コーナー検出プログラムのニューラルネットワーク化による 高速化と出力精度に関する検討

竹内 一登^{1,a)} 谷本 輝夫^{1,b)} 川上 哲志^{1,c)} 井上 弘士^{1,d)}

概要:計算機性能向上化技術の一つとして,計算結果の精度低下を意図的に許容することで計算時間や消 費電力の削減を可能にする近似コンピューテングが注目されている. この近似コンピューテング手法の 1 つである,プログラムのニューラルネットワーク化が注目を集めている.プログラム内で頻出する高負荷 な関数やループボディといった「ホットコード」を,それらの入出力データをもとに訓練したニューラル ネットワークに置換え実行することで,当該コード部分の実行における精度を犠牲に実効性能を向上する 手法である.これまでに幾つかのアプリケーションに対してニューラルネットワーク化の効果が示された ものの,未だ限定的である.したがって,様々な適用事例を積み重ね,その有効性を評価する必要がある. 本研究では,FAST (Feature from Accelerated Segments Test)アルゴリズムを用いたコーナー検出プログラム を対象とし,ニューラルネットワーク化による高性能化に向けた評価・解析を行う.具体的には,1)コー ナー検出プログラムが主に3つの関数で構成されることに着目したニューラルネットワーク化対象箇所, ならびに,2)ニューラルネットワーク構成に関する探索を行い,実行時間と出力精度のトレードオフを解 析する.

1. はじめに

ー般の計算機においては、計算精度と性能 (電力効率 も含む)の間にトレードオフ関係が存在する.この性質を 利用した性能向上技術の一つとして、計算結果の精度低下 を許容することで、実行時間の短縮や消費電力の削減を可 能にする近似コンピューテングが注目されている [10].適 応領域としては、特に、演算精度の低下に対し比較的耐性 を持つ画像処理や信号処理、機械学習などの分野が挙げら れる.

これまでに,近似コンピューティングに関する様々な手 法が提案されてきた[11].例えば,不完全一致許容型の計 算結果再利用(いわゆるメモ化)やループボディ内処理 の省略といったソフトウェアレベルから,狭ビット幅演算 器の実装や DRAM におけるリフレッシュレートの低下と いったハードウェアレベルまで,多様な手法が存在する. その中でも特に近年,プログラムのニューラルネットワー ク化が注目を集めている[7].ソースコード全体または一 部(例えば関数)を対象とし,これらに対する入出力デー タをもとに訓練することでニューラルネットワークモデル

c) satoshi.kawakami@cpc.ait.kyushu-u.ac.jp

d) inoue@ait.kyushu-u.ac.jp

を獲得する.そして,当該ソースコード部分を獲得した推 論モデルで置換する.これにより,ニューラルネットワー ク化にともなう精度低下が生じる反面,当該ソースコード 部分が高負荷な場合には,積和演算と活性化関数という単 純な基本演算で処理可能なニューラルネットワーク実行 により性能向上を達成できる.また,近年ではニューラル ネットワーク専用アクセラレータ開発が進んでおり,プロ グラムのニューラルネットワーク化はこれら新技術の恩恵 を直接的に受けることが可能である.これまでに幾つかの アプリケーションに対してニューラルネットワーク化の効 果が示されたものの,未だ限定的である[2].したがって, 今後は様々な適用事例を積み重ね,その有効性を評価する 必要がある.

そこで本研究では, FAST (Feature from Accelerated Segments Test) アルゴリズムを用いたコーナー検出プログラム を対象とし,ニューラルネットワーク化による高性能化に 向けた評価・解析を行う.具体的には,1)コーナー検出プ ログラムが主に3つの関数で構成されることに着目した ニューラルネットワーク化対象箇所,ならびに,2)ニュー ラルネットワーク構成に関する探索を行い,実行時間と出 力精度のトレードオフを解析する.

