
IPSJ SIG Technical Report

2019 Information Processing Society of Japan 1

Transparent SQL Injection Defense Method
using Programming Language Constructs

YUKI MUKASA1,a) AKIHITO NAKAMURA1,b)

Abstract: SQL injection (SQLI) is a type of the most serious and well-known vulnerability for any server-side application with
a back-end database. It can typically lead to confidentiality and integrity failures: exposure, defacement, or destruction of
information. An attacker passes malicious strings as inputs to the application; they are injected into SQL statements and
unexpected commands are executed. In this paper, we discuss how to defend against SQLI attacks in a fundamental way. The
proposed method utilizes programming language constructs to detoxify dangerous SQL statements even if the application code is
vulnerable to SQLI. Input strings dynamically passed to applications are marked and tracked for any concatenation by the
language runtime. If an externally-influenced string is injected into an SQL statement, the statement is automatically converted
into a parameterized statement and the string is treated as just a value and can't be an SQL fragment. We demonstrate the
feasibility by two different types of programming language and construct: metaprogramming in Ruby and source code
transformation in JavaScript. Our method eliminates the problems of programmer involvement, false negatives or positives, and
additional infrastructures, while it is defensible against the most types of SQLI attacks. The performance degradation is
negligible for common Web application components and environments.

Keywords: SQL injection attack, software vulnerability, unauthorized access, information leakage

1. Introduction

SQL injection (SQLI) is a type of the most serious and
well-known vulnerability for any server-side application with a
back-end SQL database [19,20]. SQLI vulnerabilities can
typically lead to confidentiality and integrity failures: exposure,
defacement, or destruction of information. In addition, user
authentication and/or authorization could be ruined. In 2010,
2013, and 2017, injection vulnerability, including SQLI, was
rated the number one attack on the OWASP Top 10: the 10 most
critical Web application security risks [1]. Also, SQLI is ranked
6th in the 2019 Common Weakness Enumeration (CWE) Top 25
-- Most Dangerous Software Errors list [2]. These facts show the
severity of the SQLI vulnerabilities and need for defense efforts.
 SQLI vulnerabilities are caused by incorrect filtering of user
inputs which could be used as parts of SQL statements. If inputs
from users or external systems are injected into SQL statements,
attackers can potentially abuse the application to execute
malicious commands on the database. A considerable amount of
research on SQLI defense has been conducted [3,4]. Those
methods can be classified into three categories: defensive coding,
vulnerability detection, and runtime prevention. Defensive coding,
also known as secure coding, is a practice of developing software
in a way that guards against the accidental introduction of
vulnerabilities. Parameterized statements are well-known
technique in this category [20]. The practice depends heavily on
programmers' knowledge and skill and thus, error-prone.
Vulnerability detection is a method to detect SQLI vulnerabilities
in source code [5,6,7,8,9,10,11,12]. In general, this type of
method has limited scalability or could result in false negatives or
positives. Runtime prevention methods involve mechanisms to
mitigate SQLI attacks by checking runtime SQL statements
[13,14,15,16,17]. The difficulties in this type of method include

 1 University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan
 a) m5221150@u-aizu.ac.jp
 b) nakamura@u-aizu.ac.jp

the exhaustive identification of inputs and the modeling of
legitimate statements.
 In this paper, we discuss how to defend Web applications
against SQLI attacks in a fundamental way. A new runtime
method is proposed and its implementations in different types of
programming languages are demonstrated. The method utilizes
language constructs to detoxify dangerous SQL statements even
if the application code is vulnerable to SQLI. Input strings
dynamically passed to applications are marked and tracked by the
language runtime. If an externally-influenced string is injected
into an SQL statement, it is automatically converted into a
parameterized statement and the string is treated as just a value
and can't be an SQL fragment. We demonstrate the feasibility by
two different types of programming language and construct:
metaprogramming in Ruby and source code transformation in
JavaScript. Our method eliminates the problems of programmer
involvement for defensive coding, false negatives or positives
caused by incompletion of taint-based vulnerability detection,
and additional infrastructures.
 The remainder of this paper is organized as follows. In section
2, we introduce some background concepts. Section 3 and 4
describe our method for SQLI defense and implementations in
specific programming languages and environments, respectively.
Section 5 evaluates the method in quantitative and qualitative
forms. Section 6 concludes the paper.

