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Abstract: Monitoring mental health has received considerable attention as a countermeasure against the increasing
occurrence of mental illness worldwide. However, current monitoring services incur costs because users are required
to attach wearable devices or answer questions. To reduce such costs, many studies have used smartphone-based
passive sensing technology to capture a user’s mental state. This paper reviews those studies from the perspective of
machine learning and statistical analysis. Forty-four studies published since 2011 have been reviewed and summarized
from three perspectives: designed features, machine learning algorithm, and evaluation method. The features consid-
ered include location and mobility, activity, speech, sleep, phone usage, and context features. Tasks are classified as
correlation analysis, regression tasks, and classification tasks. The machine learning algorithm used for each task is
summarized. Evaluation metrics and cross validation methods are also summarized. For those who are not necessarily
machine learning experts, we aim to provide information on typical machine learning framework for smartphone-
based mental state estimation. For experts in the field, we hope this review will be a helpful tool to check for potential
omissions.
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1. Introduction

The growing number of mental disorders and mental illnesses
has become a global social issue, particularly for students [1] and
workers [2], [3], [4] who are continually pressured to perform ra-
tionally and efficiently. The World Health Organization (WHO)
reported that greater than 90% of suicides are due to mental dis-
orders [5]. The WHO considers mental illness to be a global chal-
lenge and an economic problem [4]. In Japan, the importance of
worker mental health has been recognized, and the Japanese gov-
ernment has sponsored some preventive systems, such as a self-
reporting stress check program [6]. Considering the widespread
use of smartphones [7], there is growing interest in the use of such
devices to monitor a user’s mental state and promote self-care [8].
The WHO’s Mental Health Action Plan 2013–2020 [9] recom-
mended “the promotion of self-care, for instance, through the use
of electronic and mobile health technologies.”

Technology-assisted mental health monitoring can be cate-
gorized into the following three types. The first approach re-
lies on specialized or wearable devices to measure physiologi-
cal signals [10], [11], [12]. Some studies have shown that anx-
iety or stress can be estimated by measuring amylase [13], cor-
tisol in saliva [13], [14], [15], blood pressure [16], [17], heart
rate[17], heart rate variability [17], [18], [19], nitric oxide (NO)-
related signals [20], and skin conductance [21], [22]. Estima-
tions that rely on physiological indices are reliable; however,
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consistent daily measurement is impractical as users must at-
tach wearable devices to their bodies continuously. The sec-
ond approach relies on self-assessment using smartphone appli-
cations [23], [24], [25]; however, frequent self-assessment is dif-
ficult to maintain because it requires time and effort. The last
approach is to use the passive sensing features of smartphones to
detect mental states [8], [26]. Sensing via a smartphone is less
intrusive than specialized wearable devices [27]. Due to increas-
ing computational power and pervasiveness, most smartphones
are equipped with multiple sensors that can capture complex and
meaningful behavioral features. Smartphones can also capture
various operational data, such as call, text, and application ac-
tivity [28]. In this paper, we investigate and summarize studies
related to sensing via smartphones.

The research challenge of using smartphones’ passive sensing
features to detect mental states is to minimize errors between
the correct mental state and the estimated state. Numerous ap-
proaches, such as designing mental health related features us-
ing smartphone data and selecting machine learning algorithms
that improve accuracy, have been proposed. There are two no-
table survey papers [8], [29] in this research area. In these pa-
pers, studies were categorized by mental health condition (e.g.,
stress, anxiety) or mental illness (e.g., bipolar disorder, depres-
sion, schizophrenia) and the sensor used (e.g., GPS *1, call logs,
accelerometer). However, these survey papers did not focus on
statistical analysis or machine learning models. We found that
past studies take totally different approaches to feature design, se-

*1 Global Positioning System.
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lection of machine learning algorithm, and evaluation setting. To
learn and apply best practices, in this paper, we summarize pre-
vious studies from the perspective of a machine learning frame-
work.

In the next section, we describe a general machine learning
framework for smartphone-based mental health estimation.

2. Machine Learning Framework

In this section, we describe the overall procedure of
smartphone-based mental state estimation. The purpose of
this procedure is to learn the complex relationships among
features that can be captured by smartphone sensors and the
mental state. As a large variety of features can be considered,
a machine learning framework is widely used to learn the
relationships efficiently. Figure 1 shows a general machine
learning framework in smartphone-based mental state estima-
tion. The framework consists of five steps. First, we collect
raw smartphone data for each participant. Second, we collect
the state of mental illness/mental health for each participant as

Fig. 1 Machine learning framework for smartphone-based mental state es-
timation. The framework consists of five steps. Past surveys summa-
rize previous studies from the perspective of the sensor used (step 1)
and the type of mental health or mental illness (step 2). This survey
summarizes previous studies from the perspective of feature design
(step 3), machine learning algorithm selection (step 4), and evalua-
tion setting (step 5) in a machine learning framework.

their ground truth via self-reported questionnaires or conducting
psychological scale-tests performed by a clinical psychologist.
Third, we design features based on a heuristic assumption about
the relationship between mental state and human behavior and
then calculate the feature values from the raw data collected from
each participant’s smartphone. Fourth, we learn the complex
relationships among features and the mental state through one
of three tasks; classification of mental state (e.g., stressed or
not stressed), regression of mental score (e.g., prediction of the
self-assessment score), and correlation analysis (e.g., correlation
between feature score and self-assessment score). Finally,
we design the evaluation setting, e.g., evaluation metrics and
cross-validation policy, and conduct the evaluation.

To thoroughly investigate recent trends in this field, we first se-
lected papers that match the machine learning framework shown
in Fig. 1 from those mentioned in the survey papers [8], [29]. We
also conducted a web search to collect additional papers using
the query “smartphone, mental health, machine learning.” In to-
tal, we considered 44 papers, which are listed in Tables 6, 7, and
8. In the following sections, we investigate and summarize the
previous studies from the perspective of feature design (step 3),
machine learning algorithm selection (step 4), and evaluation set-
ting (step 5) in the machine learning framework. Summaries of
steps 3, 4, and 5 are provided in Sections 3, 4, and 5, respectively.
In Section 6, we discuss recommendations for this research field
and limitations. Conclusions are presented in Section 7.

3. Features

3.1 Building Hypothesis
To create smartphone-based features related to mental health,

most studies proposed hypotheses about the characteristic behav-
ior taken by people with mental illness based on the assessment
metrics used for diagnosis or the known findings. With refer-
ence to previous studies [30], [31], Saeb et al. developed a hy-
pothesis about the association of depression with several behav-
iors, such as reduction in activity, psychomotor retardation, and
changes in sleep patterns. According to the hypothesis, they de-
veloped a location and mobility feature and a phone usage fea-
ture [32]. With reference to past findings [33], [34], Beiwinkel
et al. [35] hypothesized that higher levels of physical activity
and social communication measured by a smartphone represent
lower levels of depressive symptoms and temporal increases in
manic symptoms for patients with bipolar disorder. According
to the hypothesis, they create location and mobility and phone
usage features. With reference to the Patient Health Question-
naire (PHQ) [36], Canzian et al. [37] developed a hypothesis re-
lated to behavioral patterns associated with depression, such as
reduced mobility [38] and limited willingness to perform differ-
ent activities. According to the hypothesis, they created location
and mobility features. Wang et al. [39] proposed features that
are proxies for depression symptoms defined in the DSM-5 [40],
such as changes in sleep patterns, diminished ability to concen-
trate, and diminished interest or pleasure in activities. They de-
veloped phone usage, location and mobility, activity, speech, and
sleep features. In the following sections, the features developed
in previous studies are summarized. Features are categorized into
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six types: location and mobility, activity, phone usage, context,
speech, and sleep (38 features in total).

3.2 Location and Mobility Feature
Location and mobility features are generated from smartphone

GPS and Wi-Fi scan data. Table 1 lists the location and mobility
features.

