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Abstract: Nowadays, there is a concern about how to use energy efficiently. Energy management is one
of the technologies which play an important role to reduce energy consumption in buildings. For building
energy management, there are several technologies which make the resident feel comfortable by controlling
HVAC and lighting through IoT. The critical information, which enables such management in a building, is
the location of IoT devices. However, the manual location identification manner requires a significant labor
effort for a large number of IoT devices deployed in the building. Although the wired network has reliable,
low-delay and secured characteristics, it has no property to be used for the localization technique in the phys-
ical environment. Hence, Bluetooth Low Energy (BLE) is one of the most popular wireless network modules
for IoT devices because it can provide a cost-effective and easy-deployment network. As a signal strength
of wireless technology is related to the distance between receiver and transmitter, the BLE modules can be
used to generate the signal fingerprint to estimate their locations. In this paper, it is assumed to attach a
BLE module to each HVAC individually, and then the location of HVACs can be estimated by observing the
signal strength of BLE. We propose a survey mechanism to collect signal propagation. We provide a method
to estimate the location of BLE without visiting every place by analyzing the change in signal strength of
every BLE. Our method requires the floorplan and physical location of HVAC. We request one tester to carry
the smartphone and walk around the building for collecting the signal strength of every BLE. After that our
method generates the candidate list of the BLEs to each physical location. We evaluate our algorithm by
deploying 26 BLEs in an office building. The results show that the average number of matching BLE candi-
dates for each location is 2.17, which is useful to identify BLEs which cannot be identified by network-based
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RSSI-based Localization of BLE-attached HVACs

localization.

1. Introduction

Since smart building technologies are becoming more in-
novative, they are expected to provide energy efficiency and
resident comfort simultaneously using information and com-
munication technologies. Such technologies commonly in-
stall HVAC (Heating, Ventilation and Air Conditioning) sys-
tem in buildings. Some system emphasizes the environmen-
tal features such as temperature indoor and outdoor, the
wind flows to control the temperature and energy usage in
each area in the building individually [1], [2], 3], [4]. Al-
though control strategy based on the environment provide
a good result in energy saving, there are some rooms such
as meeting rooms which are not used for the whole day.
For example, there is some research that shows the benefit
of localization of human to power management systems, in
which, energy management systems can manage both en-
ergy consumption and comfort of occupant simultaneously
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depending on the presence of humans, for example, POEM
[5], Smart Thermostat [6], HitoNavi [7] and the occupancy-
based HVAC system [8].

In order to provide such services, HVAC units and sensors
have wired network modules for connecting themselves to
Network for more efficient management and control. How-
ever, we have to map their network addresses (IDs) with
the physical locations in order to control the HVAC system
precisely, which needs considerable labour cost. Currently,
we perform the mapping procedure manually. For instance,
workers turn on HVAC units one by one at a time, and the
physical address of HVAC unit which is turned on is shown
on the controller screen, then the workers can map the phys-
ical address onto the layout map. In particular, there will
be tens of thousands of HVAC in a large building, thus this
procedure is unrealistic as it is too time-consuming, and it
incurs high labour cost for both configuration and validation
effort. Let us assume the situation in a hotel and an office
building, where they are currently operating, which contain
a numerous number of small rooms where each room has one
or more HVAC units inside. Unfortunately, some rooms may
not be allowed to access due to privacy and administrative
reasons (privileged access policy and/or confidential space),
and the workers may just be allowed to move on only pub-



lic hallways. Consequently, the workers cannot enter those
privileged areas to identify the location of HVAC units.

In this paper, we propose a semi-automatic position esti-
mation that links network IDs and their physical positions,
which contributes greatly to the reduction of management
cost. We attach the wireless modules, especially BLE, to
be used to the location estimation technology based on ra-
dio field intensity to identify the location of HVAC units.
We assume that we can get the floor plan of building with
the location of HVAC units from the owner or construction
manager, and it has already been analyzed. We send only
one tester carrying a smartphone to collect RSSI (Received
Signal Strength Indicator) of BLEs. In this approach, we
mention on finding the list of BLE IDs which are possible to
be located at each physical location before we apply another
technique to find the best matching between each BLE ID
and physical location. We let the tester walk along given
routes that are calculated from that floor plan information.
Our method emphasizes the RSSI peak of BLE ID during
walking in two directions to estimate the potential list of
HVAC locations which contain a set of the BLE IDs that
are possible to be located on those HVAC locations individ-
ually. We evaluate our method by deploying BLEs in the
actual office building.