本稿の構成は以下の通りである.まず第2節でプログラ ムのニューラルネットワーク化による高速化の一例として,

¹ 九州大学

a) kazuto.takeuchi@cpc.ait.kyushu-u.ac.jp

^{b)} tteruo@kyudai.jp

Parrot Transformation [3] について述べる. 第3節では画像 から特徴点の一種であるコーナーを検出する FAST アルゴ リズムについて説明し,第4節で本研究で採用したニュー ラルネットワーク化フローを示す.第5節では,関数部分 をニューラルネットワーク化した際の出力の精度と実行時 間を評価する. 第6節で関連研究について説明し,最後に 第7節でまとめる.

2. Parrot Transformation

本節では、ソースコードのニューラルネットワーク化の 一例として、Hadi らが提案した Parrot Transformation につ いて述べる [3]. なお、その他の関連研究に関しては第6 節で言及する.

Parrot Transformation とは、プログラムの一部をニュー ラルネットワーク推論モデルに置換え、NPU (Neural Processing Units) で加速実行することにより、計算速度の向上 や消費電力の削減を可能にする手法である.本稿では、ソ フトウェアレベルでの近似コンピューティング手法に着目 したニューラルネットワーク化適用法の探索と性能/精度 評価に着目する(専用アクセラレータを用いた高性能化は 今後の課題).そこで以降では、Parrot Transformation にお けるソースコードのニューラルネットワーク化に焦点を絞 り説明する.

ー般に、プログラム内には頻繁に実行される「ホット コード」が存在する場合が多い. Parrot Transformation で は、ホットコード部分をそれぞれのニューラルネットワー ク推論モデルに置換え、該当コード部分の実行における精 度を犠牲にすることで実効性能を向上する. 推論モデルの 生成においては、当該コード部分に対する入出力データを 収集し学習する. ニューラルネットワークへの置換え対象 となるソースコード部分は、基本的に以下の条件を満たす 必要がある.

- ホットコードであること.
- プログラム実行の最終出力に深刻な精度低下をもたら さないこと.
- 静的に判定可能な明確な入出力を有すること(変換 コードの入出力サイズが既知かつ固定,入力以外の データを参照しない,システムコールを呼び出さない, など).
- ニューラルネットワーク訓練用の入出力データを準備 できること。

また,ニューラルネットワーク化の手順は以下の通りで ある.

- (1) ニューラルネットワーク化対象コード部分の決定.
- (2) 訓練に必要な入出力データの収集.例えば、訓練デー タ用の入力でオリジナルのソースコードによりニュー ラルネットワーク化対象部分を実行し、出力データを

図1 FAST によるコーナー検出の流れ

保存するなど.

- (3) 置換えに使用するニューラルネットワークの訓練.
- (4) ニューラルネットワーク推論モデルによるオリジナ ル・ソースコード部分の置換え.この際、プログラム のアルゴリズムに変更を加える必要はない.

FAST アルゴリズムによる画像中のコーナー 検出

3.1 コーナー検出

コーナーとは、画像中に存在する様々な「境界点」であ り、例えば物体の輪郭点などが挙げられる(境界線ではな い). 画像中のコーナーは特徴点の一種と捉えることがで き、輝度の変化が大きい角もしくはその周辺に現れる傾向 にある. コーナー検出とは、画像データ中から自動でコー ナーを検出する処理であり、物体追跡や 3D モデリングな ど様々な応用が存在するため、その高速化(とくにリアル タイム処理)に対する要求は大きい.

3.2 FAST アルゴリズムによるコーナー検出

様々なコーナー検出アルゴリズムが存在するが,本研究で は Rosten と Drummond によって提案された FAST (Feature from Accelerated Segments Test) に着目する [8], [9]. 本研 究で対象とする FAST の実装は,「コーナー候補判定関数」 「コーナースコア算出関数」「非最大値抑制関数」の3つ の関数で構成される. FAST によるコーナー検出の流れを 図1に示す.以下,各関数の詳細を説明する.

3.2.1 コーナー候補判定関数

各画素に対しコーナー候補となり得るか否かを判定する 関数である.コーナーの判定方法は以下の通り.

