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Abstract: For reconstructing CT images in the clinical setting, ‘effective energy’ is usually used instead of the total
X-ray spectrum. This approximation causes an accuracy decline. We proposed to quantize the total X-ray spectrum
into irregular intervals to preserve accuracy. A phantom consisting of the skull, rib bone, and lung tissues was irradiated
with CT configuration in GATE/GEANT4. We applied inverse Radon transform to the obtained Sinogram to construct
a Pixel-based Attenuation Matrix (PAM). PAM was then used to weight the calculated Hounsfield unit scale (HU) of
each interval’s representative energy. Finally, we multiplied the associated normalized photon flux of each interval to
the calculated HUs. The performance of the proposed method was evaluated in the course of Complexity and Visual
analysis. Entropy measurements, Kolmogorov complexity, and morphological richness were calculated to evaluate the
complexity. Quantitative visual criteria (i.e., PSNR, FSIM, SSIM, and MSE) were reported to show the effectiveness
of the fuzzy C-means approach in the segmenting task.
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1. Introduction

Clinical imaging techniques are essential components of med-
ical diagnostics. Computed tomography (CT) is one of the most
widely used medical imaging methods in which attenuating prop-
erties are used in calculating Hounsfield Unit (HU) to visualize
objects. Scanner types, projection systems, and reconstruction
algorithms have impacts on CT scanners’ output, where modify-
ing scanner type and projection systems need substantial invest-
ment in physical development [4]. Therefore, many studies tried
to contribute towards reconstruction algorithms for better scan-
ning of different phantoms [7].

CT imaging is an inverse problem in which analytical and it-
erative reconstruction methods are used to visualize images [10].
These reconstruction methods founded on the use of attenuation
coefficients and the ‘effective energy’ in the total X-ray spectrum.
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However, using effective energy instead of the whole range causes
a decline in the contrast level and can introduce artifacts. Several
image enhancement techniques have been proposed to solve these
issues. Chen et al. [2] developed a low-rank and sparse decom-
position framework to simultaneously reconstruct and segment
tissues obtained from a dynamic Positron-emission tomography
(PET). Since PET has a relatively low spatial resolution and high
level of noise, they proposed a mixed CT and PET architecture
to characterize tissue elements reliably. Xu et al. [20] proposed
an image reconstruction model, regularized by edge-preserving
diffusion and smoothed for limited-angle CT.

Chen et al. [3] developed a prior contour-based total variation
method to enhance the edge information in compressed sensing
reconstruction for cone-beam computed tomography (CBCT).
Although CBCT has been widely used in radiation therapy for
onboard target localization, they showed that using this method
in reconstruction will result in over-smoothing the edge informa-
tion. Wang et al. [19] proposed a method for reconstructing CT
data in limited-angle CT devices. To solve the ill-posed prob-
lem, they proposed an iterative re-weighted method, in which the
re-weighted technique is incorporated into the idea of the total
anisotropic variation. In this way, they could approximate the
most direct measure of L0 norm sparsity.

Gholami [9] created an attenuation map by applying the inverse
HU to CT images reconstructed in 70 keV. Although quantiz-
ing ‘effective energy’ could provide a better reconstruction, they
neutralized the effect of HU by using the inverse HU and did
not consider the statistical distribution of the source photon flux
for the quantization. Following their idea, we proposed a novel
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post-processing algorithm to cover more energy range in the total
X-ray spectrum and establish a trade-off between accuracy and
computational cost. We quantized the X-ray spectrum into 13
intervals, ranged from 10 to 140 keV. To validate the proposed
method, we created a phantom in the GATE/GEANT4 environ-
ment consisting of the skull, rib bone, and lung tissues surrounded
by water. This phantom was then irradiated in a double-wedge
way by a fan-beam X-ray. To calculate the effective energy of
each interval, we used the mean energy of each interval and its
associated water attenuation coefficient [12], see Eq. (1):

HU =
μ − μw
μw

× 1000 (1)

where μ is the attenuation coefficient, and μw is the water atten-
uation coefficient. A pixel-based attenuation matrix (PAM) was
then created by applying the back-projection method. PAM was
used to weight the value of HU and to normalize photon flux.
We observed that the proposed post-processing method could in-
crease the contrast of target tissue in the CT image and subse-
quently ease the segmentation task. The rest of this paper is
organized as follows: Section 2 describes the proposed post-
processing method. Experimental results are discussed in Sec-
tion 3, and the conclusion is drawn in Section 4.