2. Related work

2.1 Radio Signal Strength and Its Benefits
Received signal strength indicator (RSSI) is one of the
noticeable characteristics of wireless technologies as they
broadcast the radio signal to communicate with each other
through the air. As the RSSI can show the distance between
the radio transmitter and radio receiver [9], [10], [11], [12],
[13], there are several benefits of RSSI such as RSSI-based in-
door localization. RSSI-based indoor localization leverages
the RSSI to estimate the trajectory of Wi-Fi devices (e.g.
smartphones) in the indoor environment by calculating the
distance between Wi-Fi devices and anchor [9], [10], [11].
The basic method to estimate the location of the Wi-Fi de-
vice is the multilateration mathematical method which relies
on the estimated distance between the Wi-Fi device holder
and at least 3 surrounding APs based on signal propagation
model [9]. However, the RSSI based indoor localization re-
quires a calibration effort such as configuring the location of
each well-known anchor in the building to pursue good ac-
curacy. Hence, there are some research teams who propose
an RSSI survey method to estimate the location of anchors.
They propose that if we collect the RSSI on the known loca-
tions, the anchor locations are able to be identified [10], [11].
specifically, the literature [10] proposes that the relative
location can be obtained by estimating the distance between
anchors to Wi-Fi devices at many locations. They apply an
optimization technique to find the estimated location of a
human without information about the localization of an-
chors. In order to estimate the actual trajectory of human,
they leverage the GPS-fixed locations which are obtained
when a tester walks close to the windows during the calibra-
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tion phase.

Since the fluctuation in RSSI of BLE will increase if the
receiver is far from transmitter and receiver [12], [14], we
have to collect the RSSI close to the transmitter for bet-
ter accuracy. However, there are possibilities that a tester
may not have permission to enter some rooms in the case
of reconstruction. Consequently, the existing techniques in
localization of anchors will be unable to apply in this case.

2.2 Pedestrian Dead Reckoning (PDR)

Another popular technique for indoor localization is
Pedestrian Dead Reckoning (PDR), which estimates the tra-
jectory of human by analyzing the number of steps and the
head direction of human who holds the smartphone from its
embedded sensors [15], [16]. However, the location error of
PDR is accumulated because most types of sensors embed-
ded in the smartphone has much noise [15], [16]. Therefore,
a research team proposes a technique to reset a location er-
ror by identifying a landmark in the building [15].

In our proposed method, we avoid the location error by
providing the walking paths to the tester, thus the loca-
tion error will be reset every time we give the path to the
tester. Moreover, our approach does not require the fine-
grained localization of human. Hence we will calculate only
the number of steps which is enough information to roughly
estimate the location of the tester on the given path.

3. Methodology

In the building, HVAC has been used to manage in-
door temperature and indoor air quality for improving liv-
ing quality. To accomplish HVAC management, most tech-
niques need primary information, which is the location of
HVAC components. Currently, HVAC units are equipped
with Ethernet module for connecting to the central network.
The general location identification method requires a worker
to go to HVAC location where that the worker needs to con-
figure, and then to turn on that HVAC unit. After that, the
HVAC unit will connect to the central server, and the worker
can see the network ID. Consequently, the worker can match
that HVAC unit to the location where that worker turned on
the HVAC unit. Next, the worker goes to another location
to turn on another HVAC unit and matches that unit to the
location. The worker repeats the matching procedure until
every HVAC unit is identified.