Feature LOC-1, travel distance, represents the distance be-
tween two locations. Many studies used total travel distance per
day [32], [41], [42], [43], which is calculated by accumulating
the distances between the location samples in a single day. Some
studies created conditional total distance, such as approximate
distance covered by foot [44] and the distance a student travels
inside buildings identified by Wi-Fi scan logs [45], [46]. Canzian
et al. used the maximum distance between two significant loca-
tions [37].

Next, we describe the features LOC-2, time spent at significant
location, and LOC-3, number of places visited feature, which are
related to visiting significant locations such as home, campus or
office. Some studies identified the home location based on sev-
eral heuristics, e.g., the home location is the location most vis-
ited between 12am and 6am [32], [41], [42], [43], [47], and the
home is among the first to the third most visited location clus-
ters [32], [41], [42], [43]. Some studies identified significant lo-
cations by applying a clustering algorithm, such as k-means, to
participants’ raw GPS data [32], [41], [42]. Boukhechba et al.
identified semantic locations, e.g., restaurants, campus areas, and
shops, by combining spatiotemporal clustering results and a map
database [48]. After significant locations are identified, we calcu-
late the stay time in each location for feature LOC-2, and count
the number of locations for feature LOC-3. For example, Farhan
et al. used the amount of time that a participant spends in the top
three clusters as the feature LOC-2 [43]. Exler et al. used the dis-
tribution of cumulative stay time in each semantic location as the
feature LOC-2 [49]. The number of location clusters found by
k-means is used as the feature LOC-3 [32], [41], [42].

Finally, we explain the remaining location and mobility fea-
tures listed in Table 1. Feature LOC-4, transition time, represents
total time elapsed during travel [50]. Some studies calculated this
feature by dividing the number of GPS location samples in tran-
sition states by the total number of samples [32], [41], [42], [43].
Feature LOC-5, routine index, represents the extent to which par-
ticipants’ sequence of locations followed a circadian rhythm [32],
[41], [42]. If a participant left home for work and returned home
from work at approximately the same time each day, the circa-
dian rhythm was high. In contrast, a participant with a more
irregular pattern of moving between locations had a lower cir-
cadian rhythm. Canzian et al. defined a routine index that repre-
sents the extent to which places visited on a particular day differ
from those visited on other days [37]. Feature LOC-6, location
variance, represents the variability in a participants’ GPS loca-
tion. The sum of the statistical variances of the latitude and lon-
gitude components of the location data is used as a feature LOC-
6 [32], [41], [42], [43]. Feature LOC-7, the living area size, rep-
resents an imaginary circle encompassing the various locations
that a user traveled across on a particular day [21]. Canzian et al.

Table 1 Location and mobility features.

Feature Reference
LOC-1 Travel distance [21], [32], [35], [37], [41], [42],

[43], [44], [45], [46], [50], [51],
[52], [53], [54], [55], [56], [57],
[58], [59], [60], [61]

LOC-2 Time spent at signif-
icant location (home,
clinic, office, school,
etc.)

[32], [39], [41], [42], [43], [47],
[48], [49], [53], [55], [56], [58],
[59], [60], [61], [62], [63], [64],
[65], [66]

LOC-3 Number of places vis-
ited

[32], [37], [39], [41], [42], [48],
[53], [55], [56], [57], [60], [61],
[67]

LOC-4 Transition time [32], [37], [41], [42], [43], [50],
[61], [64], [66]

LOC-5 Routine index [32], [37], [41], [42], [60]
LOC-6 Location variance [32], [41], [42], [43], [67]
LOC-7 Size of living area [21], [37], [60]
LOC-8 Speed [42], [61]

Table 2 Activity features.

Feature Reference
ACT-1 Duration of activity

time
[39], [43], [45], [46], [47], [49],
[51], [58], [60], [62], [67], [68],
[71], [72]

ACT-2 Activity state transition [62]
ACT-3 Acceleration magnitude [53], [57], [65], [67], [69], [70]
ACT-4 Acceleration frequency

analysis
[43], [55], [56]

ACT-5 Physical orientation [69]
ACT-6 Walking steps [70]

proposed the radius of gyration, which outputs the radius of an
imaginary circle by weighting the contribution of each place by
time spent in that place [37]. Feature LOC-8, speed, represents
the mean of the speed obtained at each GPS data point. Here,
speed is calculated as the change in latitude and longitude values
over time [42].

3.3 Activity Feature
Activity features are generated using the multi-axial ac-

celerometers embedded in the smartphone. Activity features are
listed in Table 2.

Feature ACT-1, duration of activity time, represents the dura-
tion of each activity. We estimated the types of activities based
on data acquired from multi-axial accelerometers. Some previ-
ous studies built a physical activity classifier to infer stationary,
walking, running, driving, and cycling activities based on fea-
tures extracted from accelerometer streams [45], [46]. Recently,
Google, Inc. has provided an activity recognition service API *2

to estimate users’ physical activities, such as walking, running,
staying still, and using vehicles. Some studies identified an ac-
tivity using recently developed APIs and calculate the total time
spent on each activity for each full day [49], [60], [68]. Feature
ACT-2, activity state transition, represents the number of times
participant changes his activity to the other activity such as still
to walking. Feature ACT-3, acceleration magnitude, is calculated
by the square root of sum of squares for individual acceleration
axes. Doryab et al. used minimum, median, maximum, average,

*2 Both Google, Inc. and Apple Inc. have started to provide basic activity
recognition services, which are implemented as ActivityRecognitionApi
on Android OS and CMMotionActivity on iOS.
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and SD *3 values of the acceleration magnitude as features [53].
For feature ACT-4, acceleration frequency analysis, Grünerbl et
al. used Fourier transformation to output frequency centroid and
frequency fluctuation as features [55], [56]. Feature ACT-5, phys-
ical orientation, which is the angle of the display to the ground,
has been calculated using smartphone rotation sensor data [69].
Feature ACT-6, walking steps, represents the number of steps per
minute and is calculated using the tri-axial accelerometers em-
bedded in a smartphone [70].

3.4 Phone Usage Feature
Phone usage features are generated from the smartphone’s user

operation log. Table 3 lists phone usage features.
First, we explain the features related to communication tools,

such as calls, SMS *4 and E-mail. Feature PHO-1, number of
communication tool usage, represents the total number of incom-
ing, outgoing, and missed phone calls, and the number of incom-
ing and outgoing text messages (SMSs and E-mails). The mean
and SD of the number of communications are also used [52]. Fea-
ture PHO-2, duration of calls, represents the total duration of in-
coming and outgoing calls. Mean, median, and SD of the duration
of calls are also used [50], [54]. Asselbergs et al. calculated call
duration only for the top five caller contacts [71]. Gjoreski et al.
defined call duration deviation by the duration of the longest call
in the last two days relative to the average duration of calls of
the past [58]. Feature PHO-3, number of people interacted with
via communication tools, represents the total number of individ-
uals with whom a participant interacted through calls, SMS, and
E-mails.

Next we explain features related to screen on/off events. Fea-
ture PHO-4, duration of screen on, represents the sum of each
session of screen time. Note that a user session begins when the
device screen is powered on and ends if the screen goes off. Mean
and SD of screen-on duration is also used [54]. Farhan et al. mea-
sured the total duration that a participant’s phone is locked in a
single day [43]. Feature PHO-5, number of times screen on/off,
represents the total number of times the screen was turned on
and off per day. As feature PHO-6, time stamp of call, SMS,
screen on/off is a continuous value, the timestamp is converted to
a discrete feature by splitting several time intervals per day (e.g.,
12am–3am, 3am–6am, 6am–9am, 9am–12pm, 12pm–3pm, 3pm–
6pm, 6pm–9pm, and 9pm–12am) [52]. Another discretization of
timestamp is calculated by mean, SD, and median of the time of
each call [21].

