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Abstract: In this paper, we propose FlowScan: a pedestrian flow estimation technique based on a dashboard camera.
Grasping flows of people is important for various purposes such as city planning and event detection. FlowScan can
estimate pedestrian flows on sidewalks without taking much cost. Currently, dashboard cameras have been becoming
so popular for preserving the evidence of traffic accidents and security reasons. FlowScan assumes that an application
which analyzes video from the camera is installed on an on-board device. To realize such an application, we need to
design a method for pedestrian recognition and occlusion-proof tracking of pedestrians. For pedestrian recognition,
the application uses Deep Learning-based techniques; CNN (Convolutional Neural Networks) and LSTM (Long-Short-
Term-Memory). In this process, the faces and backs of their heads are searched in the video separately to detect not
only the number of pedestrians but also their directions. Then, a series of detected positions of heads are arranged into
tracks depending on the similarity of locations and colors considering the knowledge about the movement of the ve-
hicle and pedestrians. We have evaluated FlowScan using real video data recorded by a dashboard camera. The mean
absolute error rate for people flow estimation of both directions was 18.5%, highlighting its effectiveness compared
with the state-of-the-art.

Keywords: deep learning, CNN, LSTM, pedestrian tracking, dashboard cameras

1. Introduction

To realize effective and comfortable urban environment, grasp-
ing activity of people is a very essential matter. For example, by
collecting the information of people flow, we can discover attract-
ing spots and events. Also, we can find urgent situations promptly
by comparing the current condition with average ones, and start
evacuation process earlier.

Various methods have been proposed so far in order to grasp
movement of people. For example, in the congestion degree
map [1], people distribution is obtained by position information
collected from GPS-enabled mobile phone users. However, these
approaches estimate people distribution with rough granularity
such as a 250 m × 250 m cell, which is obviously not enough to
understand people movement with spot-level. For example,
pedestrian traffic can be improved if we know the number of
pedestrians heading to a station on the west side of a main street.
Meanwhile, CCTVs are widely used [2], [3] for estimating peo-
ple flow with spot-level continuously. The only limitation using
CCTVs is high cost to deploy a large number of CCTVs over the
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target area.
Although there are many research works for pedestrian detec-

tion using cameras for driving support [4], detecting pedestrians
on sidewalks is more challenging. This is because overlapping of
pedestrians in images (occlusion) frequently occurs due to other
pedestrians and objects such as poles and roadside trees/plants on
sidewalks. For this reason, pedestrian detection for driving sup-
port may fail to estimate people flow. For people detection, Mask
R-CNN [5] and OpenPose [6] are widely known for their notable
performance. However, these works focus on detection of targets
(e.g., people) which further requires analysis to estimate people
flow (i.e., directions of their movement).

Therefore, estimation of people flow requires detection and
tracking of pedestrians. One of the state-of-the-art methods is
Detect-and-Track [7] which is ranked first in ICCV 2017 Pose-
Track challenge. Detect-and-Track uses Mask R-CNN [5] for
people detection and visual, location, and pose similarities for
tracking of the detected people. Although such approaches based
on deep learning are emerging, we may further enhance the per-
formance by using domain knowledge.

In this paper, we propose FlowScan to estimate people flows
with sidewalk level using a video of a dashboard-mounted camera
(dashcam) which has become popular in recent years. By aggre-
gating information from multiple dashcams of different vehicles,
we try to achieve spatially high resolution at low cost even for a
large urban area. FlowScan detects pedestrians using Stewart’s
method [8] based on deep learning, which is robust to occlusion.
Note that we may use other methods such as Mask R-CNN [5]
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and OpenPose [6] for pedestrian detection. Nevertheless, it is in-
herently impossible to detect pedestrians hidden by occlusion and
to avoid false positives. We overcome this challenge by focusing
on the characteristic of videos recorded by dashcams (i.e., mobile

cameras). Since dashcams are mobile, pedestrians hidden by oc-
clusion in a single frame are likely to be captured from different
angles in the other time-consecutive frames. Moreover, we em-
ploy the following assumptions from domain specific knowledge.
(1) In typical road environment, pedestrians generally move in
the same or opposite direction of the observing vehicle. (2) The
areas where assumption (1) does not hold like intersections can
be recognized from given map data and the position measured by
GPS. Such area will be excluded for pedestrian detection. (3)
The regions in the captured frames where pedestrians can be seen
are specified in advance by hand or some conventional method.
(4) The moving speed of pedestrians is roughly known.