- (1) ある注目画素 P を基準とし、それを中心として半径3
 ピクセル分離れた円周上 16 ピクセルに注目する (図 2 参照).
- (2) 注目画素 P に対し,式(1)に従って円周上の各 16 個

図2 FAST によるコーナー検出の際に参照されるピクセルの配置

の画素それぞれにおいて輝度値が高い(明るい),低い (暗い),または同程度のいずれかに分類する.

brighter
$$(I_x > I_p + t)$$

darker $(I_x < I_p - t)$ (1)
samelevel 上記以外

ここで, I_x は円周上に存在する画素 x の輝度, I_p は注 目画素 P の輝度, t は閾値を表す.

(3) 上記 (1) で定めた円周上において, brighter または darker と判定された画素が9個以上連続して検出された場合 に注目画素 Pをコーナー候補であると判定する.

上記のフローに基づきコーナー候補と判定された注目 画素 P に対して、コーナースコア算出関数が実行される. 一方、コーナー候補と判定されなかった画素に関しては、 コーナースコアが 0 として出力され、以降はコーナー検出 処理の対象外となる(つまり、最終的にコーナーと判定さ れることはない).

3.2.2 コーナースコア算出関数

コーナー候補と判定された画素のコーナーらしさを示す スコアを算出する関数である.注目画素のコーナースコア は以下の式 (2) で算出される.

$$score = max\left(\sum_{x \in brighter} |I_x - I_p| - t, \sum_{x \in darker} |I_x - I_p| - t\right) (2)$$

3.2.3 非最大值抑制関数

冗長にコーナーと判断された画素を棄却する関数である. 非ゼロのコーナースコアをもつ画素に注目し、隣接してい る画素がより大きいコーナースコアを持っていた場合,注 目した画素のコーナースコアを0にする.

FAST アルゴリズムの問題点は、コーナーであると判定 した画素に隣接した画素もコーナーと判定される場合が多 く、冗長にコーナーを検出することである.この問題点を 解決するために、コーナースコアが導入されている.

4. FAST アルゴリズムの関数部分のニューラ ルネットワーク化

FAST (Feature from Accelerated Segments Test) アルゴリ

表1 実装したニューラルネットワークの名称と再現した関数名, 使

用した訓練データ数						
	再現し	∋Ⅲ%市				
ーューワ ルネット ワーク名	a.コーナー 候補判定関 数	b.コーナース コア算出関数	 c.非最大 值抑制関 数 	 ボータ 数 		
a				300,000		
b				76,814		
c				76,814		
ab				300,000		
bc				76,814		
abc				300,000		

ズムに基づくコーナー検出プログラムを構成する3つの関 数は,第2節で述べたニューラルネットワーク化の適用基 準を満たしている.本節では,第2節にて解説した手順に 基づく各関数のニューラルネットワーク実装に関して説明 する.

4.1 ニューラルネットワーク化対象関数

ニューラルネットワーク化の対象となる関数の選択に関 しては、各関数を個別選択するのみならず、複数関数を統 合して単一ニューラルネットワーク推論モデルで表現す ることも可能である.そこで本研究では、表1に示すよう に、合計6種類の推論モデルを生成した.ここで、単一英 文字は各関数を個別にニューラルネットワーク化した場合 を示している.すなわち、ニューラルネットワークの表記 として、コーナー候補判定関数は"a"、コーナースコア算 出関数は"b"、非最大値抑制関数は"c"としている.ここで、 ニューラルネットワーク"a"と"c"は注目画素がコーナーで あるか否かを分類問題として、"b"はコーナースコアを回 帰問題として処理する.

また,複数英文字(積項)は複数の関数を統合して単一の ニューラルネットワークで置換えることを意味する.例え ば,"ab"はコーナー候補判定関数とコーナースコア算出関 数を単一ニューラルネットワークで置換えることに相当す る.したがって,単一ニューラルネットワークで置換する 関数の組み合わせは,"a","b","c","ab","bc","abc" の6種類となる.表1の斜線部分は,各ニューラルネット ワークで置換対象である関数を示す.置換対象関数に対応 する入力と出力の組みを用いてニューラルネットワークの 訓練を行うことで,各ニューラルネットワークで 酸数機 能の近似を実現する.