2. Background

Here, we briefly explain how the SQLI vulnerabilities are
exploited and how the vulnerabilities are fixed.

2.1 Three-Tier Architecture for Web-based Systems
A typical Web-based system has three-tier architecture:
presentation (user interface), domain logic (application
processing), and data management. The presentation tier displays
information related to the application. It runs in a Web browser
deployed on a user's device. The domain logic tier controls

Vol.2019-DBS-170 No.11
2019/12/24

IPSJ SIG Technical Report

2019 Information Processing Society of Japan 2

application functionality on an application server. The data
management tier includes data storage and access functions
which are provided by a database management system on a
database server. The most widespread data model and query
language for databases are the relational model and SQL [18].

2.2 SQLI Vulnerabilities and Attacks
One of the root causes of SQLI is the creation of SQL statements
as strings in the application code without correct neutralization of
special elements [19,20]. This behavior, commonly known as
dynamic string building or dynamic SQL, allows the injection of
externally-influenced input that could modify the intended SQL
statements.

As an example, we show an application component for user
authentication which is vulnerable to SQLI. In Figure 1, the left
and right parts represent the user interface and the SQL statement
which is created by the code shown in Listing 1, respectively.

WHERE username=‘a’ OR 1=1;
AND password=‘ ’;

WHERE username=‘a’ OR 1=1

Figure 1: Example SQLI to bypass authentication

Listing 1: SQLI-vulnerable authentication code

The SQL statement is optimized as follows.
(a) A SELECT statement is created by dynamic string building

(Listing 1, lines 2-4). The input strings " " and
" ", passed as the arguments and ,
are concatenated with the SQL fragments.

(b) Since is the mark of a start of comment in SQL syntax,
the rest of the statement is ignored.

(c) The evaluation of is always true; the condition given by
the WHERE clause becomes empty by a tautology.

The resultant SQL statement is " " by
which all the user accounts are retrieved. If the database contains
at least one user account, the condition of the block is false
(line 6), and therefore, the authentication is bypassed.

2.3 Parameterized Statements: An SQLI Defense Method
One of the defensive coding practices against SQLI is the use of
parameterized statements (or prepared statements) [20]. It
defines the structure of an SQL statement and the structure does
not change after the combination of inputs. As a result, it
eliminates injections that change the structure of expected

statements. The method is the best solution to SQLI defense but
is highly dependent on developers' knowledge and care.
 Listing 2 shows a revised code of that in Listing 1 using a
parameterized statement. An SQL statement on lines 2-4 is a
template with parameters (or placeholders) specified by the
question marks " ". A function call on line 5 sends the
template to a database server to precompile. The next call

 binds values for the parameters; two input values
 and are passed to the database server and the

completed statement is executed.
 A parameter can only store a value and not an SQL fragment.
For example, a string " " shown in Figure 1 is
interpreted as a string value, neither a logical disjunction nor a
start of comment . As a result, the parameterized statement
prevents the construction of unintended SQL statements by
enforcing the separation between data and code.

Listing 2: SQLI-defensed authentication code

3. Transparent SQLI Defense Method

In this section, we present the proposed SQLI defense method.

3.1 User Input Tracking
To implement taint-based SQLI detection, first we assume an
abstract language construct which extends the existing data
structure for the string type object and the related operations in
the target programming language. This construct is referred to as
extended string system (ESS). It has two functions: user input

marking and mark propagation.
3.1.1 User Input Marking
The ESS data structure has two parts: a string and marks as a list
of slice indexes. Strings are indexed with the first character
having index 1. For a string S and indexes a and b (a < b), a slice
S[a,b] is a substring of S which is started from position a
(included) to b (excluded). For example, "abcdefg"[2,4] is "bc".