FlowScan is two-fold. First, we detect faces and backs of heads
by applying Stewart’s method [8] to each frame. Note that a dash-
cam captures faces of pedestrians going to the opposite direc-
tion against vehicle movement, and vice versa. Therefore, we
roughly know moving directions of the pedestrians from the de-
tection results. Then, the detected regions are tracked over time-
consecutive frames based on position and color similarities for ro-
bust people flow estimation. We regard a sequence over multiple
frames as a pedestrian to filter out false positives. For robustness
against false negatives, FlowScan also allows tracking failure that
can occur due to occlusion. The tracking results are directly used
to count the number of pedestrians for each direction.

In order to evaluate the performance of FlowScan, we con-
ducted an experiment using dashcam video recorded in Osaka
downtown. The result highlights the effectiveness of FlowScan,
showing 18.5% mean absolute error rate of bi-directional people
flow estimation. Moreover, we confirmed FlowScan outperforms
Detect-and-Track [7] which is one of the state-of-the-art tracking
methods using Deep Learning.

In summary, our contributions are as below:
• We propose FlowScan, a Deep Learning-based method for

sidewalk-level people flow estimation with knowledge about
typical movement of vehicles and pedestrians specific to
roads and sidewalks.

• We evaluate FlowScan by real video recorded by dashcams
in downtown Osaka which includes 3,973 pedestrians over
20 minutes.

• To demonstrate the effectiveness of the above specific
knowledge, we have compared FlowScan with Detect-and-
Track [7], one of the state-of-the-art methods for people
tracking.

2. Related Works

2.1 Pedestrian Detection by Dashcams
With the rapid growth of autonomous car technologies, pedes-

trian detection by dashcams has been widely studied for safety
driving support. Reference [4] detects pedestrians by using HOG
(Histogram Of Gradient) feature and SVM (Support Vector Ma-
chine). Another approach [9] uses a gradient feature with Ad-
aBoost. Reference [10] also detects pedestrians by using a body

parts feature to mitigate the effect of occlusion. Reference [11]
combines HOG, self-similarity, and motion features. However,
these approaches inherently suffer from limited accuracy due to
occlusion and/or false positives since they focus on safety driv-
ing support, targeting pedestrians approaching roadways instead
of sidewalks.

2.2 Object Detection by CNN
Object detection by CNN (Convolutional Neural Network) has

been attracting a vast number of researchers since the impressive
achievement of ImageNet [12]. A problem to detect multiple ob-
jects with multiple classes in an image is called Localization and
Classification which is one of the challenging problems. R-CNN
(Recurrent CNN) [13] is a well-known method for this problem,
where classification by CNN is applied after extracting candidate
areas of target objects by Selective Search [14]. This helps faster
detection compared to methods using a sliding window that tries
to classify all possible areas. Nevertheless, Selective Search does
not work well due to frequent occlusion.

Faster R-CNN [15] improves R-CNN by introducing RPN (Re-
gion Proposal Network) instead of Selective Search to accelerate
computation time. Mask R-CNN [5] further extends Faster R-
CNN to achieve image segmentation, which means pixel-level
segmentation rather than object detection based on bounding
boxes. Also, Stewart et al. [8] proposed a method based on Long
Short Term Memory (LSTM) [16] for robustness against occlu-
sion. Stewart’s method does not require extraction of candidate
areas. Instead, it achieves robustness to occlusion by detecting
the region where a pedestrian most likely exists one by one. The
other advantage is that it detects pedestrians even from some parts
of a body such as an upper body, an arm, and a leg.

Among the above sophisticated methods for pedestrian detec-
tion, in this paper, we use Stewart’s method for pedestrian detec-
tion in each frame. However, we note that our contribution is to
employ the knowledge about specific movement of vehicles and
pedestrians in the tracking after the detection. This means FlowS-

can can also employ other detection methods instead of Stewart’s
method.

2.3 Pedestrian Tracking
Pedestrian tracking is an essential technique to understand peo-

ple flow. For object tracking, the Correlation Filter (CF) and Deep
Learning are often used. CF [17], [18], [19] returns the center
position of a given target object after correlation computation,
which is processed by fast Fourier transform. However, it is vul-
nerable to occlusion since CF tries to find a region with high cor-
relation with a tracking target in a previous frame. For pedestrian
tracking by dashcams, occlusion is one of the challenging prob-
lems since those cameras are installed on relatively low positions
such as a dashboard.