4.2 ニューラルネットワークの訓練データ

各ニューラルネットワークの訓練データは,各画素の輝 度を乱数生成した 500×600[*pixel*] 画像を基に生成する (図 3). オリジナルのコーナー検出プログラムに対し乱数生成 した画像を入力することで,各関数 (図1)毎の入力/出力 のデータの組が得られる.これをニューラルネットワーク の入力/正解データセット (訓練データ)とすることで訓

図3 訓練データ収集用画像

batchsize	64	
最適化手法	Adam[6]	
epoch 数	75	
隠れ層数が1のトポロジー	17 - 40 - 2(abc, bc, a)	
(括弧内はニューラルネット	17 - 40 - 1(bc, b)	
ワーク名)	5 - 40 - 2(c)	
隠れ層数が2のトポロジー	17 - 40 - 45 - 2(abc, bc, a)	
(括弧内はニューラルネット	17 - 40 - 45 - 1(bc, b)	
ワーク名)	5 - 40 - 45 - 2(c)	

表2 実装したニューラルネットワークの設定

練を行う.表1に,各ニューラルネットワークの訓練デー タ数を示す.図3で示した500×600[*pixel*] 画像をオリジ ナルのコーナー検出プログラムに入力した場合,各関数の 入出力データセット数は,それぞれコーナ候補判定関数は 300,000,スコア算出関数および非最大抑制関数は76,814 となる.

4.3 ニューラルネットワーク訓練

表2にニューラルネットワーク訓練時のハイパーパラ メーター覧,ならびにアーキテクチャを示す.本研究では, 近似対象関数 (表1)に依らず全て同一のハイパーパラ メータに基づいてニューラルネットワークを訓練する.ま た,ニューラルネットワークアーキテクチャは隠れ層数が 1と2の場合を想定し,各層数のニューロン数は optuna[1] を用いて最適化を実施する.

4.4 各関数のニューラルネットワーク置換え

プログラムのニューラルネットワーク化は,各関数が実 行される際にその関数機能を近似するニューラルネット ワークを呼び出すことで実現する.置換に使用したニュー ラルネットワーク名と置換された関数の関係を表3に示す. ここで,複数のニューラルネットワークによる関数近似を 和により表現している.例えば,"ab+c"はコーナー候補判 定関数とコーナースコア算出関数の機能を統合した単一の ニューラルネットワーク,ならびに,非最大値抑制関数の 機能を近似した単一ニューラルネットワークの2つを用い てコーナー検出プログラムを実現する.また,ネットワー ク名に"a","b","c"いずれかの英文字が現れない場合に は,当該関数は近似を行わないオリジナルの関数で実行す る.例えば,"a+b"の場合には、コーナー候補判定関数,な 表3 置換えに使用したニューラルネットワーク名と再現された関数

ニューラル	再現された関数		
ネットワー ク名	コーナー候補 判定関数	コーナースコア 算出関数	非最大値 抑制関数
abc	abc		
ab	ab		
bc	bc		
a	а		
b		b	
с			с
ab+c	ab		с
a+bc	a bc		
a+b	a	b	
a+c	a		с
b+c		b	с
a+b+c	a	b	с

らびに、コーナースコア算出関数はニューラルネットワー クで実現するが、非最大抑制関数はオリジナルの関数で実 行される.

4.5 ニューラルネットワーク化の効果に関する定性的評価 コーナー候補判定関数においては、コーナーであるはず の画素を誤って非コーナーと判定した場合、この誤りは プログラム最終出力へと伝搬する. そのため,本関数が ニューラルネットワーク化により精度が劣化した場合には, プログラム全体の出力精度も大幅に低下することが予想さ れる.しかしながら、本関数はすべての画素に対して実行 されるため処理負荷が高く、ニューラルネットワーク化に よる性能向上効果が期待できる.一方,コーナースコア算 出関数および非最大値抑制関数は冗長なコーナー検出を回 避することを目的としており、これらの関数で精度が劣化 したとしても大半のコーナー検出は可能であると考えられ る. すなわち, これらの関数がニューラルネットワーク化 されても、プログラム全体の出力精度は大幅には悪化しな いと予想できる.しかしながら、これらの関数はコーナー 候補判定関数によってフィルタリングされた結果に対する 処理であるため負荷はさほど高くなく、ニューラルネット ワーク化による性能向上効果は限定的となる.

