F—ZN— 2V RAF 24 104—21
(1995. 7. 19)

ESa7)-7Ob24ETDEHD
HARMAHET —2~N-2X

an Mk TRE-— HP#RZ HEERE S RE
BT A FARA S B HuEER 78T

UEHAHEA T V2 P EFTNTERTLH LT, BEEIIHETiE 2 MSHERT — 7 X—
AERET D, BF—FN—2Tit, BUELERAF-T#ILLLTELZ, F—FR—-2AD—
EM2RFET 4010, BNHHRERELTVES, 7, KF -9 N—ATi, EROFF R}
NR=ADF—=F X=X TR TR ETH o/, BIEAEBRLREOE D27 ViDL ST
HIENUEETHD.

Fald, RERZOVIFY2T7HEDLDIL, A7 V27 MY 7 Y2 THEY AT
A Visual CASE # AR LT %. Visual CASE 3RET LA T V27V EF N EHMAMARET—5
N=ZZHEDTOTHEINRTYS, KBTI}, Visual CASE # WY Va7V - 7Ok 54
EY 7 FEILE T, BfROREPBRSICERTETHLIEEFRT. T2, KVAT LD
ERB~DBHIZOWT LIRS,

A Product Specification Database
for Visual Prototyping

Kazutoshi Sumiya Kouichi Yasutake Hirohiko Tanaka
Takeshi Nawata Yoshihiko Imai

Matsushita Electric Industrial Co., Ltd.
Information and Communications Technology Laboratory
1006, Kadoma, Kadoma-Shi, Osaka, 571 JAPAN

E-mail:{sumiya, yasutake, hirohiko, nawata, imai}@isl.mei.co.jp

We propose a product specification database which is suited to product evolution, modeling
the product specification as an object. In this database, we propose a behavioral constraint
to maintain consistency. Furthermore, this database can manage visual specification, such as .
operational specification, which is hard to handle in an ordinary database.

We have been developing Visual CASE: an object-oriented software development system for
home appliances. Visual CASE is based on the object model we propose. In this paper, we show
that the product specification is easy to examine, using visual prototyping. We also discuss
implementation issues of the database applied to the home appliance software development

process.

—161—

1 Introduction

Prototyping methodologies have been of great interest
recently, and many results have been presented. However,
most of these approaches are applicable to programs but
not to other specifications, such as user operations[1]. The
user operations are the most important factors, especially
in the area of products with SUI (solid user interface),
for example, control machines and home appliances. It is
very difficult to design a specification of the product, be-
cause the specification is too complex to describe on text
and on paper documents. To solve the problem, we have
been developing Visual CASE: an object-oriented software
development system[15](2]. This system is based on the
object model we propose. The idea of the object model
is to incorporate the container object model[6] with the
constraints on the message passing mechanism and inher-
itance scheme.

Meanwhile, many new models of equipment such as mi-
crowave ovens and washing machines are put on the mar-
ket at least annually. Home appliances are characterized
by the constant releasing of newly designed products day
after day. There are many models and many designs for
one piece of equipment. For example, for microwave oven
- economy-model, grill-model, and convection-model
are models with differing functions. English-design,
French-design, and German-design are designs for spe-
cific markets. Generally, there are many candidates for
specification in real manufacture management. In our ex-
perience, 100s of candidates must be examined to produce
one product. As the divisions produce 100s of products
annually for just one change in basic model specifications,
10000s of candidates must be examined.

Candidates are regarded as versions of the products.
The version graph of a product family is very complex
because there are many versions in a certain basic model
and the basic model evolves itself frequently. Several
version models and configuration management techniques
have been proposed[4][13]. However, most of these models
and techniques are not efficient at maintaining consistency
among versions in large quantities. On the other hand,
multi-media database systems provide the framework to
handle many kinds of data[7]. However, these systems can
not handle the specifications, such as user operation and
indication of blinking LEDs and lamps.