The performance of this manual manner is ineffective
when a large number of HVAC units are deployed in a large
building due to time-consuming, heavy workload. Thus, we
leverage the advantage of radio signal to perform localization
of HVAC automatically. We will attach a wireless module
such as Bluetooth Low-Energy (BLE) to each HVAC device.
Hence, we can estimate the location of HVAC by analyzing
the wireless information.

3.1 Problem Definition
The localization techniques of radio transmitter have been
proposed so far [10], [11]. Those researches require a worker



carrying a radio receiver to collect the signal strength around
the building. Those methods require the worker to visit
many spots in a building for improving accuracy. Then they
apply the signal propagation model to estimate the distance
between receiver and transmitter.

However, the RSSI of BLE is more fluctuated when the
BLE receiver is far from the transmitter. As a result, the
worker needs to collect the RSSI at closer location to the
BLE transmitter to improve the performance of BLE local-
ization. For such cases, the HVAC system is deployed in the
reconstruction site or the building which has already been
operated. There are some areas where the tester is prohib-
ited. Consequently, the location of BLEs in those rooms are
inaccurate.

In this paper, we identify the location of HVAC units by
detecting the strongest RSSI location of every BLE on the
walking paths. We assume that the floorplan has already
been identified before performing localization of BLE. As a
result, we know rooms, walkable area, HVAC locations and
prohibited area from the floorplan. According to literature
[17], we match the BLE device IDs to the physical locations
by means of RSSI peak measurement. For such an exam-
ple, when a tester walks passing 3 BLEs as in Figla, the
application in the smartphone will perceive the RSSI as Fig
1b. Consequently, we can match the BLE ID “1-1” to lo-
cation L1, “1-2” to location L2 and “1-3” to location Ls,
respectively.
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Fig. 1: Location estimation by the order of rssi’s peak

According to Fig2b, we hardly generate the suitable walk-
ing path for every HVAC location because the walkable
paths in the real environment are limited due to furniture
etc. Therefore, we will discuss how we can design a survey
method such as walking path design and a method to collect
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RSSI to clearly see the peak order of every BLE in general
buildings.
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(c) Smartphones are placed on 8 locations.

Fig. 2: Location of BLEs Deployeed in This Project.

3.2 Algorithm Design

In order to design an algorithm, we have to know some
behaviour of RSSI when we observe it on the walking path.
We, therefore, placed smartphones on 8 locations as in Fig
2¢ and had collected the RSSI for 30 seconds. We found
that the RSSI of BLE is not stable, and that the RSSI of
BLE cannot represent the distance between transmitter and
receiver. Specifically, the RSSI of BLE ID “1-2” seems to
be similar to RSSI of BLE ID “1-4” where a smartphone
is placed under BLE ID “1-2” as Fig 3a. Consequently, we



think that the techniques leveraging the RSSI to estimate
the distance between the transmitter and receiver cannot be
applied directly. Additionally, when we calculate the aver-
age of RSSI on 8 locations, we found that the average RSSI
of BLE located in the same perpendicular alignment of col-
lecting direction have a similar trend as Fig 3b.
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Fig. 3: RSSI

Since the shape of most buildings is rectangle and the
walkable paths usually belong to both sides of the building,
we suppose when we walk on one side of the building, we
can see the peak of BLE representing on the orthogonal pro-
jection location of BLE location onto the walking path that
belong to that side. Accordingly, if we consider the peak
location in both sides of the building as in Fig 4, we can es-
timate the location of HVAC and we will discuss this topic
in the “2-dimensional localization” section.

In order to acquire RSSI, our method requests the
tester to survey the RSSI of each BLE around the build-
ing by carrying a smartphone with our application. Our
application collects the RSSI wvalues in the format <
li, r5511,5, 7585125, ..., 7SSin,; > Where l; is the place the data
are collected using the PDR technique, and rssin,; is the
RSSI from BLE ID n at location [;. For estimating the
location where RSSI data is collected, we apply a Roughly-
Controlled PDR from literature [17]. Especially, we give
the walking path including the start and stop positions to a
tester, and thus we can estimate the walking size (meters per
step) and the location of tester for each step of the tester.