2. Methodology

Imaging environment in the GATE/GEANT4 is an air cube that
is 50 cm on each side spanned in {(−25, 25, 25), (25, −25, 25),

Fig. 1 (a) Constructed phantom in GATE. (b) Rib bone (red), Lung (white),
and Skull (yellow) tissues are placed in (2, 2, 0), (0, 2, 0), and (−2,
2, 0), respectively.

(25, 25, −25), (−25, −25, 25), (−25, 25, −25), (25, −25, −25),
(25, 25, 25), (−25, -25, −25)}. This cube defines our coordinate
system where the rest of the components will be defined with
respect to this coordinate system. The source is a fan beam CT
geometry with the size of 0.5×0.5 mm2, placed in (0, 0, 150). The
scanner consists of 30×16 cubic cell detectors (0.5×0.5×1 mm3)
made of Lutetium, Silicon, and Oxygen. The phantom is a cylin-
der with a radius of 5 mm and the height of 6 mm consisting of
the skull, rib bone, and lung tissues (1×1×2 mm3) surrounded by
water. Density of tissues are 0.26, 1.92, and 1.61 g/cm3, respec-
tively. Structure of phantom and positions of tissues are shown in
Fig. 1.

GATE, the Geant4 Application for Tomographic Emission de-
veloped by the international OpenGATE collaboration, has a
dominant utilization in numerical simulations in medical imag-
ing and radiotherapy. It takes advantage of the (1) well-validated

Fig. 2 CT images (200 × 200) in energy levels of 15–135 keV (a-k). CT
image in the energy level of 70 keV (g) is illustrated in HSV color
map to make differences distinguishable visually.

Fig. 3 Post-processed CT images (200 × 200) in energy levels of 15–
135 keV (a-k). Image in the energy level of 70 keV (g) is illustrated
in HSV color map to make differences distinguishable visually.
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physics models, (2) geometry description, and (3) visualization
with 3D rendering tools to facilitate simulations of Emission
Tomography (Positron Emission Tomography - PET and Single
Photon Emission Computed Tomography - SPECT), Computed
Tomography (CT), Optical Imaging (Bioluminescence and Fluo-
rescence) and Radiotherapy experiments [11]. They compose an
object-oriented, modular set of components written in C++which
we configured it as follow:

/gate/source/addsource xraygun gps

/gate/source/verbose 0

/gate/source/xraygun/setactivity 100000000. Becquerel

/gate/source/xraygun/gps/verbose 0

/gate/source/xraygun/gps/particle gamma

/gate/source/xraygun/gps/energytype user

/gate/source/xraygun/gps/hist/type energy

/gate/source/xraygun/gps/histname arb

/gate/source/xraygun/gps/emin 10.00 keV

/gate/source/xraygun/gps/emax 140.00 keV

The proposed post-processing method aims at increasing the
contrast of tissues in the reconstructed image through the steps of
Algorithm 1:

Algorithm 1: Proposed post-processing algorithm.
Input :

PAX← projected attenuation X-ray.

W← water attenuation coefficient.

F← photon flux value.

1 PAM = iradon(PAX)

2 Form intervals as:

3 X← {(12-17), (18-27), (28-37), (38-47), (48-57), (58-67), (60-72),

(68-80), (78-87), (81-95), (88-100), (98-105), (130-150)}
4 Take Kolmogorov-Smirnov test to find the best distribution that fits X:

5 Fn(x) = 1
n

∑n
i=1 I[∞,x](Xi),

6 Dn = supx |Fn(x) − F(x)|
7 where F(x) is the hypothesis distribution, Fn(x) is the cumulative

distribution function, and I[∞,x](Xi) is the indicator function, equals to 1

if Xi ≤ x and equals to 0 otherwise.