Reference [20] uses CNN for object tracking by a binary clas-
sifier (target or others) and iterates classification around the es-
timated target location in the previous frame. Nevertheless, for
videos captured by dashcams, tracking may often fail since es-
pecially leaving pedestrians (back of heads) look very similar.
Reference [21] combines a deep learning-based object detector
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called YOLO [22] and Long-Short-Term-Memory (LSTM) for
robustness against occlusion. Also, Detect-and-Track [7] com-
bines Mask R-CNN [5] with tracking based on visual, location
and pose similarities. Different from these approaches, FlowScan

leverages the knowledge about typical movement of vehicles and
pedestrians, which is specific to roads and sidewalks.

3. FlowScan

3.1 Assumptions
We assume videos are recorded by dashcams of some coopera-

tive drivers or a few workers. The recorded videos are transmitted
via a gateway such as a smartphone and processed for people flow
estimation at a server. However, to reduce the amount of mobile
data transmission, in-vehicle processing is also possible by using
processors with mobile GPU. In this case, each vehicle sends
only the estimated people flow rather than videos.

We define people flow as the numbers of pedestrians going to
the same/opposite directions as the moving direction of the vehi-
cle. We call a pedestrian going to the same (opposite) direction as
the vehicle as a leaving (approaching) pedestrian. The estimated
people flow is visualized onto a map as depicted in Fig. 1 based
on the location information obtained by GPS, etc. Such informa-
tion about the people flow is useful for various purposes such as
marketing, city planning, evacuation planning, and so on.

Here, we assume that each dashcam records the view through
a vehicle’s front windscreen. We also assume parameters of the
camera are given, such as the mounted position, the angle of view,
and the resolution. To apply our method to the environments
where they are mounted in some slanted direction, we must in-
sert a perspective transformation process after pedestrian detec-
tion process into our method. For people flow estimation, we as-
sume that the regions containing sidewalks in the captured videos
are roughly known. Under this assumption, we use a region of
640×480 pixels that are manually defined beforehand. Note that
the target regions can be also estimated by some techniques al-
though it is out of scope of this paper. For example, image
recognition of lane lines is useful to estimate possible regions
of sidewalks. It is also useful to combine vehicle positions ob-
tained by GPS, camera install settings, and road information (e.g.,
the number of lanes). An alternative method is simply applying
pedestrian detection to the whole part of time-consecutive frames,
and roughly identifying the target region from the position distri-
bution of the detected pedestrians. We note that the design of
FlowScan in this paper focuses on straight streets without any
junctions to know the regions containing sidewalks. However, the
above alternatives may enable us to automatically identify such
regions.

We also assume that almost all pedestrians are either leav-
ing or approaching pedestrians. This assumption is natural since
most pedestrians move toward their destinations along with roads.
However, we manually excluded videos while many pedestrians
were waiting to cross the road around intersections. Note that this
is possible by using position information obtained by GPS.

3.2 Overview
As shown in Fig. 2, FlowScan is two-fold: (i) pedestrian detec-

Fig. 1 People flow estimation example (Copyright c© OpenStreetMap con-
tributors).

Fig. 2 FlowScan overview.

tion for each frame, and (ii) pedestrian tracking for multiple time-
consecutive frames. In pedestrian detection, pedestrians are de-
tected with their directions that are either faces or backs of heads.
For this purpose, we utilize Stewart’s method [8] which combines
CNN and LSTM for robust detection. To further mitigate the ef-
fect of false negatives and false positives, pedestrian tracking is
conducted for multiple time-consecutive frames.

3.3 CNN-based Pedestrian Detection
Figure 3 illustrates the overview of pedestrian detection. For

a target region of 640 × 480 pixels, 1024-dimensional vectors for
each 20 × 15 cell are obtained by GoogLeNet as a feature. Each
feature vector represents a summary of the corresponding region,
including positions of objects. Therefore, we input features of
each cell to LSTM which outputs a bounding box with reliability
representing the position of the target (i.e., a face or a back of
a head). LSTM outputs a bounding box with the highest relia-
bility which is also an input to the next LSTM unit. We use the
same loss function as Ref. [8]. By doing so, multiple detection of
the same target is avoided. Finally, LSTM outputs all bounding
boxes with reliabilities over threshold T for aggregating them to
obtain the detection result of a frame. We tune the threshold T in
Section 4.2.1.
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Fig. 3 Pedestrian detection by CNN.

3.4 People Flow Estimation by Pedestrian Tracking
For people flow estimation, we aggregate pedestrian detection

results of multiple time-consecutive frames to track movement of
each pedestrian. Since pedestrian detection focuses on the fea-
tures in a single frame (at the moment), we cannot avoid false
positives and false negatives. To overcome this problem, we fully
utilize the detection results of the time-consecutive frames.

