deliever more visual pleasing results, especially with more
detail recovery and better fidelity in structure.

shown in Figure 4. However, by analyzing the design and
deblurring results, we have some interesting observations
as below: 1) Fail to effectively and deeply utilize temporal
correlation to help deblur. The aligned feature is obtained
by just concating. This lacks the mining of motion in-
formation. On the other hand, 2D convolution also has
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Fig. 2 Illustration of the weaknesses of the typical conventional
method EDVR [22], including structure distortion, weak
deblurring performance on large optical flow or low con-
trast areas. Since it lacks the effective constraint of het-
erogeneous prior information.

Fig. 3 Illustration that EDVR seriouly worsens the sharp input
since it cannot discriminate the sharp information.

limited capability in modelling long-term temporal depen-
dency. 2) The deblurred frames are prone to be infected
with structure distortion, such as straight lines becoming
twisty, as the red dashed boxes shown in Figure 2 (a) and
(b). This is because the model does not have the con-
straint of structure priors. 3) The larger the optical flow,
the more difficult it is to eliminate blur. We observe the
red and yellow blocks presented in Figure 2 (a)(b)(c). It is
not difficult to find these areas with large motion have a
poor recovery of detail, such as the leaves. This is because
the model lacks the prior information of motion, which
makes it unable to adjust the intensity of deblurring adap-
tively. 4) The lower the contrast, the harder it is to remove
blur. Similarly as the red and blue boxes shown in Figure 2
(a)(b)(d), the low contrast areas on the door edge and the
tire are not well restored, since the model lacks the ability
to perceive the illumination distribution of scenes. 5) The
original sharp information cannot be preserved. For ex-
ample in Figure 3, if we input the sharp frame mixed with
blur frames, the output is seriously worse than the input.
We inference the model actually lacks of the ability to dis-
tinguish sharp and blurred inputs (non-uniform blur). 6)
The loss design, that is, Charbonnier loss [2] which calcu-
lates the error of each pixel indiscriminately, cannot also
effectively avoid artifacts and reflect the influence from
non-uniform blur.
Based on the above analysis, we enhance the model’s

perception about scenes from the use of prior information,
the way of feature extraction, and the design of constraint.
And further make a series of optimizations accordingly.
Our contributions are as follows:
1) We utilize 3D group convolution to encode hetero-

geneous prior information to explicitly supplement the
model’s multidimensional perception about scenes. The

heterogeneous priors include structure prior, motion prior,
and illumination prior, which effectively constrain the ar-
tifacts of the model and enhance the detail recovery of
challenging blurs. This point corresponds to observation
1) to 4).
2) In the spatio-temporal dimension, we increase the

model’s ability to distinguish sharp and blurred inputs. In
temporal dimension, the embedding prior vector is embed-
ded in aligned feature to represent the blur degree of each
frame. In spatio dimension, optical flow based attention
information is used to indicate the blur degree of different
regions within a single frame. This point corresponds to
observation 5).
3) We design the dual loss function, which considers the

effects from pixel level and perceptual level simultaneously,
to effectively constrain the blur removal and guarantee
subjective quality. This point corresponds to observation
6).
4) A small-scale video deblurring dataset for hand pose

estimation is constructed. And we further verified that the
estimation accuracy is improved after deblurring. This in-
directly reflects the effectiveness of our method for local
blurry scenes.
The use of priori information brings a gift to video de-

blurring task, especially in terms of subjective effect, as
shown in Figure 1 where our results have more detail
restoration and structure fidelity.

2. Related work
Since the first end-to-end data-driven video deblurring

method DeBlurNet was propopsed [20], in the past two
years, the success of deep learning has brought significant
promotion to video deblurring [3], [4], [7], [13], [19], [20],
[22], [23], [24], [27]. Different from image deblurring which
only focuses on the mining of spatial information, such as
using multi-scale receptive field [1], [12], [21], video de-
blurring also focuses on how to effectively use redundant
information in the temporal domain to assist deblurring.
The conventional approach is to stack multiple frames

together as a single input and then uses 2D convolutions
to extract features [4], [20], [22]. Compared to the clas-
sic DeBlurNet [20], [4] has more consideration about the
complexity and params of the model, which also wins 2nd
place in the NTIRE19 challenge. Before going through
2D convolutions, EDVR aligns adjacent frames to better
aggregate information [22].
Some works use recurrent neural networks (RNNs) for