8 Calculate the “effective energy”:

9 μw ← {μwi | μwi = E[x], x ∈ Xi, 1 ≤ i ≤ 13}
10 mF =

∑13
i=1 Fi

11 i = 1

12 while i ≤ 13 do
13 HUi =

PAM−μwi

μwi
× 1000,

qi =
Fi

mF ,

wHUi = qi × HUi

14 end

Output: post-processed HU→ wHU

Figure 2 and Fig. 3 show the output of CT scanner before and
after applying the post-processing approach, respectively. In or-
der to visually distinguish differences between standard and post-
processed CT images, we used HSV color map in illustrating re-
constructed images in 70 keV (see Fig. 2 (g) and Fig. 3 (g)). As
is evident, not only the proposed post-processing method can re-
duce associated artefacts but also can make CT images more ideal
for the task of segmentation.

3. Experimental Results

To evaluate the post-processing method, we conducted visual
and complexity experiments where entropy measurements, Kol-
mogorov complexity, morphological richness, and quantitative
visual criteria (i.e., PSNR, FSIM, SSIM, and MSE) were cal-
culated. Constructed phantom in GATE/GEANT4 environment
made of skull, rib bone, and lung tissues surrounded by wa-
ter. The radiation range of fan-beam X-ray changed from 10 to
140 keV in a way that could cover double-wedge.

Probability density functions were calculated for both CT and
post-processed CT images to quantitatively compare them. Let a
simulated image is represented by the histogram of indexed val-
ues in the range of I(u, v) ∈ [−∞,∞]. It contains exactly K en-
tries which are defined by h(i) = card({(u, v)|I(u, v) = i}). To
compare CT and post-processed CT images (obtained as n inde-
pendent realizations of a bounded probability distribution with
smooth density), we combined ranges of indexed values into
histogram columns following Scott’s normal reference rule [16].
Figure 4 (a) and Fig. 4 (b) show aligned indexed value of all re-
constructed CT images before and after applying post-processing
approach, respectively. It is evident that bins in the histogram of
post-processed CT images (Fig. 4 (b)) have relatively less overlap
and bigger distribution compared to Fig. 4 (a). Hence, segmenting
a CT image by using shape, clustering, or entropy-based method
is more straightforward. Moreover, mounting the proposed post-
processing approach into imaging software gives an expert radi-
ologist the flexibility to modify the energy level for reaching the
best tissue differentiation in the final CT image.

3.1 Complexity Analysis
In this study, we used Kolmogorov estimation, which is an ap-

proximation to the algorithmic complexity. Kolmogorov com-
plexity (K) can quantify the randomness content in both CT and
post-processed CT images. K(x) is defined as the length (in bits)
of the smallest computer program that can reproduce the object

Fig. 4 Aligned indexed value of all reconstructed CT images from HU
scale (a) before applying post-processing, (b) after applying post-
processing.

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 5 Estimations of Kolmogorov complexity. (a) Kolmogorov complexity estimated by the layered
BDM in CT images and post-processed CT images, Spearman ρ = 0.972, p-value = 5.58 × 10−7.
(b) Kolmogorov complexity estimated by LZW in CT images and processed CT images, Spearman
ρ = 0.98, p-value = 8.4 × 10−8.

(x) when it runs on a Universal Turing Machine U. Since K is
semi-computable, compression algorithms can utilize to approxi-
mate it. However, it has been shown [21] that compression algo-
rithms are entropy rate approximations. Therefore, to consider al-
gorithmic content, we proposed an algorithmic probability-based
approach to estimate K.

Algorithmic probability, which is inversely proportional to K,
is the probability of an object x to be produced by a Universal
Turing Machine. It can be empirically estimated from the out-
put frequency of small Turing machines using Coding theorem
(CTM) and Block decomposition methods (BDM) [17]. To calcu-
late K [15], we considered layers in which images are quantized
and binarized in q digital levels. This quantization is prior to the
aggregation of CTM values, where each layer gets decomposed.