An overview of the tracking algorithm is described in Algo-
rithm 1. We denote the i-th bounding box at frame t as bt

i ∈ Bt.
Bt is a set of bounding boxes detected at frame t.

We define a similarity sim(bt
i, b

u
j ) between bt

i and bu
j for pedes-

trian tracking as below.

sim(bt
i, b

u
j ) = wl(bt

i, b
u
j ) + (1 − w)v(bt

i, b
u
j ), (1)

where l(bt
i, b

u
j ) and v(bt

i, b
u
j ) are similarities according to position

and color features. w (0 < w < 1) is a weight. The details of these
two similarities are described in Sections 3.4.1 and 3.4.2.

We have to identify bounding boxes representing the same tar-
get over multiple time-consecutive frames for pedestrian track-
ing. This is processed as follows. We define a set y(bt

i) of bound-
ing boxes regarded as the same pedestrian. First, we initialize
y(bt

i) = {bt
i} for each bt

i. Then, for each pair of bounding boxes
with the highest similarity sim(bt

i, b
t+1
j ) in frames t and t + 1, we

update y(bt
i) as y(bt

i) = y(b
t+1
j ) = y(bt

i)∪y(bt+1
j ) if sim(bt

i, b
t+1
j ) ex-

ceeds the threshold S , regarding bt
i and bt+1

j are the same pedes-
trian. Then, bt

i is removed from Bt. If such a bounding box is
not found, the same process is repeated for the next frame t + 2.
This process is iterated until any corresponding bounding box is
found up to t+Δt frame, which enables FlowScan to tolerate false
negatives in some frames. Similarly, the same process is iterated
between frames t + 1 and t + 2, t + 3, . . . , t + Δt + 1. In this paper,
we empirically set Δt = 10. By applying the above process to
all the frames, we obtain multiple sets of bounding boxes each of
which represents a trajectory of a pedestrian.

Finally, we introduce a parameter W, which represents the min-
imum number of frames for the series of bounding boxes to be
considered as a track. That is, we ignore y(bt

i) whose size is
less than W since it is likely to be a false positive. W can be
set for each direction (face or back) independently. The result
of pedestrian tracking directly indicates people flow, representing
the number of pedestrians going to each direction.
3.4.1 Location Similarity

Location similarity l(bt
i, b

u
j ) is defined for the center position pt

i

of bounding box bt
i at frame t and pu

j at frame u (t < u). Intu-
itively, for a pedestrian detected at frame t, we predict his posi-
tion in the latter frame based on the relative speed of the vehicle
and the pedestrian. The vehicle speed is obtained by GPS while

Algorithm 1 Pedestrian Tracking Algorithm
Input: Set Bt of detected bounding boxes at all frames

Output: Set T of estimated trajectories

for each frame t of a recorded video do

for each bt
i ∈ Bt do

y(bt
i) = {bt

i}
end for

end for

for each frame t of a recorded video do

for k = 1 to Δt do

for each bt
i ∈ Bt do

bu
j = arg max

bt+k
j ∈Bt+k ||y(bt+k )|==1

sim(bt
i , b

t+k
j )

if sim(bt
i , b

t+k
j ) > S then

y(bt
i) = y(b

t+k
j ) = y(bt

i) ∪ y(bt+k
j )

remove bt
i from Bt

end if

end for

end for

end for

for each y(bt
i) do

if |y(bt)| > W and y(bt) � T then

add y(bt) to T

end if

end for

Fig. 4 Camera position and perspective pedestrian location.

we assume the pedestrian walks at the average walking speed
(1.11 m/s) of them. For a detected pedestrian (bounding box) at
pt

i, the predicted position pt→u
i at frame u is obtained.

In the target environment, horizontal movements are dominant.
That is, pedestrians and vehicles move mainly horizontally, and
the horizontal movement of a pedestrian in the video are larger
than the vertical one. So we focus only on the geometry with a
view from above as shown in Fig. 4 to calculate the location sim-
ilarity. The figure illustrates the position relationship between a
dashcam and a pedestrian from above. Suppose pedestrian P is
at position A at frame T and a camera is at D facing toward E

which is parallel with the sidewalk. The distance between the
sidewalk and the direction vector of the camera is denoted as d,
which is manually calculated from the video *1. The segment CE

is the projection plane of the camera. In the perspective view,
the pedestrian is positioned at H, which is a pixels apart from the

*1 In actual use scenarios, we need to estimate d for each frame, which can
be achieved by a combination of several methods such as line detection
and pedestrian detection. However, in this paper, we focus on the main
concept of people flow estimation and leave it out of scope.