5. 評価

本稿では, FAST アルゴリズムを対象としたニューラル ネットワーク化における実行時間と出力精度を解析する. また,その結果に基づき,適切なニューラルネットワーク 化対象部分の選択やニューラルネットワークの構成につい て考察する.評価に用いた実験環境を表4に示す.

5.1 評価用画像と精度指標

評価に使用した画像を図4と図5に示す. 画像サイズは いずれも512×512[pixel] である. ニューラルネットワー クの訓練に使用した図3と, 評価に使用した図5は, サイ

CPU	name: AMD Opteron™ Processor 6282 SE CPU MHz: 14000MHz = 14 GHz cache size: 2048KB = 2 MB cpu cores: 64			
メモリ	MemTotal: 98970784 kB = 94.4 GB			
OS	Ubuntu 14.04			
プログラム言語	Python 3.4.3			
ライブラリ	cv2(画像読み込みのみ), chainer, numpy, optuna, time			

表4 評価に用いた実験環境

ズおよび使用した乱数が異なっている. ニューラルネット ワーク化を適用しないオリジナルのコーナー検出プログラ ム(以降,正確なコーナー検出プログラムと呼ぶ)を用い て図4ならびに図5を入力したところ,抽出されるコー ナー数はそれぞれ530ならびに42,057であった. これは 全画素数に対しそれぞれ0.20%ならびに16.04%であり,極 めて少ない数の画素がコーナーとして抽出されることが分 かる.

このように,検出対象の出現率に大きな偏りが存在する 場合,精度評価に正答率(すなわち,正解を正しく検出で きる確率)を使用することは不適切となる.なぜなら,例 えば「全ての画素がコーナーではない」と回答した場合で も上記の例では正答率がそれぞれ 99.79%ならびに 83.95% となり、適切な評価ができないためである. そこで本精度 評価における指標として F 値 (F-measure) を使用する.本 実験では、各画素をコーナーか非コーナーかへと振り分け る2クラス分類問題とみなし、図5に示す混合行列を定義 する. TP, FN, FP, TN は, それぞれ真陽性, 偽陰性, 偽 陽性, 真陰性を指す. F値とは, 混合行列での数値を用い た推論結果の評価尺度の一種であり、式(3)で示すように 適合率と再現率の調和平均として定義される. ここで, 適 合率 (precision) とは,式 (4) で示すように,正と予測した データのうち,実際に正であるものの割合である.また, 再現率 (recall) とは,式 (5) で定義されるように,実際に正 であるもののうち、正であると予測されたものの割合であ る.F値を用いることで、入力に偏りが存在する場合にお いても適合率と再現率の両面からの出力精度評価が可能と なる.

$$F$$
-measure = 2 $Precision \times Recall/(Precision + Recall)$ (3)

$$Precision = TP/(TP + FP).$$
 (4)

$$Recall = TP/(TP + FN).$$
 (5)

5.2 出力精度評価

図4の画像を評価用データとし,各関数をニューラル ネットワーク化したコーナー検出プログラムの実行による F値を測定した.その結果を図6に示す.横軸は表3で定 義したニューラルネットワーク化に関する選択肢であり,

図4 評価用画像 1:チェス盤画像

図5 評価用画像2:各画素の輝度を乱数で生成した画像

図6 使用したニューラルネットワークに対するF値

縦軸がそれぞれの選択肢における F 値である. この結果よ り,隠れ層数が1の場合,コーナー候補判定関数をニュー ラルネットワーク推論モデルに置換えることにより(すな わち,横軸にて"a"を含む場合), F 値が大きく低下している ことが分かる. このことから,出力精度はコーナー候補判 定関数に大きく依存していると考えられる. しかしながら, 同様の傾向が見られるものの,隠れ層数を2へ増加するこ とでこの問題を大幅に改善できており(例えば, a, a+bc, a+b, a+c, a+b+c),ニューラルネットワークを適切に設計 することでこの問題をある程度回避できると考える.