Third, we explain features related to smartphone application
usage such as feature PHO-7, duration of app usage, and fea-
ture PHO-8, number of times each app is launched. As smart-
phone applications are diverse, to avoid the data sparsity prob-
lem, most studies do not use the exact names of executed apps.
Instead, apps are categorized into one of several categories. Some
studies used Google Play Store categories, such as communica-
tion, entertainment, finance, games, office, social, travel, and util-
ities [60], [71]. Own categories are created such as “information,

*3 Standard deviation.
*4 Short Message Service.

Table 3 Phone usage features.

Feature Reference
PHO-1 Number of communica-

tion tool usage
[21], [35], [48], [50], [52],
[53], [54], [57], [60], [62],
[65], [67], [68], [71], [74],
[76], [77]

PHO-2 Duration of calls [50], [52], [53], [54], [58],
[68], [71], [74]

PHO-3 Number of people inter-
acted with via commu-
nication tools

[50], [52], [53], [59], [67],
[74]

PHO-4 Duration of screen on [32], [39], [43], [52], [54],
[59], [67], [68], [71], [74]

PHO-5 Number of times screen
on/off

[21], [32], [52], [54], [60],
[71], [74]

PHO-6 Time stamp of call,
SMS, screen on/off

[21], [52], [54], [59], [68]

PHO-7 Duration of app usage [50], [52], [60], [68], [69],
[71], [73], [74]

PHO-8 Number of times apps
are launched

[60], [71], [73], [74]

PHO-9 Number of calendar
events

[49], [67]

PHO-10 Keypress features
(number of clicks,
delay, autocorrect, etc.)

[74], [75]

PHO-11 Amount of network
traffic

[68]

PHO-12 Tasks and processes [53]
PHO-13 Notification reaction [74]
PHO-14 External device attach-

ment
[60]

PHO-15 Battery power [60]
PHO-16 Storage used [60]

system, health, social, entertainment and work” [68], and “social
networking, browser, mail, and entertainment” [69]. After apps
are categorized, both PHO-7 and PHO-8 are calculated. Some
studies measured app usage duration and the number of times
apps are launched by category [68], [69], [73]. Unlike the above
approach, some studies created features PHO-7 and PHO-8 by
setting some conditions rather than categorizing apps. Asselberg
et al. used the usage duration of the top five apps as feature PHO-
7 [71]. Mehrotra et al. used the number of unique applications
launched as feature PHO-8 [74]. Asselberg et al. used the num-
ber of photos taken per day by summarizing phone camera logs
as feature PHO-8 [71]. Sano et al. considered the total duration
of internet access as feature PHO-7 [52].

Finally, we explain other features. For feature PHO-9, num-
ber of calendar events, Wahle et al. assumed that too many cal-
endar events could influence depression levels and tracked the
number of stored calendar events [67]. To define feature PHO-
10, keypress features, Zulueta et al. considered various metrics,
such as average time between keystrokes, number of backspace
keypresses, number of autocorrect events, average accelerometer
amplitude while typing, number of keypress sessions, and aver-
age keypress session length [75]. Mehrotra et al. defined the num-
ber of normal clicks and long clicks on the phone screen as a fea-
ture [74]. For feature PHO-11, amount of network traffic, Stütz
et al. split the traffic into four categories, i.e., received, transmit-
ted, mobile network, and wireless Network, and calculated the
amount of network traffic by category [68]. Doryab et al. defined
feature PHO-12, tasks and processes feature, in detail consider-
ing various metrics, such as total number of tasks and processes,
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Table 4 Context features.

Feature Reference
CON-1 Ambient illuminance [43], [49], [53], [60], [69]
CON-2 Connectivity [49], [77]
CON-3 Weather features [53], [59], [60]
CON-4 Days of the week [60], [69]

frequency of change in tasks and processes, and time between
changes [53]. Mehrotra et al. considered various metrics to define
feature PHO-13, notification reaction. For example, they consid-
ered the number of notifications clicked, percentage of notifica-
tions clicked out of total arrived, average seen time (time from
notification arrival until the time the notification was seen by the
user), average decision time (time from the moment a user saw
a notification until the time they acted on it, e.g., by clicking),
average response time of all notifications where response time is
the sum of seen and decision times [74]. Yamamoto et al. defined
the number of times each user attached a charger and earphone
(see feature PHO-14), changes in the amount of battery power
remaining (see feature PHO-15), and the amount of storage used
(see feature PHO-16) [60].

3.5 Context Feature
Context features are generated using a smartphone sensor and

an external source. Table 4 lists the context features.
Feature CON-1, ambient illuminance, is created from data

obtained from illuminance sensor values or screen proximities.
Here, the minimum, maximum, median, average, and SD of am-
bient illuminance are used [53]. Farhan et al. calculated the total
duration and number of times when a participant is in a dark en-
vironment in a day [43]. Fukazawa et al. categorized the obtained
illuminance sensor values as dark, medium, and bright [69]. Exler
et al. factorized the lux values into categories, such as pitch black
and direct sunlight [49]. Buddi et al. defined feature CON-2,
connectivity, to estimate the participants’ degree of social inter-
action [77]. They used the total number of Bluetooth IDs and
the number of times the most common Bluetooth ID was seen.
Feature CON-3, weather features, are obtained from an exter-
nal source or sensor data implemented on a smartphone. Doryab
et al. collected temperature, cloudiness, humidity, precipitation,
and events (rain, snow, and wind) from a weather database [53].
Jaques et al. collected weather data related to sunlight, temper-
ature, wind, and barometric pressure [59]. Yamamoto et al. ob-
tained barometric pressure data from a smartphone atmospheric
pressure sensor [60]. They also created a feature CON-4, days of
the week feature, comprising seven-dimensional one-hot vectors
and a binary feature that represents either a weekday or weekend
day [60].

3.6 Speech Feature
Speech features are generated using sound data captured by a

smartphone microphone. Table 5 lists speech features.
Feature SPE-1, amount of conversation or noise, is calculated

using sound data recorded from a microphone. Some studies first
segment the audio stream into 15-ms frames and apply an audio
classifier to obtain the number of independent conversations and
their duration [45], [46]. Ben-Zeev et al. activated the microphone

Table 5 Speech features.

Feature Reference
SPE-1 Amount of conversation

or noise
[39], [43], [45], [46], [50], [51],
[53], [55], [58]

SPE-2 Acoustic feature of
voice

[43], [50], [55], [57], [62], [68],
[72], [80]

SPE-3 Vocal cues [50]

every two minutes to capture ambient sound [51]. If the smart-
phone detected speech, it remained active for the duration of the
conversation. Here, the speech duration was calculated as the to-
tal duration of the conversation in minutes. Other studies have
detected noise using audio classifiers, and they calculated the
amount of noise as a feature [43], [53]. Some studies have applied
frequency analysis (feature SPE-2) and vocal cues analysis (fea-
ture (SPE-3)) to conversation data. Grünerbl et al. used the open-
source openSmile toolbox [78] to extract acoustic features such,
as root mean square (RMS) frame energy, mel-frequency cepstral
coefficients, pitch frequency F0, harmonic-to-noise ratio, and
zero crossing-rate [55]. Guidi et al. used Camacho’s SWIPE al-
gorithm [79] to estimate the fundamental frequency (F0) in each
voiced segment as a feature [80]. Saeb et al. used fast Fourier
transformation to extract the dominant frequency of an audio sig-
nal [62]. Place et al. asked participants to leave an audio diary
entry in a smartphone app, and extract features of vocal cues such
as speaking rate, pitch and vocal effort [50].

3.7 Sleep Feature
Many studies have shown a strong relationship between sleep

duration and mental health [81], [82], [83]. A number of ap-
proaches have been proposed to measure sleep duration auto-
matically using a smartphone. For example, Ben-Zeev et al. ex-
ploited smartphone use data, accelerometer, sound features, and
light levels to approximate the amount of time each participant
was sleeping [51]. Staples et al. assumed that subjects sleep with
their phones resting near their bed [84]. This lack of phone move-
ment is detected by the accelerometer. They adopted a super-
vised approach, and multivariate accelerometer data are fit to true
sleep intervals. Some studies have implemented sleep classifiers
that use four types of features, i.e., light features, phone usage
features (including phone lock state), activity features (e.g., sta-
tionary), and sound features from the microphone [39], [45], [46].
They develop a supervised sleep duration estimation model that
combines these features. Gjoreski et al. developed a simple sleep
duration estimation rule [58]. First, they calculate three durations,
e.g., duration of phone being in the dark using a light sensor,
the duration the phone was charging, and the duration the phone
was locked, using only data from the previous night (10pm un-
til 10am). From the three durations, the maximum was taken to
estimate sleep duration.