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

center of the image. The pedestrian P moves to B in the perspec-
tive view after ΔT sec. The moving distance of P denoted as Δx,
which is the length of the segment AB, is estimated as Δ̂x from
the relative speed between the pedestrian and the vehicle. Sup-
pose P is at I in the image, I is a+Δa pixels apart from the center
of the image. Here Δa can be estimated as Δ̂a, which can be cal-
culated from Δ̂x based on geometry. Using f , the focal point of
the camera in pixel, pt→u

i can be calculated as:

pt→u
i = a + Δ̂a = a +

a2Δ̂x

f d − aΔ̂x
. (2)

Then location similarity can be defined by the difference be-
tween Δ̂a = pt→u

i − pu
j and Δa, which is the moving distance

in pixels in perspective view (video images). We have defined
location similarity as follows using a margin parameter M, em-
pirically defined as 50 pixels.

l(bt
i, b

u
j ) = max

⎛⎜⎜⎜⎜⎜⎝0, 1 − |Δ̂a|
|Δa| + M

⎞⎟⎟⎟⎟⎟⎠ , (3)

3.4.2 Color Similarity
Colors of hair, faces, clothes, etc. are useful for tracking.

Therefore, we define the color similarity as the correlation of
color histograms for a pair of bounding boxes as below.

v(bt
i, b

u
j ) =

1
|c|
∑

c

∑
I(H

c
i (I) − H̄c

i )(Hc
j (I) − H̄c

j )√∑
I(H

c
i (I) − H̄c

i )2
∑

I(H
c
j (I) − H̄c

j )
2

In the above definition, Hc
i is the histogram of color channel c of

i-th bounding box bt
i. The average color H̄c

i of bt
i is defined as

1
N

∑
I Hc

i (I) where N is the number of bins of the histogram and
Hc

i (I) is the frequency of the I-th bin. In our pedestrian detection,
a bounding box indicates the region of a face or back of a head.
To reflect the color of clothes on our color similarity, we expand
the detected bounding box as 3 times longer toward the direction
of the ground and use the color histogram of the expanded bound-
ing box for the color similarity. For the color channel c, we use
the 3 channels of HSV (Hue, Saturation, and Value).

3.5 Aggregation of Estimated People Flows
In Section 3.4, we described FlowScan which estimates people

flows by a single dashcam. However, more dashcams of multiple
participants may be available in practice. For example, we may
implement FlowScan as a participatory sensing system where
cooperative users upload the estimated people flows to a cloud
server. Therefore, aggregation of the estimated people flows is
required to obtain the estimation results as shown in Fig. 2. Actu-
ally, the aggregation design is non-trivial because we need to con-
sider the reliability of the estimated people flows such as fresh-
ness, trust of the upload user, and the estimation quality.

Although we leave the aggregation design as a future work due
to the challenges, one of the reasonable aggregation designs is
averaging. We denote an estimated people flow by a user from an
intersection i and the next intersection j at time t as f t

i j(u). Then,
we obtain the aggregated people flow f̂ t

i j at time t from i to j by
averaging the uploaded people flows from t −Wa to t +Wa where
Wa is a time window size.

Fig. 5 Experiment area (Chayamachi, Osaka) (Copyright c©
OpenStreetMap contributors).

4. Evaluation

4.1 Experiment Environment
For evaluation, we recorded videos in Chayamachi area, which

is a downtown area near Osaka Station in Umeda district, Japan.
The driving route is illustrated in Fig. 5 with a red line between
points 1 and 2. We placed a dashcam (DRY-WiFiV5c, Yupiteru
Corporation) onto a vehicle’s dashboard and drove the route sev-
eral times around noon on holidays when many pedestrians are
walking.

For training of Stewart’s method, we used the same learning
parameter settings as described in Ref. [8] and the software li-
brary published by the authors *2. For deep learning, we used
a workstation with Intel Xeon CPU E5-1680 v3 @ 3.20 GHz,
128 GB of memory and GeForce GTX 1080 GPU.