5.3 実行時間評価

図4ならび図5の画像を評価用データとし、各関数を ニューラルネットワーク化したコーナー検出プログラムの

図7 図4における実行時間

図8 図5ににおける実行時間

性能を評価した.その結果を図7ならびに図8に示す.横軸は表3で定義したニューラルネットワーク化に関する選択肢であり,縦軸がそれぞれの選択肢における実行時間である.なお,ここでは3つの関数全てがニューラルネットワーク化される場合(すなわち,横軸のニューラルネットワーク名にて"a","b","c"の全てが必ず現れる)に限定し考察する.

図7において、ニューラルネットワークの隠れ層数が1 の時、コーナースコア算出関数および非最大値抑制関数に 相当するニューラルネットワークの実行時間は、ニューラ ルネットワークの隠れ層数が2の時と比較して大きかっ た.この理由は、コーナー候補判定関数の精度悪化によ り他関数の実行回数が増加したことが原因と考えられる. ニューラルネットワークの隠れ層数が1の時、コーナー候 補算出関数実行後の非ゼロのコーナースコアを持つ画素数 は96,680 に対し、隠れ層数が2 の時は 857 であった.こ のことから、不正確なコーナー候補判定関数を使用した場 合、コーナースコア算出関数および非最大値抑制関数の実 行時間が増加する可能性がある.

5.4 実行時間と出力精度の相関評価

図4ならび図5の画像を評価用データとし,各関数を ニューラルネットワーク化したコーナー検出プログラムの 実行時間とF値の関係を図9ならびに図10に示す.各プ ロットは,隠れ総数が1(青ドット)ならびに2(橙ドッ ト)における各ニューラルネットワーク化に関する選択肢 (表3)に対応する.また,赤直線は正確なコーナー検出 プログラムを実行した際の実行時間である.これらの結果 より,ニューラルネットワーク化対象箇所の選択,ならび

図9 図4における実行時間に対するF値

図10 図5における実行時間に対するF値

に、各ニューラルネットワークの設計を適切に行うことで、 ニューラルネットワーク・アクセラレータを用いない状況 を想定したとしても 0.75 程度の F 値を達成しつつ、実行時 間の短縮を見込めることが分かる。例えば、図 9 では隠れ 層数 2 のニューラルネットワーク a を使用した場合の F 値 は 0.76 であり、この時の実行時間削減率は 7.2%となった。 また、図 10 においては、隠れ層数 2 のニューラルネット ワーク a を使用した場合 0.73 の F 値を達成し、この時の実 行時間削減率は 28%である。

関連論文

6.1 プログラムのニューラルネットワーク化のアナログ回 路への実装

Amant らによりプログラムの一部をニューラルネット ワーク化し,それをアナログ回路でハードウェア実装する 手法が提案された [2].アナログ回路ならびにデジタル回路 でニューラルネットワークを実現する場合,シナプスは乗 算回路,ニューロンは加算回路と非線形関数による写像を行 う変換回路で構成される.アナログ乗算器は,デジタル回 路と比較しエネルギー効率が高くチップの小型化が可能で あるため,高集積化の観点から有利である [5].しかし,入 力と重みの設定は8ビットまで,各ニューロンへの入力数は 8まで,訓練時には CDLM (customized continuous-discrete learning method)の導入による離散化への適応が必要と,再 現できる機能に制約がある.

本実験ではニューラルネットワークの実行に CPU を使

用したため,上記の制約は存在しない.よって,多様なプ ログラムの機能のニューラルネットワーク化が可能となっ ている.

6.2 プログラム全体のニューラルネットワーク化

Hashmi らにより NISA (Neuromorphic Instruction Set Architecture) を使用することで,その命令を利用するプログ ラムを高速化する手法が提案された [4]. プログラムを正確 に近似する場合は,巨大なニューラルネットワークを用意 する場合が多い.しかし,CPUやGPUといった汎用プロ セッサは巨大なニューラルネットワークの実行に必要な大 量の計算の実行に適しておらず,そのまま実行しても高速 化が期待できない.NISA は,あるプログラムを推論する 巨大なニューラルネットワークのパラメータを取得し,そ れを元に許容できる出力精度を維持しつつ,汎用プロセッ サでの実行でも性能向上が期待できる構成を持つニューラ ルネットワークを再定義する.用意するハードウェアに合 わせてニューラルネットワークを再定義することで,プロ グラムのニューラルネットワーク化を容易に適用すること ができる.