Our approach to solving these problems is to make clear
the relationship between a new basic model and an old ba-
sic model. This is in respect to schema maintaining. The
class libraries are designed as candidates of the compo-
nents, and sets of the instance objects are designed as
product specifications. Our goal is to provide the objects
with high flexibility and reusability of product specifica-
tions. The flexibility of the objects enables product de-
signers to modify the product specifications partially in a
rapid and intuitive way. In other words, they can proto-

type the product specifications in a trial-and-error man-
ner. The reusability of the objects makes it easy to keep
track of product evolution. It enables product designers
to review the past specifications which correspond to the
up-to-date specifications. Consistency needs to be guaran-
teed between the class hierarchies and the instance objects
when the class hierarchy is being evolved. We developed
a database system to manage the class library and the
instance objects, using a release method.

The remainder of this paper is divided as follows: Sec-
tion 2 discusses requirements for visual prototyping. Sec-
tion 3 gives the data model and version management. Sec-
tion 4 discusses implementation issues of Visual CASE.
Section 5 summarizes our results and suggests our future
plan.

2 Visual Prototyping

Prototyping is effective in enhancing design quality
in the product development process, especially in the
software development process. Developers can examine
many candidates for a product through a trial-and-error
method. Many prototyping methodologies have been
proposed[1]. Most of these are designed for software de-
velopment. However, it is also necessary for developers to
manage other kinds of specifications. We propose a pro-
totyping methodology which is applicable to these speci-
fications, using visual description.

We discuss properties satisfied in a prototyping system.
In [3], the software prototyping environment should satisfy
the following properties: (1) Executability, (2) Fitness to
target environment, (3) Rapid constructibility and mod-
ifiability, (4) Refinability in stepwise fashion. In prop-
erty (1) and (2), an executable language and environment
should be satisfied. In property (3) and (4), a data man-
agement method should be established.

We claim that two properties are required in the prod-
uct manufacturing process: visualization and reusabil-
ity. The four properties described above are certainly im-
portant, however, these two properties are highly effective
for rapid prototyping.

¢ Visualization:
Program and specifications should be illustrated to
users. In addition, a visual interface should be pro-
vided to construct the specifications.

e Reusability:
Soundness of version graph should be maintained in
the development process. The old components should
work in the current schema.

Several visual prototyping methodologies have been
proposed[14]. One other prototyping tool for machine
control interfaces is CISP[5], which is an extension of Ap-
ple’s HyperCard, offering a series of features built on top

—162—

of the standard HyperCard capabilities. This tool allows
the user to simulate a system interface by clicking but-
tons on the CRT display. CISP is applied to the interface
design of VCRs. In this tool, there are two problems as
follows: One is that the design discussed cannot be han-
dled in the target system directly. The other is that the
approach could become unwieldy if care is not taken dur-
ing the scaling-up process, though it is easy to handle on
a small scale.

3 Product Specification Data-
base

In order to realize the visual prototyping of home appli-
ances, we propose the construction of a prototyping sys-
tem based on a database system storing product speci-
fications. This database system is the first of its kind.
In other words, this database system is a specially de-
signed multi-media database for home appliance develop-
ment. We call this database system a product specifica-
tion database. In this section, we propose the software
model that represents product specifications, and the ver-
sion management of the database.

3.1 Object Model

For the software model for home appliances, we claim
that a product specification is represented by functions
and user operations to fire them. To represent product
specifications, we apply our idea to the object-oriented
approach[12]. In other words, we view each product spec-
ification as an object: a product specification object.
In addition, a product specification object contains other
objects: component objects.

3.1.1 Product Specification Object

A product specification object is a container object
whose constituent elements are some component objects.
A product specification object corresponds to one partic-
ular product in the real world. A component object rep-
resents its function. Examples of component objects in
a washing machine are power button, timer, water level
LED, washing cycle button, and washing cycle.

The set of component objects is structured as a class
hierarchy (i.e. class library): a component class hier-
archy. In this class hierarchy, a descendant class inherits
from ancestral class information. Figure 1 shows a prod-
uct specification object that contains several component
objects. The arrows between objects indicate the mes-
sages.