We used four datasets for evaluation: (1) the head dataset for
pedestrian detection experiment, (2) the people flow dataset A

consisting of 104 segments on one side of the street, (3) the peo-

ple flow dataset B consisting of 15 segments on the other side
of the street, and (4) the speed dataset consisting of 5 segments
on the same side of the street as the people flow dataset A. Fig-
ures 6 (a) and 6 (b) show captured pictures from dataset A and
B, respectively. The videos in each dataset contain a lot of sim-
ilar backgrounds, while the backgrounds are different between
datasets A and B as shown in the pictures. We use dataset A
for evaluation mainly. Dataset B is used to check if the detector
works well with pictures that have different backgrounds from
training data. To build the head dataset, we have picked every 10
frames (images) from the recorded video and manually labeled
2,560 faces and 2,695 backs of heads of pedestrians for training
data. For the people flow datasets A and B, each segment consists
of a video recorded while the vehicle was driving from an inter-
section to the next one. The speed data of the vehicle are recorded
by a GPS receiver together with the video. According to the data,
the vehicle drove mainly at speeds of less than 30 km/h. Note
that we excluded some parts recorded while the vehicle stopped
at intersections. In total, the numbers of approaching and leaving
pedestrians are 2,280 and 1,693 for the dataset A, respectively.
Also, the numbers of approaching and leaving pedestrians are
629 and 444 for the dataset B, respectively. We randomly chose

*2 https://github.com/Russell91/ReInspect

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 6 Photos of the target side and the opposite side.

5 segments from the dataset A to build the speed dataset.
The similarity weight in Eq. (1) is set as w = 0.5 for all the

experiments. We note that the parameter settings are different in
each of the following sections because we use different datasets
for parameter tuning (i.e., training). Especially, in Sections 4.2.4
and 4.2.5, we conducted 10-fold cross validation for the dataset

A. The details of the parameter settings in the other evaluation
are described later.

For an evaluation metric, we use an absolute error rate which
is defined as:

|Ñ s
i − Ns

i |
Ns

i

, (4)

where Ñ s
i is the estimated number of pedestrians and Ns

i is the
ground truth in a segment s. The absolute error rate is calcu-
lated independently for approaching and leaving pedestrians. In
the following evaluation, we use the average of the absolute error
rate (i.e., mean absolute error (MAE) rate) of all the segments in
the test data unless otherwise stated.

4.2 Evaluation Results
4.2.1 Pedestrian Detection Tuning

For the tuning of Stewart’s method, we have used 100 images
randomly chosen from the head dataset. Figure 7 shows precision
and recall for different threshold T of Stewart’s method in pedes-
trian detection. For comparison with a simple method, Fig. 7 also
shows the head detection result by a cascade classifier based on
Haar-like feature proposed by Ref. [23]. We used its implemen-
tation provided by OpenCV. For training the cascade classifier,
we cropped the head images from the learning data and built the
classifiers of faces and backs. Then, we also changed a threshold
parameter of the cascade classifier to detect a target.

Precision and recall of the cascade classifier range from 0.1 to
0.7 and 0.7 to 0.3, respectively. Specifically, in the case of the
highest precision, recall decreased to 0.3, which is obviously in-
sufficient. On the other hand, precision and recall of Stewart’s

Fig. 7 Effect of threshold (precision and recall).

method are within the range from 0.7 to 0.85 and 0.85 to 0.68 for
both directions, respectively.

Meanwhile, in both cases of the cascade classifier and Stew-
art’s method, the performance of leaving pedestrians is lower than
approaching pedestrians. This is because we can see faces of ap-
proaching pedestrians. A face image contains various parts such
as eyes, nose, and mouth while images of leaving pedestrians con-
tain much less features.

In FlowScan, people flow estimation is performed by combin-
ing head detection in multiple frames. However, the performance
of head detection also affects the other parameters W and S since
the reliability of the head detection could vary. Therefore, we
add the parameter T to the parameter set for optimization in the
following sections.
4.2.2 Effect of Threshold Parameters

We evaluate the effect of the similarity threshold S and the min-
imum number of frames W for the dataset A. Figures 8 (a) and
8 (b) show the MAE rate of approaching and leaving pedestrians
for different S , respectively. We see that the MAE rate increases
with the increase of S in most cases. This is because the cor-
rect trajectories are wrongly filtered if S is extremely high. We
also see the decrease of MAE rate when S is greater than 0.75
for W = 4, 6 in leaving pedestrians. In addition, the MAE rate
of W = 4, 6 is relatively higher than the others. Therefore, the
estimated trajectories contain many wrong trajectories for S less
than 0.75, which are filtered by S greater than 0.75. Overall, the
performance does not change largely for S less than 0.5. This
indicates a good performance of the head detection.