3.8 Feature Normalization
There are individual differences in the scale of the each previ-

ously described feature. To create a model that is robust against
individual differences in scale, some studies have normalized the
values of each individual’s data. There are two primary nor-
malization methods, i.e., the min-max and z-score normalization

c© 2020 Information Processing Society of Japan
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Table 6 Correlation analysis studies. Abbreviations used in the columns are given in Table A·1.

Reference Feature Task definition Algorithm Metric
Rabbi et al. [72] ACT, SPE Examine the correlation between the human speech and activity feature and

the paper-based surveys for mental health like CES-D score, SF-36, and
friendship scale.

Pearson’s correlation P-value

Osmani et al.
[47]

LOC, ACT Examine the correlation between physical activity levels and psychiatric
evaluation scores (HAMD and YMRS scores).

Pearson’s correlation P-value

Doryab et al.
[53]

LOC, ACT,
PHO, CON,
SPE

Examine the correlations between features and CES-D questions. Tertius association rule
mining [102]

Confirmation
values [102]

Wang et al. [45] LOC, ACT,
SPE, SLE

Examine the correlation between smartphone data and several mental health
scores (EMA, PHQ-9 and PSS).

Pearson’s correlation P-value

Faurholt-Jepsen
et al. [76]

PHO Examine the correlation between data collected using smartphones and de-
pressive state (clinical assessments of depressive and manic symptoms using
both the HDRS-17 and the YMRS, respectively).

Linear mixed-effect re-
gression

P-value

Stütz et al. [68] ACT, PHO,
SPE

Examine the correlation between features and PSS scores from min=4 to
max = 29 (high level of perceived stress).

Pearson’s correlation P-value

Guidi et al. [80] SPE Examine the correlation between features and the score obtained by QID
and the YMRS.

Spearman’s rank corre-
lation coefficient

P-value

Sabatelli et al.
[63]

LOC Examine the correlation between patients’ self-reported state (EMA, HAMD
and YMRS) and their presence in an identified significant location.

Pearson’s correlation P-value

Canzian et al.
[37]

LOC Examine the correlation between each mobility metric and the PHQ score. Pearson’s correlation P-value

Beiwinkel et al.
[35]

LOC, PHO Examine the relationship between smartphone data and depressive symp-
toms (YMRS and HAMD) by the between-patients analysis.

Standardized regression
coefficients

Beta

Mehrotra et al.
[74]

PHO Examine the correlation between depression score (PHQ-8) and smartphone
usage feature (notification metrics and their phone usage pattern).

Pearson’s correlation P-value

Saeb et al. [42] LOC Examine the relationship between smartphone features and depressive
symptoms severity measured by the PHQ-9.

Pearson’s correlation P-value

Huang et al.
[64]

LOC Examine the correlation between sensed feature and social anxiety level
measured by SIAS score rated from 0 to 4.

Pearson’s correlation P-value

Boukhechba et
al. [48]

LOC, PHO Examine the correlation between each mobility and communication feature
and the SIAS score.

Pearson’s correlation P-value

Saeb et al. [62] LOC, ACT,
PHO, SPE

Examine the relationship between the time spent at different semantic loca-
tions and the level of depression and anxiety symptoms, measured by PHQ-9
and GAD-7.

Pearson’s correlation P-value

Tron et al. [70] ACT Examine the correlations between features of activity and measures derived
from the psychiatrist’s clinical assessment (PANSS).

Multiple correlation co-
efficient

Coefficient

Renn et al. [44] LOC Examine the relationship between daily mobility and frequency of depressed
mood and anhedonia measured by PHQ-2.

Spearman’s rank corre-
lation coefficient

P-value

Boukhechba et
al. [65]

LOC, ACT,
PHO

Examine the relationship between communication patterns and students’
mental states (SIAS, DASS and PANAS).

Pearson’s correlation P-value

Zulueta et al.
[75]

PHO Examine the relationship between mobile phone keyboard activity and
manic and depressive signs and symptoms as measured via clinician-
administered rating scales (HDRS-17 and YMRS).

Multiple linear regres-
sion

P-value

methods. Min-max normalization, which was used in Ref. [54],
transforms value x by (x − min(x))/(max(x) − min(x)). This
produces values in a fixed range (0 to 1) but does not han-
dle outliers well. Z-score normalization, which was used in
Refs. [41], [46], [59], [60], [71], transforms value x by (x− μ)/σ.
This process does not produce fixed ranges between participants;
however, it can handle outliers well. Palmius et al. normalized the
Euclidean distance from home using z-score normalization [41].
Asselbergs et al. normalized the frequency and total duration
of screen-on events of each participant using z-score normaliza-
tion [71]. Differing from the above normalization techniques, Os-
mani et al. normalized activity levels by calculating the sum of all
activity percentages on an hourly basis for each day [47].

3.9 Feature Calculation Time Interval
Most features were created on a daily basis; however, physi-

cal activity, context, and phone activity were not normal within
a day. To capture the transition of feature values within a day,
some studies have divided the day into intervals, and features
were computed over these time intervals.

Most studies divided the time interval equally within a day.

Some studies averaged the feature over six hour periods (12–
6am, 6am–12pm, 12pm–6pm, and 6pm–12am) [47], [60]. Sano
et al. divided the day into eight intervals (12am—3am, 3am–
6am, 6am–9am, 9am–12pm, 12pm–3pm, 3pm–6pm, 6pm–9pm
and 9pm–12am) and calculated screen-on/off related feature in
each interval [52]. Fukazawa et al. divided the day into hourly pe-
riods (i.e., 24 time windows) and created a feature vector for each
hourly interval [69]. Some studies considered different granular-
ity during the night: 12am–3am and 6pm–12am [54], and 6am–
12pm, 12pm–6pm, 6pm–9pm, 9pm–12am, and 12am–6am [21].

Some studies have designed time intervals in consideration
of participant lifestyle. For example, Jaques et al. computed
phone and physiological features over four time intervals per
day (12am–3am, 3am–10am, 10am–5pm, and 5pm–11:59pm)
based on an examination of density plots of the times students
were most likely to be asleep (3am–10am) or in class (10am–
5pm) [59]. Gjoreski et al. calculated features for three different
epochs [58]. The first epoch is 7:30am–6pm (roughly from wak-
ing up until the end of the classes). The second epoch is 6pm–
12am (period of the day when the students are studying, exercis-
ing, visiting friends, partying etc.). The third epoch is from 12am
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Table 7 Regression task studies. Abbreviations used in the columns are listed in Table A·1.

Reference Feature Task definition Algorithm Metric Cross validation
Ben-Zeev et al.
[51]

LOC, ACT,
SPE, SLE

Predict daily and pre/post changes in partici-
pants’ mental health (UCLA Loneliness Scale,
PSS and PHQ-9).

Mixed-effects lin-
ear regression

Coefficient,
P-value

Test-retest reliability

Stütz et al. [68] ACT, PHO,
SPE

Predict PSS scores rated from min = 4 to max =
29 (high level of perceived stress)

Linear regression,
Random forest.

MAE,
P-value

5-fold and 10-fold cross
validation

Saeb et al. [32] LOC, PHO Estimate PHQ-9 score obtained at the beginning
of the study.

Linear regression MAE,
P-value

Leave-one-participant-
out

Palmius et al.
[41]

LOC Estimate the depressive symptomatology ob-
tained by participants reported weekly question-
naire (QIDS).