It is possible to compose several product specification
objects from one component class hierarchy. In general,
a container object captures the framework to include its

Component Object

instance-of

Product Spedification Object

‘Component Class Hierarchy

Figure 1: Component Class Hierarchy and Product Spec-
ification Object

content objects and the operational mechanism to con-
strain them. Further discussions about container objects
can be seen in [17]. Unless the container object offers any
constraint, its constituent elements are free to enter and
leave their container. Thercfore, container objects can of-
fer a rather more flexible environment than the one that
composite objects provide since product designers are al-
lowed to attach and detach constituent elements to the
product specification.

LAUSIV! is a programming language in which the
object model we described is implemented. It is like
well-known object-oriented languages such as C++ and
Objective-C. The inheritance scheme of the state attribute
is extended in this language because the state attribute
must be considered distinct from other general attributes.
In addition, constraints among classes on the extended
messages passing mechanism are adopted.

class TimerControlSequence : ControlSequence{
/* definition of state atiributes */
state:
timer_state =
'waiting’,’setting’,’executing’};

/* definition of general atiributes */

attribute:
integer start_time; |
integer end_time;
integer

interval;
/* definition of behavior */

behavior:
SetTimer from < class TimerButton> {
if (timer_state == ’waiting’){
timer_state = ’setting’;
interval = end_time - start_time;

}

}

The above example describes the component class
TimerControlSequence, which is a direct descendant of
ControlSequence.

IThere is no meaning, but it is simply the word “visual”
reversed.

—163—

3.1.2 Consistency Management

Several frameworks for schema updates have been pro-
posed {11] [18]. In {18], two basic types of consistency are
discussed, namely structural and behavioral consistency.
Structural consistency refers to the static characteristic of
the database, and behavioral consistency refers to the dy-
namic part of the database. The behavioral consistency is
too severe to maintain schema, however, it is certainly use-
ful to check class hierarchies. Especially when a schema
evolves frequently (i.e. prototyping), we consider that the
consistency should allow a certain behavioral inconsis-
tency. We introduce weakly behavioral consistency
to maintain schema reasonably. Weakly behavioral con-
sistency is maintained by the two types of constraint given
below. The constraint prevents the method from failing
(i.e. run-time errors) and from changing the behavior (i.e.
the expected method’s result is different).

In the constraint we propose, a component object can
designate a component class as the receiver class instead
of a particular instance of the class in sending a message.
The message issued by the object will be delivered to the
object(s) belonging to the receiver class if such object(s)
exists.in the container object. Otherwise, the constraint
mechanism will look for another object that belongs to
the descendant of the designated receiver class. If no such
objects are found, the message will be ignored or cause an
error reply as in the former case. Also, a component object
can designate a component class as the sender class for a
particular behavior. Namely, the behavior will be fired
only by the messages that the objects belonging to the
sender class or its descendant classes dispatch. Messages
sent from unspecified classes will be discarded or cause
an error reply. As a whole, our proposing constraint is
characterized by the following:

the message sender can specify a
receiver class instead of a particular object in sending
messages. The sender constraint is represented by the

Sender Constraint:

following notation:

<class ReceiverClassName> <- MessageName
Receiver Constraint: the message receiver can spec-

ify a sender class in declaring behavior. The receiver

constraint is represented by the following notation:

MessageName from <class SenderClassName>

In the following example, we show the constraints in
Figure 2.

/* Sender Class =/
class TimerButton : Button {

behavior:
ButtonOn {

[< class TimerControlSequence> <- SetTimer];

}
}

TimerCantrol
Sequence abject

TimerButton §

Receive Constraint

Figure 2: A Constraint among Component Objects

/* Receiver Class */

class TimerControlSequence : ControlSequence {

behavior:
SetTimer from < class TimerButton> {

}
}

In Figure 2, the component class TimerButton de-
clares the component class TimerControlSequence as
a receiver class of the message SetTimer. Simi-
larly, the component class TimerControlSequence des-
ignates TimerButton as a sender class of SetTimer.
As a result, the relationship between TimerButton and
TimerControlSequence is described by the constraint im-
posed on the message sending mechanism relating to
SetTimer.