From the results of different W shown in Figs. 8 (c) and 8 (d),
we see similar trends in both directions: the MAE rate decreases
with the increase of W. This is because FlowScan allows short
trajectories to detect pedestrians when W is small, which leads to
a large number of wrong detections. On the other hand, large
W can deteriorate the MAE rate as shown in Fig. 8 (c). This
is because correct trajectories are wrongly filtered if W is too
large. However, we do not see such deterioration for the leaving
pedestrians shown in Fig. 8 (d). This is because backs of heads
are harder to detect due to few image features. If we increase
W, FlowScan requires a longer trajectory to detect a pedestrian.
Therefore, larger W is effective for leaving pedestrians (backs of
heads) to filter false positives out.

The above results indicate that we need to set the threshold
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Fig. 8 Effect of similarity threshold S and minimum number of frames W.

parameters appropriately depending on the performance of head
detection. To do this, we may prepare several settings adjusted
for some typical environments, one of which is chosen for a tar-
get environment. Another option is to collect a small dataset for
parameter tuning for a target environment. Also, autonomous pa-
rameter adjustment may be possible by learning the relationship

Table 1 MAE rate for different vehicle speed.

Direction FlowScan Fixed Speed
Approaching 24.8% 22.9%
Leaving 26.0% 27.1%

between parameter settings and head detection results. Since the
goal of this paper is to present the basic design of people flow
estimation, we leave it as our future work.
4.2.3 Effect of Vehicle Speed Variation

To see the effect of vehicle speed variation, we evaluated
FlowScan for videos during stops and moves separately for the
speed dataset. For comparison, we have also applied FlowScan

with the fixed speed (pt→u
i ) set by the average speed of the ve-

hicle during the test data. For the parameter setting, we used
T = 0,W = 7, and S = 0.5 for approaching and T = 0,W = 4,
and S = 0.8 for leaving pedestrians which are optimized for the
speed dataset.

From the result shown in Table 1, we can see the MAE of
FlowScan for leaving pedestrians is 26.0%, which is better than
that with the fixed speed. However, for approaching pedestrians,
the MAE of FlowScan is 1.9% worse than the fixed speed. This
is because the speed did not change greatly and became close to
the average speed used as the fixed speed. On the other hand,
FlowScan relies on the speed calculated by GPS, which actually
has some error affecting the tracking performance. To overcome
GPS error, we may use speed estimation by a smartphone iner-
tial sensor or speed information retrieval by OBD-II (On-Board
Diagnostics).
4.2.4 People Flow Estimation

To investigate the performance of people flow estimation, we
compared FlowScan with Detect-and-Track [7] which is one of
the state-of-the-art methods for estimating and tracking human
body key points in multi-person videos. We conducted 10-fold
cross validation for the people flow dataset A.

For the implementation of Detect-and-Track, we used the
source code available online *3. Since Detect-and-Track does not
directly estimate the people flow, we applied the following al-
gorithm for people flow estimation based on Detect-and-Track.
First, we obtain trajectories of pedestrians detected by Detect-
and-Track. Then, for each trajectory, we determine the direction
of the trajectory (i.e., forward or backward) based on the posi-
tions of left and right shoulders estimated by Detect-and-Track.
If a right shoulder is on the right side of the position of the left
shoulder in a frame, the pedestrian is supposed to be a leaving
pedestrian, and vice versa. Finally, the direction of a trajectory
is determined by majority voting from pose estimation results of
each frame *4.

Figures 9 (a) and 9 (b) show the comparison result of FlowS-

can and Detect-and-Track. Here, we have used the number of
pedestrians manually labelled as the ground truth. Each marker
in the graphs represents the result for each video and the lines
represent the regression lines. We thought how crowded the road
might affect the performance, however the influence of the num-
ber of pedestrians seem relatively small. We note that the esti-

*3 https://github.com/facebookresearch/DetectAndTrack/
*4 In the case of a tie, approaching pedestrians have priority in our imple-

mentation.
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Fig. 9 Comparison with Detect-and-Track.