Linear regression,
Generalized linear
model (GLM)

MAE Leave-one-participant-
out

Asselbergs et
al. [71]

ACT, PHO Predict daily mood mean (range 1–10) mea-
sured by self-reported EMA with a personalized
model.

Forward stepwise
regression

MSE Leave-one-participant-
out

Huang et al.
[64]

LOC Predict social anxiety level measured by SIAS
score rated from 0 to 4.

Least Square Error
estimator, LASSO

MAE,
P-value

10-fold cross validation

Wang et al. [46] LOC, ACT,
SPE, SLE

Predict participants’ aggregated ecological mo-
mentary assessment (EMA) scores.

Gradient Boosted
Regression Trees

MAE Leave-one-subject-out

Staples et al.
[84]

SLE Predict concurrent and future PSQI scores rang-
ing from 0-14.

Multiple linear re-
gression

SE, P-value Leave-one-participant-
out

Place et al. [50] LOC, PHO,
SPE

Predict the presence of clinically assessed symp-
toms of depression and PTSD.

LASSO AUC 10-fold cross validation

Jaques et al.
[59]

LOC, PHO,
CON

Predict continuous levels of tomorrow’s reported
mood and stress.

Deep neural net-
work, Gaussian
Process with Do-
main Adaptation

MAE Held-out test (dividing
dataset into training,
validation, and testing
sets using a 60/20/20%
split)

Wang et al. [39] LOC, ACT,
PHO, SPE,
SLE

Predict student self-reported PHQ-8 and PHQ-4
depression scores.

LASSO MAE 10-fold cross validation

Lu et al. [61] LOC Predict self-reported QIDS scores and clinical
assessment of depression severity.

Multi-task Learn-
ing

Coefficient
of determi-
nation

Leave-one-week-out

until 7:30am (period of the day when the students are probably
sleeping). This granularity is introduced in order to distinguish
the students’ behavior for the three different epochs of the day.

3.10 Combination of Multiple Feature Types
Tables 6, 7, and 8 list the articles reviewed in this paper. In

the tables, we show the types of features used in the reviewed
papers. Location and mobility features (LOC), phone usage fea-
ture (PHO), activity feature (ACT), speech feature (SPE), context
feature (CON), and sleep feature (SLE) appeared in 32, 26, 21,
14, 7, and 6 papers, respectively. Fifteen studies utilized a single
feature type from six types of features. 29 studies utilized a com-
bination of multiple feature types. The most popular combination
of features is the phone usage feature (PHO) and location and mo-
bility feature (LOC), which appeared in 18 papers. Combinations
of greater than three types of feature appeared in 18 papers.

When multiple features are combined, most studies treated
each feature independently; however, some produced a new fea-
ture by treating one set of features as conditions for other fea-
tures. For example, Boukhechba et al. produced a new phone us-
age feature conditioned by the location and mobility feature, i.e.,
the distribution of communications (calls) at each location type
(e.g., home, restaurant, campus area, and shops) [48]. Farhan et
al. produced a speech feature conditioned by the location and mo-
bility feature, e.g., the amount of social conversation of students
using student location to determine if the student attended lec-
tures, and removing conversations associated with lectures [43].
Fukazawa et al. explored more general combinations. They pro-
duced new features by combining the context, activity, and phone

usage features as conditions for each other [69]. For example,
they could represent common behaviors, such as walking in a
dark place while using social network app.

4. Machine Learning and Statistical Analysis

4.1 Task Definition
The objectives of previous studies can be categorized as dis-

covering effective smartphone features that strongly correlate the
participants’ mental state or build a model to estimate the partic-
ipants’ mental state with high accuracy. To achieve the former,
statistical correlation analysis, which examines the correlation
between psychiatric evaluation scores and smartphone features,
has been widely used. Relative to the latter goal, previous studies
have defined the problem in the framework of supervised ma-
chine learning and solved it as a regression or classification task.
The difference between regression and classification is whether
the target variables are continuous or discrete. A regression task
attempts to estimate a continuous score that represents the men-
tal state. In contrast, a classification task attempts to classify the
discretized scores or class that represents mental state. Lists of
papers related to correlation analysis, regression tasks, and clas-
sification tasks are given in Tables 6, 7, and 8 respectively.

The target score is primarily collected in two ways, i.e., via
self-reported questionnaires using smartphones and conducting
psychological scale-tests performed by a clinical psychologist.
Both approaches use questionnaires that suit the purpose of the
study. For example, the Patient Health Questionnaire (PHQ-9) is
used to assess the severity of depressive symptoms, the Hamilton
Depression Scale (HAMD) is used to determine depression, and
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Table 8 Classification task studies. Abbreviations used in the columns are shown in Table A·1.

Reference Feature Task definition Algorithm Metric Cross validation
Sano et al. [21] LOC, PHO Classify the two groups based on self-reported

perceived stress scale ratings (e.g. high PSS
score (≥17) and low PSS score (≤12)).

PCA, SVM (Lin-
ear), SVM (RBF),
k-NN

Accuracy 10-fold cross validation
with 10 times iteration

Grünerbl et al.
[55]

LOC, ACT,
SPE

Classify participants psychological state grades
between −3 for severe depression and +3 for
severe mania with intermediate steps of depres-
sion, slight depression, normal (0) slight mania
and mania based on HAMD and YMRS.

k-NN, C4.5,
conjunctive rule
learner and Naı̈ve
Bayes

Accuracy,
Precision,
Recall

3-fold cross validation
by random test/training
splits with 500 times it-
eration

Grünerbl et al.
[56]

LOC, ACT Classify patients states measured by psycholog-
ical scale-tests performed by clinical psycholo-
gist (scales between −3 (heavily depressed) to 3
(heavily manic)).

Naı̈ve Bayes,
k-NN, C4.5,
conjunctive rule
learner

Accuracy,
Precision,
Recall

3-fold cross-validation
by random test/training
splits with 500 times it-
eration

Sano et al. [52] LOC, PHO Classify high/low PSS, PSQI and MCS groups. SVM (Linear),
SVM (RBF)

Accuracy Leave-one-participant-
out

Saeb et al. [32] LOC, PHO Classify participants who had symptoms of de-
pression (PHQ-9 ≥5) versus the ones with no
symptoms (PHQ-9 <5).

Logistic regression
classifier

Accuracy,
Sensitivity,
Specificity

Leave-one-participant-
out

Canzian et al.
[37]

LOC Classify personalized binary depressed mood (1
if the PHQ score is larger than the average PHQ
score of that user plus one standard deviation,
otherwise the label is equal to 0).

SVM (RBF) Sensitivity,
Specificity

Leave-one-participant-
out

Gjoreski et al.
[58]

LOC, ACT,
PHO, SPE,
SLE

Classify the student’s perceived level of stress
(Stressed > Slightly stressed > Not stressed).

EM, SVM, C4.5,
Bagging, Random
forest

Accuracy Leave-one-student-out

Ferdous et al.
[73]

PHO Classify the subjective stress levels of the par-
ticipants collected by a question (“what is your
stress level?”) answered on a 5-point scale.

SVM Accuracy,
Precision,
Recall

10-fold cross validation

Wahle et al.
[67]

LOC, ACT,
PHO

Classify samples with a PHQ-9≥11 and PHQ-
9≤10.

SVM, and Random
forest

Accuracy,
Sensitivity,
Specificity

Leave-one-participant-
out

Palmius et al.
[41]

LOC Classify whether the participant is depressed
(QIDS score ≥ 11).

Generalized linear
model (GLM)

ROC curve,
AUC

Leave-one-participant-
out, 10-fold, 5-fold and
3-fold cross-validation

Farhan et al.
[43]

LOC, ACT,
PHO, CON,
SPE

Classify individuals into the correct subgroups
correlated with depression measures such as pa-
tient health questionnaire (PHQ-9).

PCA, Multi-view
Clustering, SVM
(Linear)

Confusion
matrix

10-fold cross validation

Abdullah et al.
[57]

LOC, ACT,
PHO, SPE

Classify unstable (SRM score < 3.5) or stable
state (SRM score ≥ 3.5).