sequential data processing [7], [13], [23]. [7] designs a
spatio-temporal recurrent network which extends the re-
ceptive field while keeping the network small, and uses dy-
namic temporal blending to enforce temporal consistency.
[13] presents a RNN-based video deblurring method that
exploits both the intra-frame and inter-frame recurrent
schemes and updates the hidden state multiple times in-
ternally during a single time-step. Another spatially vari-
ant RNN for dynamic scene deblurring is proposed in [23],
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where the weights of the RNN are learned by a deep CNN.
Another part studies how to extract pixel-wise informa-

tion to handle the spatially variant blur [3], [19], [27]. Sim-
ilar to CycleGAN’s circular idea [28], [3] first deblurs each
frame separately, then estimates optical flow and pixel-
wise blur kernels to reblur the estimated sharp images,
which makes the network fine-tuned via self-supervised
learning. Similarly, [27] proposes a spatial-temporal net-
work for video deblurring based on filter adaptive convo-
lutional layers, and the network is able to dynamically
generate element-wise alignment and deblurring filters in
order. [19] presents a motion deblurring kernel learning
network that predicts the per-pixel deblur kernel and a
residual image with two novel base blocks named residual
down-up and residual up-down blocks.
In addition, 3D convolution has been also used for video

deblurring recently to extract spatio-temporal information
simultaneously [24]. [24] applies 3D convolutions to cap-
ture jointly spatial and temporal information, and uses a
discriminator for adversarial training.

3. Proposed method
The overall diagram of our proposed PRiOr-enlightened

MOTION-robust video deblurring (PROMOTION)
method is presented in Figure 4. Given 5 consecutive
input frames I[t−2:t+2] where t is the center frame’s number
in the sequence, we denote the center frame as It and the
other frames as neighboring frames. The aim of video
deblurring is to restore a sharp center frame Ôt which
is close to its corresponding ground truth Ot. On the
one hand, we explicitly calculate the heterogeneous prior
information of the input frame stack and encode it with
3D convolution to obtain a prior feature map, which is
used to supplement the features output from the temporal
and spatial attention (TSA) fusion module. This is
described in Sec. 3.1. On the other hand, we design the
embedding prior vector to rectify the aligned feature and
introduce the optical flow based attention information
in the loss function, to increase the model’s perception
ability of uneven blur distribution in spatio-temporal
dimension. These are described in Sec. 3.2 and Sec. 3.4
separately. Finally, in order to make the model more
flexible to learn different patterns, channel attention
technology is introduced into the basic residual blocks,
which is described in Sec. 3.3.

3.1 Heterogeneous prior information
As discussed earlier in the introduction, we use the illu-

mination, structure and motion priors of scenes to improve
the model’s structural fidelity and detail recovery abilities
for low contrast and large optical flow regions.
Contrast group. For each frame Ii in the input stack, we
calculate its contrast map Gc

i as follows:

Gc′
i (p, q) =

1
4

∑
(p̂,q̂)∈N4(p,q)

(Gi(p, q) −Gi(p̂, q̂))2 (1)

Table 1 Parameters of the heterogeneous prior encoding network.
Note stride is the same in row, column and depth direc-
tions.

Layer In channel Out channel Kernel Size Stride Group
3D Conv1 3 9 3*5*5 1 3
MaxPool 9 9 2*2 2 -
3D Conv2 9 27 3*5*5 1 9
MaxPool 27 27 2*2 2 -
2D Conv 27 128 1*1 1 -

Gc
i =

Gc′
i

max(Gc′
i )

(2)

where Gi is the gray map of Ii, and N4(p, q) denotes the
4-neighborhood of pixel (p, q). From the contrast map in
Figure 5, it can be seen that there are larger activation val-
ues for the high illumination regions and smaller activation
values for the low ones. This indicates that contrast maps
are able to effectively reflect the illumination distribution
of scenes.
Gradient group. Similarly, we calculate the gradient map
Ggi for each input frame as the equation (3) given, and
use it to increase the sensitivity of the model to structure
information.

Ggi (p, q) = [Gi(p, q)−Gi(p+1, q)]+[Gi(p, q)−Gi(p, q+1)](3)

As the pink box shown in the upper right corner of Fig-
ure 4, gradient map can highlight structural information
in a scene, such as regular lines on the wall. This allows
the model to have better structural fidelity.
Optical flow group. Instead of using all the optical flow
maps of input stack, we only estimate the optical flow
map of center frame as baseline by using [8], while for
the neighbor frames, we use the difference maps between
center frame and each neighbor frame to represent the rel-
ative motion information. This is to save the calculation
time of optical flow.
Then 3D group convolutions are used to encode the

spatio-temporal information more efficiently. The detail
parameters of the heterogeneous prior encoding network
are presented in Table 1.