mated numbers of pedestrians shown in Fig. 9 are not always cor-
rect because it may contain double counting. Therefore, we fur-
ther evaluate both methods in terms of precision and recall later to
see the correctness of the estimation results. For the approaching
pedestrians, the MAE rate of FlowScan is 8% while Detect-and-
Track achieves 19%. Meanwhile, for the leaving pedestrians, the
MAE rate of FlowScan and Detect-and-Track are 29% and 72%,
respectively. The difference between FlowScan and Detect-and-
Track is much clearer for the leaving pedestrians where the num-
ber of features for tracking is less than the approaching pedestri-
ans. Overall, FlowScan achieves 18.5% MAE rate while Detect-
and-Track achieves 45.5% MAE rate on average. Furthermore,
we compared FlowScan and Detect-and-Track in terms of preci-
sion and recall. We define the that an estimated trajectory is cor-
rect if and only if it tracks the same target more than 50% of its
associated bounding boxes. Then, we manually counted the num-
bers of correct/incorrect trajectories to calculate precision and re-
call. From the result shown in Table 2, we have confirmed that
FlowScan outperforms Detect-and-Track. This is mainly because
FlowScan leverages the prior knowledge about typical pedestrian
movement on sidewalks.
4.2.5 Robustness to Occlusion

To see the robustness of FlowScan to occlusion, we compared
the MAE rate between Δt = 0 and Δt = 10. As described in
Section 3.4, Δt is the parameter to allow false negatives (i.e., oc-
clusion). Δt = 0 does not allow any false negatives to track the

Table 2 Precision and recall comparison.

Direction FlowScan Detect-and-Track
Approaching (Precision, Recall) (87.7%, 81.1%) (58.7%, 46.3%)
Leaving (Precision, Recall) (84.9%, 75.4%) (51.9%, 35.5%)

Table 3 MAE rate for different Δt.

Δt = 0 Δt = 10
Approaching 35.3% 27.1%
Leaving 42.0% 37.6%

Fig. 10 Effect of different background.

pedestrians.
Table 3 shows the results. We see that Δt = 10 outperforms

Δt = 0. This is because FlowScan allows time-consecutive false
negatives up to Δt frames, which prevents accuracy degradation
due to occlusion.
4.2.6 Effect of Different Background

In order to see the effect of different backgrounds, we also eval-
uated FlowScan for the people flow dataset B as the test data
while the dataset A as the training data. The parameter setting
is T = 0.5, W = 6, and S = 0.1 for leaving and T = 0.5, W = 8,
and S = 0.1 for approaching pedestrians. Photographs of the
dataset A and B are shown in Figs. 6 (a) and 6 (b), respectively.

Figures 10 (a) and 10 (b) show the similar plots to Figs. 9 (a)
and 9 (b) of the results for dataset B. For the approaching pedes-
trians, the MAE rates of FlowScan and Detect-and-Track are
14.6% and 28.3%, respectively. Also, for the leaving pedestrians,
FlowScan achieves 28.3% MAE rate which is better than 44.5%
by Detect-and-Track. Table 4 shows precision and recall. We see
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Table 4 Precision and recall comparison (different background).

Direction FlowScan Detect-and-Track
Approaching (Precision, Recall) (92.5%, 78.9%) (55.6%, 43.4%)
Leaving (Precision, Recall) (84.1%, 77.7%) (50.2%, 33.6%)

that FlowScan achieves more than 84.1% precision and 77.7%
recall for both of the approaching and leaving pedestrians, which
is much higher than the compared method. The above results
indicate that the correct pedestrian tracking by FlowScan results
in the better estimated numbers of pedestrians shown in Fig. 10.
On the other hand, the lower precision and recall of Detect-and-
Track indicates the estimated numbers in Fig. 10 may often con-
tain double counting. Overall, we have confirmed that, even for a
different background, FlowScan still achieves better results than
the state-of-the-art.

5. Conclusion

In this paper, we proposed FlowScan: a method to estimate
sidewalk-level people flow by using dashcams. Our method com-
bines Deep Learning-based pedestrian detection and model-based
tracking to overcome the challenges of frequent occlusion and
false positives. In pedestrian detection, faces and backs of heads
are separately detected to understand moving directions of pedes-
trians as well as their existence by applying CNN and LSTM.
Then, the trajectories of the detected bounding boxes are esti-
mated based on location and color similarities with the knowl-
edge about typical movement of vehicles and pedestrians.

To confirm the effectiveness of FlowScan, we have collected
real data in Osaka downtown. The results have shown that FlowS-

can achieves 18.5% mean absolute error rate for people flow es-
timation which is promising to enrich future smart cities. One
of our future works is implementation of a real system based on
mobile devices such as smartphones and embedded AI comput-
ing devices. Also parameters of cameras such as color balance or
exposure values vary depending on the cameras and are also au-
tomatically adjusted to the environment. So to make our method
robust, we should append color and brightness adjustment pro-
cess before the detection process.
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