Algorithm 2: Layered Block Decomposition

// CTM is a hash-table with binary 2D blocks as keys,

// Output is the Kolmogorov complexity

1

2 Function LayeredBDM(grayImage, CTMs, blockSize, blockOffset, q) is
3 - Quantize image in q digital levels and binarize in q digital layers

4 grayImage←− quantize(grayImage, q) blocksList←− {} for i in 1

to q do
5 binImage←− binarize(grayImage, q)

6 blocks← partition (binImage, blockSize, blockOffset)

7 blocksList.append(blocks)
8 end

9 - Occurrence of all binary blocks in all layers stores in a hash table

with the blocks as keys blockHT(blocks:blockCount)←−
countBlocks(blockList)

10 l-BDM ← CTMs(keys(blockHT)) + log2(values(blockHT))

11 return l-BDM
12 end

Figure 5 (a) shows the estimations of BDM to K for CT and
post-processed CT images using the layered BDM where q =

256. Figure 5 (b) shows the KC estimation obtained by the loss-
less compression algorithm Lempel-Ziv-Welch (LZW) for com-
parison. Both Fig. 5 (a) and Fig. 5 (b) show an almost monotonic
increase in complexity when the energy level increases. For en-
ergy levels below 65 keV in Fig. 5 (a), a small difference in KC
between CT and post-processed CT is evident. We performed

the Spearman’s rank correlation test between the KC values ob-
tained with layered BDM and compression length. In CT data,
this test gives ρ = 0.96 with p-value = 1.91 × 10−6 and in
the post-processed CT data, it results in ρ = 0.97 with p-value
= 5.32 × 10−7. These results indicate that the layered BDM is
more sensitive to morphological changes in the images than the
ones obtained from lossless compression.

The benefit of utilizing entropy in the context of complex-
ity is that it only considers the probability of observing a spe-
cific event. Therefore, it does not express any interpretation of
the meaning of the events themselves. In this study, we calcu-
late approximate, conditional, corrected conditional, sample, and
fuzzy entropy measurements to show the complexity of the CT
(Fig. 6 (a)) and processed CT (Fig. 6 (b)) data. Approximate en-
tropy (ApEn) [13] quantifies the amount of regularity and the un-
predictability of fluctuations in reconstructed CT images. It mod-
ifies an exact regularity statistic, i.e., Kolmogorov-Sinai entropy,
to handle the system noise. To address the complexity of recon-
structed CT images from different perspectives, we also calcu-
lated the following entropy measures.
• We measured conditional entropy [5] to quantify the amount

of information needed to describe the outcome of CT images
in different energy levels.

• We calculated corrected conditional entropy (CCEn) to mea-
sure the information content with respect to the minimum
value of Eq. (2) function.

CCEn(L) = Ê(L/l − 1) + Ec(L)

Ec(L) = perc(L).Ê(1)
(2)

where Ê(L/l−1) represents the estimate of Shannon entropy
in a L/L−1-dimensional phase space. perc(L) is the percent-
age of single points in the L-dimensional phase space, and
Ê(1) is the estimated value of Shannon entropy for L = 1.

• Sample entropy (SEn) [14] is a modification of approximate
entropy with two advantages over ApEn including indepen-
dence from data length and a relatively trouble-free imple-
mentation. As self-matching is not included in Sample en-
tropy, actual interpretation about the irregularity of signals is
possible. For a given embedding dimension m, tolerance r

and number of data points N, SEn is calculated by Eq. (3).
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Fig. 6 Approximate, Conditional, Corrected Conditional, Sample, and Fuzzy entropy measurements for
(a) CT images and (b) post-processed CT in different energy levels.

Fig. 7 Power spectrum of the entropy of the calculated morphological richness. (a) CT images, (b) pro-
cessed CT images. Each color is associated with an energy level.

SEn = − log
A
B
, (3)

where A is a number of template vector pairs (e.g.,
d[Xm+1(i), Xm+1( j)] < r) with length of m + 1 and B is a
number of template vector pairs (d[Xm(i), Xm( j)] < r) with
length of m.

• Fuzzy entropy (FEn) estimates the short-length data with-
out restricting validity by the parameter value. It evaluates
global deviations from the type of ordinary sets and is resis-
tant to noise and jamming phenomena (Eq. (4)).

FEn(m, n, r,N) = ln φm(n, r) − ln φm+1(n, r),

φm(n, r) =
1

N − m

N−m∑
i=1

[
1

N − m − 1

N−m∑
j=1, j�i

Dm
i j]

(4)

where m and r are the dimensions of phase space and similar-
ity tolerance, respectively, n is the gradient of the exponen-
tial function, N is the number of data, and D is the similarity
degree.