3.2 Embedding prior vector
In order to enable the model to place corresponding em-

phasis on frames with different degrees of blur in temporal
dimension, embedding prior vector is designed to explicitly
tell the model which frames it should pay more attention
to.
Specifically, we first filter each frame with the Lapla-

cian operator of size 3 ∗ 3, as shown in Figure 6. It is not
difficult to find the blurry image on the left has a smooth
filtered map, while the clear one on the right has a sharper
filtered map. Then, we calculate the variance of these fil-
tered maps var(Lap(Gi)) to reflect the blur degree of each
frame. The more blurry the frame, its variance is smaller.
Therefore, the embedding prior vector can be represented
by:

Vemb =
5 · [var(Lap(Gi))−1]∑t+2

i=t−2 var(Lap(Gi))−1
, i ∈ [t − 2, t + 2] (4)
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Fig. 4 The diagram of our proposed PRiOr-enlightened MOTION-robust video deblurring
(PROMOTION) method. The modules in the golden background area are consistent
with those in EDVR [22]. Recommend reading in color version.

Fig. 5 An example that contrast map effectively reflects the illu-
mination distribution. The green and yellow boxes repre-
sent high and low illumination areas, respectively.

Fig. 6 The Laplacian filtered maps of blur and sharp example
frames.

Finally this vector is multiplied by the aligned feature in
depth and we obtain the refined aligned feature.

3.3 Channel attention enhanced residual block
Inspired by the success of Residual Channel Attention

Networks (RCAN) in super resolution [26], we introduce
the channel attention mechanism in the residual basic
block, which only consists of two convolution layers and
one ReLU layer originally. As shown in Figure 7, on the
one hand, the dimensions of channel are first compressed
and then restored, therefore the effective information can
be amplified. On the other hand, by adaptively learning
the importance of each channel, the model can express
various patterns more flexibly.

3.4 Dual loss function
In order to increase the naturalness of deblurred videos,

we constrain the training from two complementary levels,
namely pixel level and perceptual level.

Fig. 7 Illustration of channel attention used in the residual basic
block. “CA” denotes channel attention.

At the pixel level, we believe that the blurred areas are
often the areas suffering from motion or change, while
these are exactly the focus of people when watch videos.
For example, in the hand pose estimation scenario, com-
pared with the still areas in the background, people usually
pay more attention to the movement of hands. As a result,
the optical flow information of the current frame is used as
a representation of attention to increase the model’s sense
ability for non-uniform blur in spatio domain, which com-
plements the embedding prior vector handling in temporal
domain. Therefore, the pixel-wise loss can be represented
as below:

Lcb =
1

HW

∑ √
((Ôt − Ot) ⊗ (1 + watt))2 + ϵ (5)

where ⊗ denotes element-wise multiplication and ϵ is 10−6.
watt is the normalized optical flow map. H and W are the
height and width of one frame.
At the perceptual level, in order to describe the sub-

jective differences between deblurred frames and ground
truth, we use neural network-based perceptual similarity
to represent such high-level distance [25] as below:

Lps = fps(Ôt,Ot) (6)
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Table 2 Performance comparison under the second dataset divi-
sion of REDS dataset.

Metric DeblurGAN Nah’s SRN DeBlurNet EDVR Ours
PSNR 24.09 26.16 26.98 26.55 34.80 35.10
SSIM 0.7482 0.8249 0.8141 0.8066 0.9487 0.9565

where fps is the perceptual similarity network, whose out-
put is a score ranging from 0 to 1.
Therefore, the overall loss function is:

L = Lcb + λLps (7)

Here λ is a balance factor that adjusts the relative impor-
tance of pixel-level and perceptual-level losses. We em-
pirically set it as 0.1. In this way, the model can not only
handle non-uniform blur, but also guarantee the subjective
quality of deblurred videos.

4. Experiments
In this section, we first verify the motion robustness of

our model in the global and local blurry scenarios. For
global blur, such as camera shake, two well-known video
deblurred datasets for natural scenes are used for evalua-
tion in Sec. 4.1. For local blur, in Sec. 4.2, we consider the
specific application scenario, hand pose estimation, and
construct a small-scale video deblurring dataset for hand
pose estimation. In this case, the estimation accuracy is
also used as one of the measurement of deblurring effect.