Nevertheless, we found the insufficient sample when we
walk continuously on the walking path. Specifically, we de-
ploy 26 BLEs in the first and second floors of the office
building whose size is 18x18 square-meters and set the BLEs
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Fig. 4: Concept of 2 dimensional peak order for BLE local-
ization

to broadcast the advertising beacon every 1 second. Our
application cannot receive the beacon every second due to
shadowing and collision problem. Moreover, the RSSI data
for one location will not be reliable due to fluctuation as in
Fig 3a. Therefore, we will ask the tester to stop walking for
collecting RSST at designed locations. We will describe the
detail in the “Stand and walk Scheme” section.

3.3 Stand and Walk Scheme

Even though we would like to ask the tester to collect
RSSI around the building by walking continuously, the bea-
cons which are received by walking continuously seem to be
inadequate. We guess the number of beacon collision will
increase when we densely deploy more BLE in the building.
Consequently, we consider the average value of RSSI in each
location which is able to represent more stable and reliable
than a single value. Hence, the tester needs to stop walking
at designed locations for some time to collect more beacon
packages for calculating the average RSSI then he/she re-
sumes walking again. It is almost impossible for the tester
to stand on the correct locations when we give numerous lo-
cations for measuring RSSI on the map due to no accurate
indoor localization deployment. For instance, we need to
collect the RSSI for every one meter for seeing the change of
RSSI clearly when the gap between HVACs are close with
each other (about 2-3 meters). After the application gives
the locations for collecting data on the map, the tester has to
go to the exact location and push the location where he/she
is to the application before collecting data. The tester may
misunderstand and make a problem easily, so we apply the
Roughly-Controlled PDR [17] to address this problem.

To apply Roughly-Controlled PDR to the data collection,
we give walking path p; to a tester with start point p; start
and stop point pj stop Oon the smartphone application as
in Fig 5. The tester goes to the start point and pushes
the start button, and our application starts increasing step
count pj count. After the tester walks psiep steps and stops
walking pstang second for collecting rssi, the tester repeats
“Stand and Walk Scheme” until he/she reaches the end



point. When the tester reaches the end point, he/she presses
the stop button to finish recording the RSSI on the walk-
ing path p;. After that the application estimates the step
side Wstepsize = Pj.length/pj totalcount Where pj.length
and Pj totalcount are the total distance of walking path p;
and the number of total steps, respectively. To record the
location where the tester stands to collect RSSI, we define
the location I; = (pj,lr:) as a set of walking path and the
relative distance from start point lr; = pj count * Wstepsize
at location [;.
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Fig. 5: Smartphone application.
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In reality, the time where the tester spends on our survey
method is depended on how often we need to stand for col-
lecting data and how long we collect the RSSI. Specifically,
the tester may spend more time if tester stands for a long
time to collect the RSSI for every step. However, the RSSI
data will be inefficient if we collect for a short time and we
cannot see the trend of RSSI if we walk more step before
standing to collect the RSSI in the case that HVACs are
installed close with each other. Hence the number of steps
before collecting the RSSI pstep and then the time for col-
lecting RSSI pstana should be varied and we will show the
effect of them in the experimental section.

3.4 2 Dimensional Localization

In this work, we observe the locations of RSSI peak from
every BLE belonging to the 2 sides of the building. For eas-
ily explaining, we define the side of the building which is
longer is the ”horizontal side” and another side is the ”ver-
tical side”. Because our method needs to show the floor
plan and the given walking path, we assume the floorplan
information and the device locations on the floorplan are
already identified. We believe every large building has the
floorplan information. Another fundamental information is
the walkable paths, and we assume the floorplan information
also provides that information. If the floorplan information
does not provide the walkable paths, it can be generated
by some indoor floorplans construction methods [18], [19].
Then we can pick up the possible walking paths p; € Pyaik
with attribute p;.detection € {“horizon”, “vertical”} from
the walkable path.