3.2 Version Management

There are many versions of a product specifica-
tion object, because it is possible to compose sev-
eral product specification objects from one compo-
nent class hierarchy.
oven — ’94-English-design, ’94-French-design and
’94-German-design are composed from the component
class hierarchy ’94-GRILL-MODEL. On the other hand, a
component class hierarchy is evolved by adding classes,
modifying classes, and removing classes. For example,
a product modification for a microwave oven - from
’94-GRILL-MODEL to ’95-GRILL-MODEL, the component
class 10-MinutesButton is attached and the component
class SteamSensor is modified. The relationship between
the component class hierarchy and the product specifica-
tions may be contradictory in the evolution. For example,
as SteamSensor is modified in the product modification,
’94-English-design and ’94-German-design will work.
However, ’94-French-design won't work, because the
combination of new SteamSensor and ’94-GRILL-MODEL
components are not compatible only in this case.

We propose a configuration management method to
solve this problem, which is called the release method.
This method prevents a component class hierarchy de-

For example, for a microwave

—164—

Current List of
Product Specification Object

Figure 3: Release Method

structing if its hierarchy evolves. Figure 3 shows the re-
lease method as follows:

Phase 1 The product specification object al is com-
posed from current component class hierarchy a. In
the same way, a2 and a3 are also composed. In this
case, the current list of product specification objects
includes a1, a2, and a3.

Phase 2 A class in « is modified and new product spec-
ification object bl is composed. At this time, if a2
has a modified class object, we must check whether
the product specification is contradictory to o. If it
is not contradictory, go to Phase 3a. Otherwise go to

Phase 3b.

Phase 3a The current component class is 8 evolved
from o and the current list of product specification
objects includes a2. '

Phase 3b The current component class is 38 evolved
from a and a2 is released to rel a2 with rel . In
this case, the current list of product specification ob-
jects does’nt include a2.

The released version of the product specification ob-
Ject is detached from the current list of product speci-
fication objects. At this time, the component class hi-
erarchy, from which the product specification object is
composed, is detached and stored with the product spec-
ification object. The reason why the component class
hierarchy is also stored is as follows: (1) The product

specification object is guaranteed to work completely. (2)
The component class hierarchy evolves individually. In
this way, it is easy to distinguish the released version
from the current main version of the component class hi-
erarchy. For example, the released version of the com-
ponent class hierarchy NorthEuroean-MODEL evolves to
Sweden-MODEL and Norway-MODEL, and still more branches
to NorthAmerican-MODEL and so on.

We implement our object model on two databases. One
of the databases is the product specification database
which manages versions of product specification objects.
The other database is the component database which
manages the versions of class hierarchies. We compose
product specification objects in the product specification
database from component objects defined in the compo-
nent database. Figure 4 shows the relationship between
the component database and the product specification
database.

4 Implementation

In this section, we describe implementation issues of the
database functions in the manufacturing process. In sec- -
tion 4.1 we describe the system architecture of the Visual
CASE system. In section 4.2, we discuss evaluation of
Visual CASE system.

—165—

Product Specification Database

Component Database

3

A

éﬁ %

A

Figure 4: Component Database and Product Specification
Database

4.1 Architecture of Visual CASE

Visual CASE is a software development system specif-
ically designed for the embedded software in home appli-
ances and provides a framework which can be used by all
the developers: product planners, product designers, and
software developers. The architecture of Visual CASE
supports various software development stages from the
conceptual specification design to executable code gener-
ation. Visual CASE runs on Sun OS with Open Windows
2.0 and Object-Oriented Application Development Soft-
ware “ActivePage” [8].

Specification Object

Program Component

Figure 5: Visual Components and Program Components

The component objects dealt with in Visual CASE have
not only a level representing a function of a component but
another two levels. In other words, a component object is
linked to two subcomponents: a visual component and a
program component. To simulate product operations, Vi-
sual CASE uses the visual component. To synthesize the

executable program, Visual CASE uses the program com-
ponent. Figure 5 shows the relationship of components
and these subcomponents.

Figure 6 shows the architecture of Visual CASE. Vi-
sual CASE consists of six tools and five managers®. The
tools provide the developers with the interface to manipu-
late products and components in the product specification
database and the component database. The managers
provide the tools with the interface to access the product
specification database and the component database.

Visucal CASE DBMS

tools.