SVM Feature
importance
analysis

10-fold cross-validation
with 10 times iteration

Exler et al. [49] LOC, ACT,
PHO, CON

Classify the mood into low (0 to 1.5), neutral (2
to 4), and high (4.5 to 6) measured by Multidi-
mensional Mood Questionnaire.

C4.5, LADTree Accuracy Train model with data
of the first three weeks
and test the model with
the data of the fourth

Boukhechba et
al. [48]

LOC, PHO Classify SIAS scores (low (SIAS < 34) or high
(SIAS ≥ 34)) by using the GPS location and
SMS texts and call features.

C4.5 Accuracy 10-fold and 3-fold cross
validation

Sano et al. [54] LOC, PHO Classify high stress group (PSS ≥ 16) or low
stress group (PSS<16) and high mental health
group (MCS ≥ 50) or low mental health group
(MCS ≤ 29.4).

LASSO, SVM
(Linear), SVM
(RBF)

Accuracy Leave-one-participant-
out, and 10-fold cross
validation

Yamamoto et al.
[60]

LOC, ACT,
PHO, CON

Classify samples whose average daily LF/HF
values were higher or lower than the average of
each participants’ LF/HF values.

t-SNE, k-means, k-
NN, SVM, Ran-
dom forest

Accuracy,
Sensitivity,
Specificity

Leave-one-participant-
out

Buddi et al.
[77]

PHO, CON Classify participants into two groups: high stress
(PSS score> 14) and low stress (PSS score≤13).

Naı̈ve Bayes, Deci-
sion Trees

Sensitivity,
Specificity,
Precision,
Accuracy,
P-value

Not clearly stated

Mehrotra et al.
[66]

LOC Classify the daily depressive states; absence or
presence of depressed mood.

Autoencoders,
Random forest,
XGBoost

Sensitivity,
Specificity,
DOR

Held-out test (splitting
each users’ data into
the portions of 80% and
20%)

Lu et al. [61] LOC Classify subjects into the stable and unstable
classes.

Multi-task Learn-
ing

F1-score Leave-one-week-out

Fukazawa et al.
[69]

ACT, PHO,
CON

Classify the binary anxiety score of next day
measured by STAI (1 if the STAI score increases
the subsequent day and −1 if it drops).

LASSO, Random
forest, XGBoost

Accuracy,
Sensitivity

10-fold cross validation
with 10 times iteration

the Young Mania Rating Scale (YMRS) is used to determine ma-
nia. Most studies used the score collected daily as the target vari-
able. However, some studies used the differential of the score be-
tween two consecutive days as the target variable [51], [69]. Un-

like the above target score creation, Yamamoto et al. used physi-
ological measures (daily LF/HF values) as the target score.

Most studies attempted to estimate the score of the same day;
however, some predicted the score of the next day [59], [69].
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Both estimation and prediction tasks can be solved by shifting
the ground truth data.

4.2 Selection of Machine Learning Algorithm
Machine learning algorithms are employed because they

demonstrate high accuracy and it is easy to interpret their results.
Here, we summarize the machine learning algorithms and statisti-
cal analysis methods shown in Tables 6, 7, and 8. For correlation
analysis, Pearson’s correlation [85] is widely used and appeared
in 12 of 19 papers. Spearman’s rank correlation coefficient [86]
and linear regression were also used in several studies. Relative to
regression tasks, 5 papers out of 12 adopted linear regression [87]
or variations thereof, such as mixed-effects linear regression, the
generalized linear model (GLM), and multiple linear regression.
For the classification task, the most popular method was sup-
port vector machines (SVM), which appeared in 10 of 20 papers.
C4.5 [88], Random forest [89], k-NN [90], and Naı̈ve Bayes [87]
were used in 5, 5, 4, and 3 papers, respectively. The least abso-
lute shrinkage and selection operator (LASSO) [91] was popular
for both regression (3 studies) and classification (2 studies) task.

Most previous studies created a general model that is trained
from all the participants. To investigate individual differences,
some studies developed personalized models learned from in-
dividual datasets [37], [59]. Some studies developed clustering
based models, which first create a cluster of participants with
similar behaviors, and then build a prediction or estimation model
using a datasets of people in each cluster [43], [58], [60]. Rel-
ative to clustering algorithms, the expectation maximization al-
gorithm [92], k-means [93], and multi-view clustering [94] were
used in Refs. [43], [58], [60].

Several machine learning tools are used, such as WEKA
(Machine Learning Software in Java) [95], R [96], Python [97],
SPSS [98], and Matlab [99]. SPSS and Matlab are commercial
services, on the other hand, WEKA, R, and Python are open-
source projects and were widely used in Refs. [46], [51], [56],
[58], [68], [84]. R and Python have advantages in terms of low
introduction cost and the variety of libraries; however, they re-
quire statistical knowledge and programming experience because
they do not include graphical user interfaces. SPSS has advan-
tage in terms of its graphical user interface, but it is slow to adapt
new machine learning algorithms. A detailed comparison of these
tools is described in Refs. [100], [101].

5. Evaluation Design

To assess how the results of machine learning will generalize to
an independent dataset, quantitative evaluations were performed.
In the following, we summarize the evaluation metrics and the
cross-validation method used to measure how well the model es-
timates the mental state.

5.1 Evaluation Metrics
Evaluation metrics vary depending on the target task. For cor-

relation analysis, the P-value is the most popular metric asso-
ciated with Pearson’s correlation analysis, which is used in 16
out of 19 papers. For the regression task, most studies mea-
sured the difference between cross-validated predicted and ob-

served scores. There are several variations that measure such dif-
ferences, such as mean absolute error (MAE), root mean square
error (RMSE), and standard error (SE). Among these, the MAE is
the most popular evaluation metric (7 of 12 papers). For the clas-
sification task, accuracy, precision, recall, sensitivity, and speci-
ficity were widely used (14, 4, 3, 7, and 6 papers, respectively).
Some studies have adopted multiple evaluation metrics from the
above five metrics (10 of 20 papers). The definitions of accu-
racy, precision, and recall are shown in Ref. [103], and those of
sensitivity and specificity are shown in Ref. [87].

5.2 Cross-validation
The cross-validation technique is commonly adopted for clas-

sification and regression tasks. There are two cross-validation
approaches. One is N-fold cross-validation (14 of 29 papers),
and the other is the leave-one-participant-out approach (11 of 29
papers). Both methods split a dataset into training and valida-
tion data; however, the splitting process differs. In N-fold cross-
validation, the dataset is split regardless of the participants. For
example, Grünerbl et al. performed 3-fold cross-validation, where
they divided the dataset into 2/3 training and 1/3 test samples [56].
This split and evaluation process was repeated 500 times with ran-
dom test/training splits. With the leave-one-participant-out ap-
proach, the model is fit on all participants except one, and the
excluded participant is used to test the estimation performance of
the model trained on all other participants [84].

N-fold cross validation has the advantage that many samples
can be taken; however, it is necessary to consider data leakage.
For example, data from the same user can be mixed into both
test and training data. In addition, if we ignore the time-series
relationship when we split the data, there is a possibility of pre-
dicting past data using future data. The leave-one-participant-out
approach can test for new users but has the disadvantage that the
number of samples is reduced when the number of participants is
small.

Although most papers did not describe computation of final
performance measure over multiple splits of cross-validation in
detail, two common approaches are evident, i.e., macro-averaging
and micro-averaging[104]. With macro-averaging, the perfor-
mance measure is computed separately for each split, and the
final performance measure is calculated by the mean of the per-
formance measure over all splits [67]. With micro-averaging, the
results of all splits are aggregated, and the final performance mea-
sure is calculated using the aggregated results.