For the large building, the tester may not finish a survey
within one day if the tester performs the “Stand and Walk
Scheme” on every walking path. Therefore we will calcu-
late the capability to estimate the BLE localization for each

© 2019 Information Processing Society of Japan

Algorithm 1 PathSelection(Pyqik)
Require: The possible walking paths Pk -
1: for Vp; € Pyaix do

for Vspie € Spie do

N

3 if Fappro(sblc,pi) then

4 pilistpre < —pi.listpre U Spie
5 end if

6: end for

7: end for

8: Cdiscover,h +— 9

9: Cgiscover,v < @

10: while isReliable(Vid;inI Dye) do
11: for Vp; € Pyaix do

12: if p;.direction = "horizontal’ then

13: select pi where |Caiscover,h U Pi.listpie| is max
14: Caiscover,h < Cdiscover,h UPi-listpre

15: give p; to tester

16: end if

17: end for

18: for Vp; € Pyaix do

19: if p;.direction = ’vertical’ then

20: select pi where |Caiscover,v U pi.listyie| is max
21: Caiscover,h < Cdiscover,v UP;i.listyie

22: give p; to tester

23: end if

24: end for
25: end while

walking path and ranking them. After that, we will give the
best set of walking paths to the tester, which cover all the
BLE location. To reduce the number of walking paths that
our method gives to the tester, we calculate the peak of ev-
ery BLE ID and we verify which BLE ID we can trust after
the tester stops at the end point of every given path. Our
method will give the walking path until the peak location of
all BLE IDs is reliable as in algorithm 1.

The algorithm starts from calculating a capable list
Diblerersan. Of BLE of walking path p; where we can per-
ceive reliable RSSI from those BLEs if we collect RSSI for
every path. Specifically, we consider that the RSSI of BLE
is reliable on 2 conditions as in Table 1. In order to assess
walking path p; is appropriate to see the correct peak loca-
tion of RSSI from BLE s, we assume we obtain the per-
pendicular distance Fg;s¢(Spie, pi) between BLE sy and the
walking path p; from the floorplan information. Note that,
there are short walking paths where we cannot draw the per-
pendicular line from every BLE to those walking paths as in
Fig 6. We also know the number Fips:(sble, p;) of obstacles
such as walls and doors between BLE sp;. and the walking
path p;.

Table 1: The rule to estimate the RSSI of BLE sy which
is collected on the walking path p; is reliable or not

Faist(svie,Pi) | Fovst(SviesPi) | Fappro(Sbie,Di)
< Ba 0 True
< B 1 True
* > 2 False

In Equation 1, we have 3 conditions to consider which
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Fig. 6: Dot lines from BLE locations (dark blue circle) to
walking path (red line) are Perpendicular distance

BLE can be collected reliably. The first condition is that the
perpendicular distance Fg;s¢(Sple, pi) from BLE spe to the
walking path p; should be lower than S, (we use S, = 12
maters in this paper). The second condition is that the
perpendicular distance Fy;st(Spie, pi) from BLE spe to the
walking path p; should be lower than 8, (we use 6 maters in
this paper) and the number Fopst(Spie, pi) of obstacles be-
tween BLE sp;. and walking path p; should not be greater
than two obstacles. Otherwise, the RSSI of that BLE loca-
tion is regarded unreliable.

When the capability list for every walking paths has al-
ready been estimated, we give the walking path which has
the highest number of capable BLE to the tester for walking
on the given path. We will repeat to give the walking path
until we see reliable RSSI data for covering every physical
location of BLE as in Fig 7.

Fig 7a and Fig 7b show the walking paths where we re-
quest the tester to collect the RSSI data. Specifically, the
blue circles are locations of BLE, the red arrow lines are
walking paths and the light blue areas are the coverage area
where the RSSI data from every BLE inside this area will
be reliable if the tester walks on the walking path inside this
area. For example, the tester walks on path P3 as in Fig 7a,
we expect the order of RSSI peaks from BLE S4, 52, S3 and
S5 respectively. However, the receiver can widely receive the
beacon from surrounding BLE transmitters. Specifically, we
will see the peak of BLEs $2,53,54 and S5 at the begin-
ning of walking path P2 in Fig 7b when the tester walks on
that walking path. As a result, we will involve some invalid
RSSI peak location to the calculation process.