Lower entropy means that the CT image is more homogeneous.
From Fig. 6 (b), we can see that for different energy levels (except
for 70 keV) the entropy level of post-processed CT images are
relatively the same while the entropy in Fig. 6 (a) monotonically
increased. Therefore, designing an analytical approach for raw
CT images involves a trade-off between the amount of informa-
tion and the number of components that characterize the image.
The sharp entropy change in Fig. 6 (b) echoes the results of previ-
ous studies (e.g., Ref. [1]) where energy level of 70 keV was used
to form the attenuation map and get the best reconstruction re-

sults. Indeed, at this energy level, we have the maximum amount
of information which was proven as the appropriate energy level
for x-ray based medical image reconstruction.

3.2 Visual analysis
In this section, we show the performance of the proposed post-

processing approach using morphological richness analysis [18]
and fuzzy c-means (FCM) [8] based segmentation.

Morphological richness (MR) represents the number of differ-
ent configurations of 3 × 3 blocks divided by the number of all
possible configurations (29). To amplify changes in the restructur-
ing of reconstructed images, we calculated the power spectrum of
morphological richness using Eq. (5), where FT (ω) is the Fourier
transform of the signal (vectorized CT image) in period T . The
power spectrum itself is a Fourier transform of the autocorrela-
tion function. The auto-correlation function represents the rela-
tionship of long and short-term correlation within the signal itself
(refer to Eq. (6)).

S f (ω) = lim
T→∞

1
T
|FT (ω)|2. (5)

< f (t), f (t + τ) >=
1

2π

∫ ∞
0

S f (ω)e− jωtdω (6)

The results of our analysis are illustrated in Fig. 7. Amplitude
and “dominating frequencies” differentiations are evident in pro-
cessed CT images which imply that analyzing processed CT im-
ages would bring more information. Solid and slow components
in the frequency domain imply that there is a high correlation be-
tween macro-structures, while extreme and fast oscillations imply

c© 2020 Information Processing Society of Japan
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Table 1 Evaluation criteria of FCM applied to both CT and post-processed CT images.

Post-processed CT CT
Energy level (keV) FSIM SSIM MSE PSNR FSIM SSIM MSE PSNR
15 0.95 0.95 3.23 −5.10 0.94 0.94 11.82 −10.72
25 0.91 0.91 1.24 −0.94 0.90 0.90 9.14 −9.61
35 0.97 0.97 11.53 −10.62 0.94 0.94 11.62 −10.65
45 0.93 0.93 9.21 −9.64 0.89 0.89 5.54 −7.43
55 0.95 0.95 0.88 0.50 0.94 0.94 3.99 −6.01
65 0.91 0.91 8.27 −9.17 0.89 0.89 3.17 −5.01
70 1.00 1.00 0.00 −9.91 0.93 0.93 1.71 −2.33
85 0.94 0.94 11.62 −10.65 0.90 0.90 6.70 −8.26
95 0.95 0.95 3.85 −5.86 0.95 0.95 0.88 0.50
115 0.88 0.88 9.65 −9.84 0.90 0.90 3.18 −5.03
135 0.91 0.91 5.84 −7.66 0.93 0.93 1.71 −2.33

correlation in the micro-structures.
Image segmentation plays the essential role in medical image

processing [6]. Fuzzy c-means (FCM) is one of the popular clus-
tering algorithms [8] used in medical image segmentation. How-
ever, FCM is highly vulnerable to noise which is an unavoidable
element in reconstructing CT images. To show the performance
of the proposed post-processing approach, we applied FCM seg-
mentation to both conventional CT and processed CT images.
FCM minimizes an object function by partitioning a finite collec-
tion of n elements X = {x1, . . . , xn} into a collection of c fuzzy
clusters with respect to some given criterion. FCM returns a
list of c cluster centers C = {c1, . . . , cc} and a partition matrix
W = wi, j ∈ [0, 1], i = 1, . . . , n, j = 1, . . . , c, where each element,
wi j, tells the degree to which element, xi, belongs to cluster c j.
The objective function can be defined by Eq. (7).

arg min
C

n∑
i=1

c∑
j=1

‖ xi − ci ‖2,

wi j =
1

∑c
k=1

( ‖xi−c j‖
‖xi−ck‖

) 2
m−1

(7)

To evaluate FCM, we calculated four measurements (Eq. (8))
including Peak-value signal-to-noise ratio (PSNR), feature-
similarity (FSIM) index, Structural Similarity (SSIM) index, and
Mean Square Error (MSE).