本研究ではプログラム全体のニューラルネットワーク化 だけでなく、機能の一部分のみのニューラルネットワーク 化も行なっている.実行時間の大部分を占める処理だけを ニューラルネットワーク化することにより、プログラム全 体をニューラルネットワーク化した場合に近い性能向上を 得ながら、出力精度低下を抑制できる可能性がある.

7. おわりに

本稿では, FAST アルゴリズムを用いたコーナー検出プ ログラムを対象にニューラルネットワーク化による近似を した際の実行時間と出力精度を評価した. 具体的には、プ ログラムの機能を3つの関数に分割し1)ニューラルネッ トワーク化対象関数の組み合わせ、ならびに、2)ニュー ラルネットワークアーキテクチャを変化させ、プログラム の実行時間と出力精度のトレードオフ解析を行った.その 結果、実行時間・出力精度ともに近似適用対象関数の選定 やニューラルネットワークアーキテクチャに大きく依存し ており,これら1),2)の最適化が極めて重要であることが 分かった.なお、本評価ではプログラムの最適なニューラ ルネットワーク化により F 値 0.73 で最大 28%の性能向上 が達成できた. 今後は正確なプログラムとニューラルネッ トワーク化したプログラムの実行時間の比較のため, GPU と機械語に翻訳可能なプログラミング言語を使用した実 行時間評価を行う. また, アプリケーション内での機能の ニューラルネットワーク化による出力精度の影響の調査の ため. コーナー検出を利用したアプリケーション内でコー ナー検出をニューラルネットワーク化した場合の出力精度

評価を行う.

謝辞 本研究をご支援頂いた株式会社富士通研究所に 心から感謝致します.なお,本研究は一部,JSPS 科研費 JP19H01105,未来社会創造事業 JPMJMI18E1 による.

参考文献

- Akiba, T. et al.: Optuna: A Next-generation Hyperparameter Optimization Framework, *In Proceedings of the 25th ACM* SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM, pp. 2623–2631 (2019).
- [2] Amant, R. S. et al.: General-Purpose Code Acceleration with Limited-Precision Analog Computation, 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA), IEEE, pp. 1–12 (2014).
- [3] Esmaeilzadeh, H. et al.: Neural Acceleration for General-Purpose Approximate Programs, In Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), IEEE, pp. 449–460 (2012).
- [4] Hashmi, A. et al.: A Case for Neuromorphic ISAs, In Proceedings of the sixteenth international conference on Architectural support for programming languages and operating systems, ACM, pp. 145–158 (2011).
- [5] Hasler, J. and Marr, B.: Finding a roadmap to achieve large neuromorphic hardware systems, *frontiers in Neuroscience*, Vol. 7, pp. 1–29 (2013).
- [6] Kingma, D. P. and Ba, J. L.: Adam: a Method for Stochastic Optimization, arXiv:1412.6980, pp. 1–15 (2015).
- [7] Mittal, S.: A Survey of Techniques for Approximate Computing, ACM Computing Surveys, Vol. 48, No. 4, pp. 1–33 (2016).
- [8] Rosten, E. and Drummond, T.: Fusing points and lines for high performance tracking., *In Proceedings of the IEEE International Conference on Computer Vision*, ICCV '05, Vol. 2, pp. 1508–1511 (2005).
- [9] Rosten, E. and Drummond, T.: Machine learning for highspeed corner detection, *In Proceedings of the 9th European Conference on Computer Vision*, ECCV '06, Vol. 1, pp. 430– 443 (2006).
- [10] Sekanina, L.: Introduction to Approximate Computing: Embedded Tutorial, In Proceedings of the 2016 IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), IEEE, pp. 1–6 (2016).
- [11] Xu, Q. et al.: Approximate Computing: A Survey, IEEE Design & Test, Vol. 33, No. 1, pp. 8–22 (2016).