To tackle this problem, we should use the knowledge from
the path selection method. Especially, we use the capable
list s bie,orsns. Of BLE of path p; in our location estimation
method. Especially, we will be able to see the RSSI peak
location of BLEs S2, 53,54 and S5 correctly if the tester
walks on path P3 in Fig 7a and path P1 in Fig 7b. There-
fore, we have to use the RSSI data in those paths to identify
which BLE IDs are located on BLE locations S2, 53, 54 and
S5.

Accordingly, we pick up BLE location s; if BLE location
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(b) 3 paths for covering all BLE in vertical direction
Fig. 7. Walking path after apply path selection algorithm.

s; is in a capable list of RSSI of horizontal walking path p;
and vertical walking path p;. We analyze the RSSI data
from each BLE ID id, when the tester walks on horizon-
tal walking path p; and vertical walking path p; to find a
RSSI peak from every BLE ID. We define the 2 dimension
peak location lig, p,.p; = {Tidy,p;» Yids,p; + of BLE ID idj, on
the horizontal direction x;q, ,, when walking on horizontal
walking path p; and the vertical direction y;4, », Wwhen walk-
ing on vertical walking path p;. We ignore RSSI data from
some BLE IDs when the average RSSI data from those BLE
IDs are weaker than a threshold d1 (we use -85dB in this
paper). Then we calculate the distance error d; be-
tween the 2 dimension peak location l;4, p, p; and the BLE

idy,pi.pjrSl

location s;. Then, we apply the threshold d2 to generate the
potential list idy € Ps, of BLE location s; which is BLE ID
1dy, that will be located at BLE locationn s;. Specifically,
the 2 dimension peak location of BLE ID idg, whose dis-
tance error to BLE location is less than 2, is possible to
be located at BLE location s;. Finally, we will estimate the
potential list for the rest BLE locations.

4. Experiment

The experiment is conducted in an office building whose
size is 18 x 18 square meters, and we deploy 13 BLEs over
the ceiling on the first floor and another 13 BLEs over the
ceiling on the second floor (26 BLEs as a total). These BLEs
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module is deployed box

Fig. 8: Experiment setup

are laid in the plastic boxes individually. We, thus, provided
26 plastic boxes and deployed them close to HVAC units as
in Fig 2a and Fig 2b. In each plastic box, we provided a
power supply for the BLE module.

In order to perform an experiment in “Stand and Walk
scheme”, we have developed an android application to col-
lect the RSSI of BLE. Accomplishing the RSSI collection,
we requested the tester to carry the NEXUS6P and walk on
the given walking path. Note that, the experiment was con-
ducted in an uncontrolled environment, i.e. other members
also did their normal activities during collection.

4.1 Evaluation

In this experiment, we measured the performance of our
algorithm by “precision” and “recall”. Specifically, after we
created the candidate list which was a set of BLE IDs for
each BLE location, we could calculate the true positive TP
which was 1 if there was a true answer in the candidate
list, and 0 otherwise. We also calculated the false positive
FP and the false negative F'IN. Finally, we calculated the

“precision” and “recall” as in Equation 1.

. TP
Precision = TPLFP (1)
TP
Recall = 5 FN )

4.2 Walking Path Selection

In this section, we discuss the effect of path selection.
First of all, we assume the walking paths have been identi-
fied from the floorplan. There are 20 walking paths on the
first floor and 15 walking paths on the second floor as in the
Figure. After that we applied our path selection method.
we can reduce the number of walking paths which need to
be given to the tester as in Table 2.

Table 2: Walking Distance for Collecting RSSI Before and
After Applying Path Selection

foor wo Path selection w Path selection
# paths | distance(m) | # paths | distance(m)

1 20 157.5 6 64.5

2 15 137.5 5 48.5
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4.3 Performance of Candidate estimation Using
2D Peak Localization

In this section, we discuss the performance of our 2 dimen-
sion localization. We give the selected walking paths to the
tester through our smartphone application. The tester per-
forms the “Stand and Walk Scheme” following the instruc-
tion on the smartphone application. In this experiment, the
tester stopped for 20, 15 and 10 seconds for collecting RSSI
after walking 1 steps, and we measured “precision” and “re-
call” as in Table 3.