A Component
B

Component
Edior
Product Specitication|
Editor
Product Specitication|
Presentor
Program I
nthesizar
L Sy
3

T y
Product L 3
{

i Produat ’§ Bower 1

Figure 6: Architecture of Visual CASE

Visucal CASEDB

]
component |1

Manager

==

—

Product
Spediication

[|

Product Specification DB

?
{
E
i

The component editor provides the developers with
an interface to create, delete and modify a component ob-
ject. The component browser provides the developers
with an interface to traverse a component class hierarchy
and paste a component object on a product specification
object. The product specification editor allows the
developers to create, delete and modify a product speci-
fication object. The product specification presenter
allows the presentation of the appearance of a product
specification object on the CRT display. The developers
can operate the 'pseudo’ product on the CRT display. The
program synthesizer generates a control skeleton of the
program. This synthesizer uses program components to
collect program fragments. The product specification
browser provides the developers with an interface to tra-
verse the product specification database. These tools have
a graphical user interface on the CRT display.

The component manager reccives the request to re-
trieve and store the component objects from the compo-
nent browser and the component editor, and to pass the
class definitions to the product specification editor. The

2The product specification browser, the component query
manager, and the product specification query manager are yet
to be implemented. '

—166—

POPO)

[was button| [rinse button][spin button |

A, -4(BP)
$3,12(BP), AX
-4 (BP),DX

Figure 7: Screen Image of Development using Visual CASE

product specification manager receives the request to
retrieve and store the product specification objects from
the product specification editor, product specification pre-
senter, and program synthesizer. The component query
manager and the product specification manager re-
ceive the request to search the component object and the
product specification object from the component browser
and product specification browser.

The consistency manager observes the consistency
between the current class hierarchy and the current list of
product specification objects. The component manager
receives the request from the cnsistency manager to check
which class hierarchy is current and which classes are mod-
ifying. The product specification manager receives the re-
quest from the consistency manager to check the current
list of product specification objects. The release manager
transfers the released component class hierarchy and prod-
uct specification objects into the component database and
the product specification database respectively, using the
access methods of the DBMS(core).

The Visual CASE DBMS(core) provides access methods
of the component database and the product specification

database to all managers. The DBMS is implemented on
ActivePage. As ActivePage adopts Objectivity /DB[10] as
a storage manager, the DBMS indirectly accesses Objec-
tivity/DB through ActivePage standard functions. The
component database has two storages: working storage
and released storage. The product specification database
has also two storages: working storage and release stor-
age. The working storages include the current versions
and the released storages include the released versions.

4.2 Evaluation

Figure 7 shows the screen image usign Visual CASE to
examine the specifications of a washing machine®[9].
Figure 7, the bottom right part of shows the product speci-
fication presenter presents all the visual subcomponents of
the component objects contained in the product specifica-
tion object of a particular washing machine. The bottom
right part shows the view of the component browser for a
particular component object. The top part of shows the

3The control panel of this product was designed by Visual
CASE and actually put on the market.

—167—

view of the component editor.

Our study shows that Visual CASE reduced the time
to fix the initial conceptual design by a factor of 20%(16].
The major reason for this remarkable effectiveness is the
fact that Visual CASE eliminates the unnecessary produc-
tions of physical mockups thanks to its visual prototyping
ability. Due to the interdependent relationship between
the parts of the development process, if the design of the
part could not be decided, the next stages would also be-
come delayed. As a whole, Visual CASE can cut 50% off
the time of overall software production processes.

5 Conclusions

We have described a framework for prototype tech-
niques of software development. Our approach is to de-
sign a data model for product specifications: the product
specification object and the component object, to provide
the release method and to construct a product specifica-
tion database. The main advantage of the database is its
ability to manage the consistency of class hierarchies and
instance objects in large quantities.

We have also discussed implementation issues of the
database applied to Visual CASE: an object-oriented soft-
ware development system for home appliances. Visual
CASE has been applied to the real manufacture manage-
ment process. A control panel designed by Visual CASE
has actually been put on. the market. The case study
has shown that Visual CASE reduced the time to fix the
initial conceptual design effectively and the users continu-
ously made good use of Visual CASE for the development
process.