Figure 2: User input marking and marked strings

 Figure 2 shows the ESS data structure and examples of user
input marking. ESS marks two inputs which are passed as
username and password from a Web browser. They are stored in
two ESS objects and their marks are [1,14] and [1,6].
3.1.2 Mark Propagation
SQLI happens when the application code builds SQL statements

Vol.2019-DBS-170 No.11
2019/12/24

IPSJ SIG Technical Report

2019 Information Processing Society of Japan 3

by concatenating strings, including SQL fragments and user
inputs. While the strings are concatenated, the ESS marks should
be kept to check if the statement includes user inputs at a later
time. This function of ESS is referred to as mark propagation.
 Figure 3 shows an example. Suppose that an SQL statement is
built from two user inputs shown in Figure 2. First, in step (a), a
fragment of SELECT clause and the user input for username,
which has a mark [1,14], are concatenated. The resulted ESS
object, in step (b), has a mark [36,49] because the user input is
started from position 36 to 49. Then, the second input is
concatenated for password. The resultant ESS object, in step (c),
has two marks [36,49] and [65,70].

Figure 3: String concatenation and mark propagation

3.2 Defense Procedure
Figure 4 shows the procedure to mitigate SQLI. A Web
application interface receives requests from clients and parses
them for further processing. Query generation logic is a part of
application code to build SQL statements passed to the database
server via database driver.

Figure 4: SQLI defense procedure

 In addition to ESS, two small extensions are installed to
intercept user inputs and SQL statements in order to mark the
strings and detoxify the statements. The former extends the Web
application interface for user input hooking and the latter extends
the database driver for SQL statement hooking.
 The procedure is executed through the following steps.

(a) User input hooking: When the Web application interface
module receives user inputs, it parses them and creates
string objects.

(b) User input marking: The ESS marking function is called by
the Web extension. ESS objects are created for each input.

(c) Mark propagation: When a new string is created by
concatenating two strings, the marks are integrated and
updated properly.

(d) SQLI detoxification: When an SQL statement is passed to
the database driver, the extension generates a corresponding
parameterized statement, binds the parameter values, and
executes the statement.

Figure 5 shows the details of SQLI detoxification process.
Here, let's suppose that a string SQL statement S is created by the
query generation logic in the application. As same as the previous
examples, inappropriate username and password are passed and
embedded in S. The positions of the user inputs are marked in the
ESS object: marks [36,49] and [65,70].

The detoxification process is executed as follows.
(d1) Parameterization: ESS replaces the user input slices with

parameter placeholders (" "). PS is the resultant
parameterized statement.

(d2) Parameter binding: The database extension calls a
function, provided by the database driver, to prepare the
parameterized statement. Then, every user input slice is
bound to PS in sequence by calling a bound function also
provided by the database driver.

(d3) Execution: Finally, the database extension executes PS
with the bound parameters by passing it to the SQL
execution function provided by the database driver.

Figure 5: SQLI detoxification

4. Implementation

In this section, we describe how to implement the proposed
method in specific programming languages and application
environments. In order to demonstrate the feasibility of the
method, two different types of programming language widely
used for Web applications were chosen: Ruby and JavaScript.

4.1 Metaprogramming in Ruby
A straightforward way to track user input in code is to modify a
data structure for string objects and the related operations in a
programming language. There are a few languages in which such
feature extension is possible at user level, and even at runtime.
Ruby has an innate dynamic metaprogramming construct; it is
possible to write code that manipulates itself at runtime [21].

Vol.2019-DBS-170 No.11
2019/12/24

IPSJ SIG Technical Report

2019 Information Processing Society of Japan 4

4.1.1 Extended String System (ESS)
Listing 3 shows code in which the original class in Ruby
is extended. redefines a method of the class: a
concatenation operator (lines 5-9). In fact, the operator is
syntactic sugar for the method in Ruby.
 A method named realizes the user input marking. The
marks in ESS are stored in the instance variable . When
strings are concatenated, the method is invoked instead
of to implement the mark propagation.
4.1.2 Defense Procedure
As described in section 3.2, the installation of Ruby ESS requires
two extensions to an application environment: user input hooking
and SQL statement hooking. In this implementation, we chose
frequently used components: Rack [22] and Mysql2 [23] for Web
application interface and database driver, respectively.

Listing 4 shows the extensions. extends
which is the request parser of Rack. It intercepts user inputs given
by and calls the ESS method to mark them (lines
9-11). Next, extends of Mysql2. The
method invokes an execution of SQL statement, given as a string
parameter , which could be created by dynamic string
building. If the string is marked, it should be intercepted (line 22).
If so, creates a parameterized statement, binds the
parameters, and execute the statement (lines 24-26).