6. Recommendations and Limitations

6.1 Feature Design
As described in Section 3, many mental health related features

have been proposed; however, not all of these feature need to be
implemented. Here, we discuss the differences in feature type se-
lection between different mental categories. Table 9 shows num-
ber of articles that adopted 6 feature types for each mental cate-
gory. We divided metrics for diagnosis into two categories. The
stress and anxiety category includes studies that used PSS, GAD-
7, SIAS, and STAI. The depression category includes studies that
used PHQ-2, PHQ-8, PHQ-9, CES-D, HDRS-17, HAMD, QID,
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Table 9 Number of articles that adopted 6 feature types for each mental category. Numbers in bold font
represent the most popular feature types.

Category LOC ACT PHO CON SPE SLE Total
Stress and anxiety 9 (28.1%) 6 (18.8%) 9 (28.1%) 2 (6.3%) 4 (12.5%) 2 (6.3%) 32

[21], [45], [48],
[51], [52], [54],
[62], [64], [65]

[45], [51], [62],
[65], [68], [69]

[21], [48], [52],
[54], [62], [65],
[68], [69], [77]

[69], [77] [45], [51], [62],
[68]

[45], [51] (100%)

Depression 16 (32.0%) 10 (20.0%) 10 (20.0%) 2 (4.0%) 9 (18.0%) 3 (6.0%) 50
[32], [35], [39],
[41], [42], [43],
[44], [45], [47],
[51], [53], [55],
[61], [62], [63],
[67]

[39], [43], [45],
[47], [51], [53],
[55], [62], [67],
[72]

[32], [35], [39],
[43], [53], [62],
[67], [74], [75],
[76]

[43], [53] [39], [43], [45],
[51], [53], [55],
[62], [72], [80]

[39], [45], [51] (100%)

Table 10 Number of articles that solved classification, regression, and correlation task for each mental
health category.

Category Correlation Regression Classification Total
Stress and anxiety 6 (40.0%) 3 (20.0%) 6 (40.0%) 15

[45], [48], [62],
[64], [65], [68]

[51], [64], [68] [21], [48], [52],
[54], [69], [77]

(100%)

Depression 13 (56.5%) 5 (21.7%) 5 (21.7%) 23
[35], [42], [44],
[45], [47], [53],
[62], [63], [72],
[74], [75], [76],
[80]

[32], [39], [41],
[51], [61]

[32], [41], [43],
[55], [67]

(100%)

and QIDS. We investigated the appearance ratio of the feature
types in the papers for each mental health category. As can be
seen, different feature types tend to be selected in different men-
tal health category. Both location and mobility feature and phone
usage feature were prominently used to estimate the degree of
stress or anxiety. On the other hand, the location and mobility
feature was prominently used, but the activity feature, phone us-
age feature, and speech feature were evenly used to estimate the
degree of depression. This is due to the difference in hypothe-
sis regarding the relationship between smartphone data and the
characteristic behavior among different mental health categories.
Therefore, we recommend designing features according to the
following process. First, we understand characteristic behaviors
taken by people with mental illness or mental health issues to be
studied by referring to previous literature in the domain or met-
rics used for diagnosis. Next, we establish hypotheses about the
relationship between smartphone data and characteristic behav-
iors. Finally, we select features that can verify the hypothesis by
referring to the features discussed in this paper.

To design features, we must consider smartphone application
trends. Previous studies have developed many features related to
calls and SMSs as communication tools. However, people are in-
creasingly using other messaging tools, such as Facebook, What-
sApp, and Line. We assume it is necessary to redesign features
related to the communication tool.

In this survey, we primarily focused on handcrafted features.
Note that an autoencoder [105] has been proposed to extract
features automatically. The autoencoder is a neural network
trained to attempt to copy its input to its output [106]. Mehro-
tra et al. used autoencoders to automatically extract features from
raw location data [66]. They demonstrated the effectiveness of
autoencoder-based features in predicting the depressive states of
individuals compared to manual ones. We expect that such auto-
matic feature extraction technology will be used for other fea-

ture types, such as phone usage or activity features. In addi-
tion, to capture time-series changes in human behavior, some
studies have decomposed features according to different time in-
tervals. However, human activity changes in continuous rather
than discrete manners. Recently, time-series analysis of mul-
timodal data has been developed, such as time-series cluster-
ing [107], time-series prediction [108], and deep learning-based
approaches [109], [110]. Using such methods, we can capture
transitions in human activities without time interval decomposi-
tion.

6.2 Task Definition
As described in Section 4.1, there are three types of task defini-

tion, i.e., correlation analysis, classification tasks, and regression
tasks. We recommend using correlation analysis to validate the
presence or absence of correlation between specific smartphone-
based feature and mental health. Both classification and regres-
sion tasks are used to measure the performance of designed set
of features to estimate the mental state. We investigated the dif-
ference in the number of articles that solved classification and
regression for each mental health category (Table 10). Both clas-
sification and regression are used almost as well in two mental
health categories. To satisfy various user needs, we recommend
evaluating proposed method in both tasks.

6.3 Machine Learning Algorithm
As discussed in Section 4.2, many studies have adopted tradi-

tional machine learning algorithms because their results are easy
to interpret. In other domains, cutting edge machine learning al-
gorithms, such as ensemble [111] and deep learning [106] meth-
ods, are widely used. For the research targeted in this survey, it is
important to consider accuracy improvement and interpretability
of the results. Recently, explainable AI has been examined, and
many methods that can explain the results of machine learning
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have been proposed, such as LIME (local interpretable model-
agnostic explanations) [112] and SHAP (Shapley additive expla-
nations) [113]. To achieve both result interpretability and high ac-
curacy, we recommend using explainable AI with state-of-the-art
machine learning methods. For example, Chen et al. proposed a
platform for remote and unobtrusive monitoring of symptoms re-
lated to cognitive impairment using several consumer-grade smart
devices, such as the iPhone and Apple Watch [114]. They col-
lected data of individuals with and without cognitive impairment
and tested whether these data can be used to differentiate between
them by XGBoost. They analyzed characteristic features of the
trained model using SHAP values and found that symptomatic
participants tended to demonstrate slower typing and exhibited
less routine behavior than the healthy controls.

6.4 Evaluation
As discussed in Section 5.1, evaluation metrics are diverse, es-

pecially for classification tasks (e.g., accuracy, precision, recall,
sensitivity, and specificity). Evaluation metrics should be selected
according to the purpose of the target application. If the applica-
tion relates to medical examinations, sensitivity and specificity
should be selected because we must avoid detection omission.
For actual service, we recommend using precision and accuracy
because it is important to maintain the system reliability from the
user. In addition, as discussed in Section 5.2, there are advan-
tages and disadvantages for each cross-validation method. We
recommend using the leave-one-participant-out method to mea-
sure the performance of new user estimation tasks, and we rec-
ommend using N-fold cross-validation to increase the number of
trials. However, we must consider the time-series order relation
and data leakage from the same users into both training and test
sets.

6.5 Limitations
Finally, we discuss several limitations. In this review, we did

not consider privacy issues. Especially, location and speech fea-
tures demand privacy considerations; thus, it is necessary to pay
careful attention to how these features are handled. In addition,
we did not apply any prioritization among features. Some studies
have demonstrated important feature values; however, we assume
that it is difficult to generalize feature importance results because
evaluations are dependent on the target problem in each study.
We did not cover features using wearable devices but did cover
features using smartphones. Smartphone is not perfect to acquire
behavioral data constantly. For example, users do not always
carry smartphone, but sometimes leave it on the desk or leave
it in their bags. On the other hand, wearable devices have an ad-
vantage that physiological data or more detailed behavioral data
can be obtained constantly. Also, some wearable devices such as
Apple watch and Fitbit are becoming widely used. As a future
research direction, we recommend considering a combination of
smartphone and wearable devices for mental state estimation. For
example, Wang et al. [39] and Lu et al. [61] used Fitbit to collect
heart rate in addition to data collection from smartphone. Note
that several surveys have examined mental healthcare and wear-
able devices [10], [11], [12].