The four properties described in Section 2 are satisfied
in Visual CASE as follows: (1) The system can examine
functions and performance using visual description. (2)
The system can maintain compatibility between proto-
type and target software by synthesizing a program from
the code fragments. (3) The system can easily modify the
specification with an interface through visual tools using
the databases. (4) The system can manage the evolution
of the specifications by the release method while main-
taining consistency. We also have a plan to verify and
test the specifications on this object model.

Acknowledgments

We gratefully acknowledge helpful discussions with
Yoshifumi Masunaga, professor at University of Library
and Information Science, on several points in this paper.
We would also like to thank Katsumi Tanaka, professor
at Kobe University, for the advice on the model we pro-
pose. Visual CASE is a result of a team effort. Other
team members include Norio Sanada, Takuya Sekiguchi,
Toshihiro Hishida, and Satoshi Kawabata.

References

[1] V. Scott Gordon and James M. Bieman. Rapid prototyp-
ing: Lessons learned. IEEE Software, 12(1):85-95, 1995.

[2) Y. Imai, K. Sumiya, K. Yasutake, and S. Haruna. Visual
CASE: A Software Development System for Home Appli-
ances. COMPSACY3, pages 11-18, 1993.

K. Itoh, Y. Tamura, and S. Honiden. TransObj: Software
prototyping environment for real-time transaction-based
software system applications. Software Engineering and
Knowledge Engineering, 2(1):5-30, 1992.

{4] R. H. Katz. Toward a Unified Framework for Version Mod-

eling in Engineering Databases. ACM Computing Surveys,

22(4):375-408, 1990.

Halskov Kim and H. Peter Aiken. Experiences Using Co-

operative Interactive Storyboard Prototyping. CACM,

36(4):57-64, 1993.

[6] W. Kim, J. Banerjee, H. T. Chou, and J. F. Garza. Com-
posite Object Revisited. ACM SIGMOD, pages 337-347,
1989.

[7] Y. Masunaga. Design issues of OMEGA: An object-

oriented multimedia database management system. Jour-

nal of IPSJ, 14(1):60-74, 1991.

Yoshiyuki Miyabe. Object-Oriented Multi-Media Applica-

tion Development Software. 8th German-Japanese Forum

on Information Technology, 1993.

[8] Y. Nukina, W. Uchiyama, H. Fujii, Y. Omura,

K. Iwamoto, and H. Tanaka. Washing machine with dou-

ble cascades. National Technical Report, pages 3-9. Mat-

sushita Electric Industrial Co., 1995. (in Japanese).

[3

[5

(8

[10] Objectivity. Objectivity Database System Overview. Ob-

jectivity Inc., 1990.

Sylvia L. Osborn. The Role of Polymorphism in Schema
Evolution in an Object-Oriented Database. I[EEE on
Trans.Knowledge and Dala Engineerings, 1(3):310-317,
1989.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design.
Prentice Hall, 1991.

11

(12}

{13] E. Sciore. Multidimensional Versioning for Object-

Oriented Databases. In proceedings of 2nd DOOD, 1991.

Nan C. Shu.
hold, 1991.

K. Sumiya, T. Ohtsu, S. Haruna, and Y. Imai. Visual
CASE: An Object-Oriented Software Development Sys-
“tem for Home Appliances. TOOLS USA, pages 97-107.
Interactive Software Engineering, 1993.

H. Tanaka, S. Abe, W. Uchiyama, E. Ishizaki, T. Nawata,
and Y. Imai. Prototyping System for Home Appliances
— Case Studies in Control Panel Design. Quality Man-
agement Symposium on Software Production, pages 9-16,
1994. (in Japanese).

K. Tanaka, S. Nishio, M. Yoshikawa, S. Shimojo, and
T. Jozen. Obase: An Instance-Based Object Database
System with Dynamic Inheritance and' Active Rule Mech-
anisms. IPSJ SIGDBS Tech. Rep., 94-DBS-100, pages
87-96, 1994.

R. Zicari. A Framework for SchemavUpdates In An Object-
Oriented Database System. ICDE, pages 2-13, 1991.

{14] Visual Programming. Van Nostrand Rein-

(18]

[16]

(7]

(18]

—168—