4.2 Source Code Transformation in JavaScript
We utilize a source code transformation technique for JavaScript
because of lack of a metaprogramming construct.
4.2.1 Extended String System (ESS)
JavaScript supports an abstract syntax tree (AST) manipulation.
This feature can be used for source code transformation, i.e.
compiler, in static and dynamic manners [24]. This construct is
used to implement ESS.
 Listing 5 shows the implementation of ESS in JavaScript. The
positions of user inputs are stored in the variable. The
marking and propagation are implemented as and

 functions, respectively.

Figure 6: Source code transformation in JavaScript

4.2.2 Source Code Transformation
Figure 6 shows the transformation of source code as AST. In
JavaScript, a concatenation of two strings is a binary expression
whose operator is and operands are the and strings.
Figure 6 (a) represents an AST for this expression.

To implement the user input tracking, the binary expression is
replaced with a call expression to a function named . A
transformed AST is shown in Figure 6 (b). This function
implements the mark propagation as shown in Listing 5. We
adopt ESTree [25] as the specification of JavaScript AST.
4.2.3 Defense Procedure
Listing 6 shows the code to implement the defense procedure. We
adopted Express [26] and Mysql [27] for Web application
interface and database driver, respectively.
 An Express application is essentially a series of middleware

function calls, including access to request and response objects.
This scheme is convenient to implement the user input hooking.
A middleware intercepts user inputs stored in the request
object, then creates an object of type and calls the

 method to mark each (lines 4-8). The
function is a database extension using Mysql driver. If the type of
the SQL statement, given as a parameter , is ESS (line 16), the
statement includes at least one user input. Therefore, a
parameterized statement is created and the bound parameters are
extracted (lines 22-23).

5. Evaluation

In this section, we show the evaluation results of the proposed
method and its implementations. A test application is prepared; it
only has an authentication function in which combinations of
username and password are checked against user accounts in a
database as shown in Figure 1. There are two versions of the
application: Ruby and JavaScript. In addition, there are two
implementations for each language: SQLI-vulnerable and
SQLI-defensed. The latter incorporate the proposed method.

5.1 Correctness
First, we tested how the system is accurate at preventing SQLI
attacks. One way to evaluate this is to create real SQLI attacks.
We utilized sqlmap [28], a penetration testing tool that automates
the process of detecting SQLI vulnerabilities. The results show
that no SQLI vulnerability was detected in the SQLI-defensed
implementations in both Ruby and JavaScript, while a few
vulnerabilities were certainly detected in the vulnerable ones.
That is, the method can provide protection against the attacks.

5.2 Performance
Here, we show the overhead introduced by the proposed method.
The performance measurement employed the platform and
components shown in Table 1. Both the client and servers run on
the same host. In JavaScript, the application source code was
transformed before the execution using Babel compiler [24].
5.2.1 Response Time
First, the performance of the application was measured by
response time experienced by the users. The response time is the
time duration from initiating an HTTP request to receiving the
HTTP response from the application.

Vol.2019-DBS-170 No.11
2019/12/24

IPSJ SIG Technical Report

2019 Information Processing Society of Japan 5

 Table 2 shows the measurements; the average of 10 thousand
measurements. The overhead of the SQLI-defensed Ruby
application, 13.81%, is conspicuous but the absolute value
0.39ms is small and negligible in most human-interactive
applications. In JavaScript, the proposed method brought a good
outcome because the precompilation of parameterized statements
and static transformation of source code probably overcomes the
increase of code.

Table 1: Performance evaluation environment
Platform Google Compute Engine, n1-standard-1

CPU: Intel Xeon 2.20GHz 1Core, RAM: 3.75GB
OS Debian GNU/Linux 9, kernel 4.9.0-9-amd64
Ruby Ruby 2.3.8
Web app I/F Rack 2.0.7 [22]
Database driver Mysql2 0.5.2 [23]
JavaScript Node.js 10.16.2, V8 [29,30]
Web app I/F Express 4.17.1 [26]
Database driver Mysql 2.17.1 [27]
DBMS Maria DB 10.1.38

Table 2: Response time (ms)

 Ruby JavaScript

Original 2.85 1.78
Proposed 3.24 1.68
Overhead 0.39 (13.81%) -0.10 (-5.62%)