4.1 Global blur
REDS dataset. This dataset used in the NTIRE19 chal-
lenge includes 270 videos available online right now. Fol-
lowing the same setting as EDVR, which wins the cham-
pionship in the NTIRE19 challenge, 266 training videos
and 4 specific videos for testing [22]. Each video has 100
frames. And their resolution is 720*1280 and frame rate is
24 fps.
As presented in Table 2, compared with the original

EDVR method and other four kinds of deblurring meth-
ods, namely DeblurGAN [10], Nah’s [12], SRN [21], and
DeBlurNet [20], our model continues getting the best per-
formance both in terms of PSNR and SSIM.
GoPro dataset. To further illustrate the robustness of our
model, we also test it on another video deblurring dataset
for natural scenes named GoPro [12]. This dataset has
blur sources similar to the REDS dataset, namely cam-
era shake and object motion. 22 training sequences and
11 testing sequences are included in it. Each sequence
has unequal lengths, but the resolution is the same one
720*1280. It should be noted that the dataset provides
blurry and sharp image pairs, and blurry images include
both gamma corrected and linear CRF versions.
For the evaluation of EDVR and our model on Go-

Pro dataset, we finetune the models pretrained on REDS
dataset. As Table 4 shown, where all the models are
tested on the linear CRF version, we compare with both
video deblurring [19], [22], [23] and image debluring meth-
ods [11], [12], [21]. Our model outperforms the state-of-
the-art methods by a large margin, whatever in terms

Table 3 Performance comparison on GoPro dataset.

Metric Nah’s DeblurGAN-v2 SRN Zhang’s Sim’s EDVR Ours
PSNR 28.62 29.55 30.26 29.19 31.34 30.20 33.25
SSIM 0.9094 0.9340 0.9342 0.9306 0.9474 0.9109 0.9481
Note Image deblurring Video deblurring

Fig. 8 Deblurring performance on the synthesized video deblur-
ring dataset for hand pose estimation. Zoom in for best
view.

Table 4 Performance comparison on GoPro dataset.

Metric Nah’s DeblurGAN-v2 SRN Zhang’s Sim’s EDVR Ours
PSNR 28.62 29.55 30.26 29.19 31.34 30.20 33.25
SSIM 0.9094 0.9340 0.9342 0.9306 0.9474 0.9109 0.9481
Note Image deblurring Video deblurring

Table 5 The performance improvement for hand pose estimation
after deblurring.

PSNR SSIM RMSE ABSE
gain 6.0171 0.0287 0.3110 0.2653

of video or image deblurring. Compared with on REDS
dataset, we attribute this to both the effectiveness of prior
information and the lower image quality of GoPro dataset.
First, using the prior information can alleviate the model’s
dependence on datasets and assist the model in obtain-
ing information about the current data distribution more
directly and comprehensively. Second, according to the
shielding effect, we can inference that on the basis of low
quality, the improvement is obvious, while on the basis of
high quality, the difference is more unconspicuous.

4.2 Local blur
In order to prove the generalization of the model, we

consider the specific local blurry scene, hand pose esti-
mation. First, a video deblurring dataset for hand pose
estimation is synthesized. Then we test the improvement
of estimation accuracy after deblurring to indirectly reflect
the deblurring effect.
Based on the existing hand pose estimation dataset

named First-Person Hand Action Benchmark [5], we syn-
thesize blur for these sequences. This dataset provides
RGB-D frames and their corresponding hand pose labels.
All the sequences have a frame rate of 30 fps and resolu-
tion of 1080*1920. Then we follow the synthesis process
of the REDS dataset [14]. The synthesized blur effect is
shown in Figure 8 (a) and (c).
We finetune the model pretrained on REDS dataset, and

use the state-of-the-art hand pose estimation method [6]
to measure the accuracy. Here we calculate the RMSE and
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Fig. 9 Performance of hand pose estimation before and after de-
blurring. The improvement of RMSE and ABSE of joint lo-
cation estimatioin after deblurring are 11.9015 and 9.4662,
respectively.

absolute error (ABSE) between the locations of the esti-
mated joints and ground truth to represent the accuracy.
As expected, in the Table 5, all the indicators improve
after deblurring. Visualized results are given in Figure 8
(b) and Figure 9. In Figure 9, skeleton represents ground
truth, and mesh represents the estimated result. It is not
difficult to see that for the deblurred frame, skeleton and
mesh have a better overlap.

5. Conclusion
To better handle challenging blurs, we first intro-

duce prior information in video deblurring, and propose
a PRiOr-enlightened MOTION-robust video deblurring
(PROMOTION) model. Specifically, 3D group convolu-
tions are used to better encode heterogeneous priors, in-
cluding illuminance, structure, and motion priors, which
are proven to be related with deblurring. Then, embeding
prior vector and optical-flow based attention prior are used
to increase the model’s ability to recognize spatio-temporal
non-uniform blur. Experimental results on two globally
blurred datasets show our method can achieve the state-of-
the-art performance. In addition, for specific applications
suffering local blur, such as hand pose estimation, we also
demonstrate our method can bring performance gains to
the task by preprocessing the source data.
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