Table 3: Performance of Our Algorithm to Generate Candi-
date List by Varying Time to Collect RSSI

parameter Pstand=10 Pstand=15 Pstand=20
62 Precision Recall Precision Recall Precision Recall
1 0.5 0.15 0.29 0.23 0.29 0.23
2 0.36 0.38 0.42 0.42 0.46 0.46
3 0.51 0.77 0.58 0.81 0.53 0.77
4 0.44 0.88 0.5 0.92 0.5 0.92
5 0.34 0.92 0.46 1.0 0.45 0.96
6 0.34 1.0 0.44 1.0 0.35 1.0
7 0.32 1.0 0.32 1.0 0.32 1.0

We found the results from the data collected in 10, 15 and
20 seconds seem to be similar as in Table 3. Although the
data should be reliable if we receive enough beacons, the re-
sults when we collect RSSI for 15 seconds look better than
the data collected in 20 seconds. The reason is the aver-
age value is sensitive to the noise. However, we tried other
methods such as median and mode and the results were the
same. The reason is that the RSSI of BLE was unstable and
we carried one device and stood pstang Seconds to collect
RSSI. When we can use median and mode to remove out-
lier, we need to collect sufficient data at the same time. For
example, we need to carry many phones to collect the data
and this method will create burden on the tester.

In our algorithm, there is another parameter such as the
distance interval between collecting location where we need
to adjust. To measure the effect of distance between collect-
ing location, we set the time to stand for collecting RSSI to
20 seconds. Then, we make the three scenarios in which the
tester walks 1,2 and 3 steps before stop to collect RSSI, and
we measure “precision” and “recall” as in Table 4.

Table 4: Performance of Our Algorithm to Generate Candi-
date List by Varying the Number of Steps Before Standing
to Collect RSSI

parameter pstep:]- pstep:2 pstep:?’
P Precision Recall Precision Recall Precision Recall
1 0.29 0.23 0.31 0.35 0.22 0.38
2 0.46 0.46 0.31 0.62 0.18 0.65
3 0.53 0.77 0.32 0.88 0.21 0.92
4 0.50 0.92 0.26 0.96 0.20 1.0
5 0.45 0.96 0.16 0.96 0.12 1.0
6 0.35 1.0 0.15 1.0 0.10 1.0
7 0.32 1.0 0.13 1.0 0.10 1.0

In this experiment, the tester spent around 40,20 and 13
minutes for collecting the RSSI on the first floor, and spent
around 30, 15 and 10 minutes for collecting the RSSI on the
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second floor when the tester stopped 20 seconds after walked
1,2 and 3 steps respectively. We can see that the recalls in
Table 4 are very low when we increase a gap between col-
lecting location as increasing the walking step pstep. The
reason is when the tester increases walking step pstep, that
tester will miss collecting RSST at the peak location. Conse-
quently, it makes the error of estimated peak location longer
than the collected data by using pstep = 1. As a result, the
peak location of many BLE IDs will be projected to be at
the same location.

In summary, when we increase parameter 02, the recalls
increase while the precisions decrease as in Table 3 and Ta-
ble 4. According to Table 3, if we consider every true answer
is contained in candidate lists, the best false negative is 0.46.
It means if our algorithm returns the candidate lists all of
which contain the true answers, the average size of candidate
list will be 2.17.

5. Conclusion

In this paper, we have presented the semi-automatic BLE
localization. Our algorithm can reduce the walking area and
can estimate the location of every BLE without entering ev-
ery location in the building. The result of our algorithm is
a set of BLEs which are suitable to be located on each BLE
location. We evaluate our algorithm by deploying BLE in
the office building.

In the future, We will design a one-to-one matching pro-
cedure, and we also need to apply our algorithm to another
building. In particular, we will collect the data on another
setting such as sparse deployment to prove our approach can
be performed in any environment.
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