PSNR(IT , IR) = 10 · log10

⎛⎜⎜⎜⎜⎜⎝
MAX2

IT

MS E

⎞⎟⎟⎟⎟⎟⎠ ,

FSIM(IT , IR) =
∑

x∈Ω S L(x) · PCm(x)∑
x∈Ω PCm(x)

,

SSIM(IT , IR) =
(2μIT μIR + c1)(2σIT ,IR + c2)

(μ2
IT
+ μ2

IR
+ c1)(σ2

IT
+ σ2

IR
+ c2)

,

MSE(IT , IR) =
1

m n

m−1∑
i=0

n−1∑
j=0

[
IT (i, j) − IR(i, j)

]2 .

(8)

where IT is the target image with the size of m × n, PCm is the
weighting factor for S L(x) which is the overall similarity between
IT and a reference image IR, μ is the mean of the image, σ2 is the
variance of image, σIT ,IR is the covariance of IT and IR, and c1

and c2 are two variables to stabilize the division with weak de-
nominator. In our experiments we set c1 = (0.01 × 2,155)2 and
c2 = (0.03 × 2,155)2. The quantitative measurements, showed in
Table 1, will help us to draw the following conclusion remarks:
( 1 ) We can see sharp changes in entropy measures for both CT

and post-processed CT images in the range of 50-90 keV.
The reason for these sharp changes is the slight tissue dif-
ferentiation between the phantom’s components and water.
Moreover, this change agrees with the results of previous
studies (e.g., Ref. [1]) where the maximum amount of in-
formation shows the appropriateness of this energy level for
x-ray based medical image reconstruction.

( 2 ) Quantitative measurements show that the post-processing al-
gorithm improved the quality of CT images and decrease the
noise level. Therefore, with a lower degree of irradiation and
less tissue damage, we can reach better tissue discrimination.

( 3 ) Although reconstructing CT images is usually made in the
energy level of 70 keV, results of our experiments prove that
working on CT images in different energy levels is possible,
either by applying the proposed post-processing method or
physical modification. In this way, an expert can reach better
tissue discrimination in CT images.

4. Conclusion

We presented an algorithmic protocol of increasing tissue dis-
crimination using post-processing of CT images. A phantom con-
sisting of the skull, rib bone, and lung tissues was created and
irradiated in GATE/GEANT4 to validate the proposed method.
By quantizing the total X-ray spectrum into irregular intervals,
we could have different Sinograms with different levels of tissue
discrimination. In each energy interval, the mean was consid-
ered as the representative energy. Then, a Pixel-based Attenua-
tion Matrix (PAM) was computed for each representative energy
by applying Inverse Radon transform to the associated Sinogram.
We also calculated the normalized photon flux of each interval to
use it as a weighting factor. When we calculate the Hounsfield
unit scale (HU) for each interval’s representative energy, we used
PAM and the normalized photon flux to modify the CT image.

The performance of the proposed method was demonstrated
through Complexity and Visual analysis. Entropy measurements,
Kolmogorov complexity, and morphological richness were cal-
culated to evaluate the complexity. Calculating morphological
richness (MR) for the post-processed CT images at different en-
ergy levels shows that the proposed post-processing method can
better uncover the tissue differentiation. Quantitative visual cri-
teria (i.e., PSNR, FSIM, SSIM, and MSE) were reported to show
the effectiveness of fuzzy C-means approach in segmenting task.
These criteria show a better segmentation performance over post-
processed CT images in the majority of energy levels. This in-
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dicates that better tissue discrimination has been reached as the
result of applying the proposed post-processing method. There-
fore, using this method in clinical set up can result in a lower
degree of irradiation and less tissue damage.
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