7. Conclusion

In this review, we have summarized research activities on
smartphone-based mental state estimation from a machine learn-
ing perspective. Forty-four studies were reviewed and summa-
rized from the four perspectives: list of designed features, task
definition, machine learning algorithm selection, and evaluation
method. By utilizing the research reviewed, it is possible to grasp
the mental state of a user without any load on the mental mon-
itoring service. To further develop mental monitoring services,
we expect to consider the following topics in future. First, we
should pursue more accurate mental state estimation using cut-
ting edge machine learning technology. We should also follow
changes in user behavior and mental state over time by adopting
online learning frameworks. Finally we should explore effective
feedback based on the estimated mental state to promote effective
self-care.

References

[1] Hunt, J. and Eisenberg, D.: Mental health problems and help-seeking
behavior among college students, Journal of Adolescent Health,
Vol.46, No.1, pp.3–10 (2010).

[2] Hofmann, S.G., Newman, M.G., Ehlers, A. and Roth, W.T.: Psy-
chophysiological differences between subgroups of social phobia,
Journal of Abnormal Psychology, Vol.104, No.1, pp.224–231 (1995).

[3] Turner, S.M., Beidel, D.C. and Larkin, K.T.: Situational determi-
nants of social anxiety in clinic and nonclinic samples: Physiological
and cognitive correlates, Journal of Consulting and Clinical Psychol-
ogy, Vol.54, No.4, pp.523–527 (1986).

[4] Editorial: Mind matters, Nature, Vol.532, p.6 (2016).
[5] World Health Organization: Preventing suicide: A global imperative

(2014).
[6] Kawakami, N. and Tsutsumi, A.: The stress check program: A new

national policy for monitoring and screening psychosocial stress in
the workplace in Japan, Journal of Occupational Health, Vol.58,
No.1, pp.1–6 (2016).

[7] Pew Research Center: The Smartphone Difference (2015).
[8] Cornet, V.P. and Holden, R.J.: Systematic review of smartphone-

based passive sensing for health and wellbeing, Journal of Biomedi-
cal Informatics, Vol.77, pp.120–132 (2018).

[9] World Health Organization: Mental health action plan 2013-2020
(2013).

[10] Drissi, N., Ouhbi, S., Abdou Janati Idrissi, M., El Koutbi, M. and
Ghogho, M.: On the use of sensors in mental healthcare, Interna-
tional Workshop on Intelligent Environments Supporting Healthcare
and Well-being (2018).

[11] Thapliyal, H., Khalus, V. and Labrado, C.: Stress detection and man-
agement: A survey of wearable smart health devices, IEEE Con-
sumer Electronics Magazine, Vol.6, No.4, pp.64–69 (2017).

[12] Can, Y., Arnrich, B. and Ersoy, C.: Stress Detection in Daily Life
Scenarios Using Smart Phones and Wearable Sensors: A Survey,
Journal of Biomedical Informatics, Vol.92, p.103139 (2019).

[13] Vineetha, R., Pai, K.M., Vengal, M., Gopalakrishna, K. and
Narayanakurup, D.: Usefulness of salivary alpha amylase as a
biomarker of chronic stress and stress related oral mucosal changes -
a pilot study, Journal of Clinical and Experimental Dentistry, Vol.6,
No.2, pp.132–137 (2014).

[14] Dickerson, S. and Kemeny, M.: Acute stressors and cortisol re-
sponses: A theoretical integration and synthesis of laboratory re-
search, Psychological bulletin, Vol.130, No.3, pp.355–391 (2004).

[15] van Eck, M., Berkhof, H., Nicolson, N. and Sulon, J.: The effects
of perceived stress, traits, mood states, and stressful daily events on
salivary cortisol, Psychosomatic Medicine, Vol.58, No.5, pp.447–458
(1996).

[16] Beidel, D.C., Turner, S.M. and Dancu, C.V.: Physiological, cognitive
and behavioral aspects of social anxiety, Behaviour Research and
Therapy, Vol.23, No.2, pp.109–117 (1985).

[17] Vrijkotte, T.G.M., van Doornen, L.J.P. and de Geus, E.J.C.: Effects
of work stress on ambulatory blood pressure, heart rate, and heart
rate variability, Hypertension, Vol.35, No.4, pp.880–886 (2000).

[18] Muaremi, A., Arnrich, B. and Tröster, G.: Towards measuring stress
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[29] Seppälä, J., De Vita, I., Jämsä, T., Miettunen, J., Isohanni, M.,
Rubinstein, K., Feldman, Y., Grasa, E., Corripio, I., Berdun,
J., D’Amico, E. and Bulgheroni, M.: Mobile phone and wear-
able sensor-based mHealth approaches for psychiatric disorders and
symptoms: Systematic review, JMIR Mental Health, Vol.6, No.2,
p.e9819 (2019).

[30] Prigerson, H.G., Monk, T.H., Reynolds III, C.F., Begley, A., Houck,
P.R., Bierhals, A.J. and Kupfer, D.J.: Lifestyle regularity and activity
level as protective factors against bereavement-related depression in
late-life, Depression, Vol.3, No.6, pp.297–302 (1995).

[31] Vallée, J., Cadot, E., Roustit, C., Parizot, I. and Chauvin, P.: The role
of daily mobility in mental health inequalities: The interactive influ-
ence of activity space and neighbourhood of residence on depression,
Social Science & Medicine, Vol.73, pp.1133–1144 (2011).

[32] Saeb, S., Zhang, M., J Karr, C., Schueller, S., Corden, M., Kording,
K. and Mohr, D.: Mobile phone sensor correlates of depressive
symptom severity in daily-life behavior: An exploratory study, Jour-
nal of Medical Internet Research, Vol.17, No.7, p.e175 (2015).

[33] Mitchell, P.B. and Malhi, G.S.: Bipolar depression: Phenomenolog-
ical overview and clinical characteristics, Bipolar Disorders, Vol.6,
No.6, pp.530–539 (2004).

[34] Weinstock, L.M. and Miller, I.W.: Functional impairment as a pre-
dictor of short-term symptom course in bipolar I disorder, Bipolar
Disorders, Vol.10, No.3, pp.437–442 (2008).

[35] Beiwinkel, T., Kindermann, S., Maier, A., Kerl, C., Moock, J.,
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Appendix
List of the abbreviations used in the Tables 6, 7, and 8 are

shown in Table A·1.

Table A·1 Abbreviations used in Tables 6, 7, and 8.

Column Abbreviation Name
Task defi-
nition

CES-D Center for Epidemiologic Studies-
Depression scale.

SF-36 Short Form-36 Health Survey.
HAMD Hamilton Depression Rating Scale.
YMRS Young Mania Rating Scale.
HDRS Hamilton Depression Rating Scale.
PSS Perceived Stress Scale.
MCS Mental Component Summary.
QID Quick Depression Inventory.
QIDS Quick Inventory of Depressive Symp-

tomatology.
EMA Ecological Momentary Assessment.
PHQ Patient Health Questionnaire.
GAD Generalized Anxiety Disorder.
PANSS Positive and Negative Syndrome Scale.
DASS Depression, Anxiety, and Stress Scale.
SIAS Social Interaction Anxiety Scale.
UCLA University of California, Los Angeles.
PSQI Pittsburgh Sleep Quality Index.
PTSD Post Traumatic Stress Disorder.
SRM Social Rhythm Metric.
LF/HF Low Frequency / Hi Frequency.
STAI State Trait Anxiety Inventory.

Feature LOC Location and mobility feature.
PHO Phone usage feature.
ACT Activity feature.
SPE Speech feature.
CON Context feature.
SLE Sleep feature.

Algorithm PCA Principal Component Analysis.
SVM Support Vector Machine.
RBF Radial Basis Function.
k-NN k-Nearest Neighbors.
EM Expectation maximization.
t-SNE t-Stochastic Neighbor Embedding.
LASSO Least Absolute Shrinkage and Selection

Operator.
Metric MAE Mean Absolute Error.

RMSE Root Mean Square Error.
SE Standard Error.
ROC curve Receiver Operating Characteristic

curve.
AUC Area under the Curve.
DOR Diagnostic Odds Ratio.
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