5.2.2 Memory Usage
Next, we show the memory overhead; how much memory is
being used by the application under test. Resident set size (RSS)
was measured as a quantitative metric. RSS is the real memory
size of the process, including the heap, code segment, and stack.
 Table 3 shows the memory usage of Ruby and JavaScript
implementations. There are two measurements; "i" means the
initial state, i.e. before receiving the first request and "r" means
the state after execution of 10 thousand requests. The overhead of
the method is very little: 4.33% and 0.72%. This is mainly caused
by the ESS data structure and additional code. The results show
that the performance degradation is negligible for Web
applications made of common components.

Table 3: Memory usage (Kbytes)
 Ruby JavaScript
 RSSi RSSr RSSi RSSr

Original 24.65 27.41 40.73 45.99
Proposed 24.69 28.60 40.80 46.32
Overhead 0.04

(0.17%)
1.19

(4.33%)
0.07

(0.17%)
0.33

(0.72%)

6. Concluding Remarks

In this paper, we discussed how to defend against SQLI attacks in
a fundamental way. We have developed a practical method in an
application transparent way. The proposed method utilizes
programming language constructs to detoxify dangerous SQL

statements even if the application code is vulnerable to SQLI. We
also demonstrated the feasibility by two different types of
programming language and construct: metaprogramming in Ruby
and source code transformation in JavaScript. The proposed
method and implementations successfully eliminate the problem.
Our plans for future work include implementation in other
programming language, including PHP and Python.

Reference
[1] OWASP Top 10, 2010, 2013, 2017.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
[2] MITRE: 2019 CWE Top 25 Most Dangerous Software Errors.

https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
[3] Shar, L. K., Tan, H. B. K.: Defeating SQL Injection, IEEE Computer,

vol.46, no.3, 2013, pp. 69-77.
[4] Steiner, S., et al.: A Structured Analysis of SQL Injection Runtime

Mitigation Techniques, Proc. of the 50th Hawaii International
Conference on System Sciences, 2017, pp. 2887-2895.

[5] Shin, Y., et al.: SQLUnitGen: Test Case Generation for SQL
Injection Detection, TR-2006-21, North Carolina State University.

[6] Fu, X., Li, C.-C.: A String Constraint Solver for Detecting Web
Application Vulnerability, Proc. of the 22nd Int’l Conf. on Software
Engineering and Knowledge Engineering, 2010, pp.535-542.

[7] Kieyzun, A., et al.: Automatic Creation of SQL Injection and
Cross-Site Scripting Attacks, Proc. of the 31st Int’l Conf. on
Software Engineering, 2009, pp.199-209.

[8] Alshahwan, N., Harman, M.: Automated Web Application Testing
Using Search Based Software Engineering, Proc. of the 26th Int’l
Conf. on Automated Software Engineering, 2011, pp.3-12.

[9] Livshits, V. B., Lam, M. S.: Finding Security Vulnerabilities in Java
Applications with Static Analysis, Proc. of the 14th USENIX
Security Symposium, 2005, pp.271-286.

[10] Xie, Y., Aiken, A.: Static Detection of Security Vulnerabilities in
Scripting Languages, Proc. of the 15th USENIX Security Symposium,
2006, pp.179-192.

[11] Wassermann, G., Su, Z.: Sound and Precise Analysis of Web
Applications for Injection Vulnerabilities, Proc. of the 28th
SIGPLAN Conf. on Programming Language Design and
Implementation, 2007, pp.32-41.

[12] Pietraszek, T., Berghe, C. V.: Defending Against Injection Attacks
Through Context-Sensitive String Evaluation, Proc. of the Int’l
Workshop on Recent Advances in Intrusion Detection, LNCS 3858,
Springer, 2005, pp.124-145.

[13] Boyd, S. W., Keromytis, A. D.: SQLrand: Preventing SQL Injection
Attacks, Proc. of the Int’l Conf. on Applied Cryptography and
Network Security, LNCS 3089, Springer, 2004, pp. 292-302.

[14] Buehrer, G., et al.: Using Parse Tree Validation to Prevent SQL
Injection Attacks, Proc. of the 5th Int’l Workshop on Software
Engineering and Middleware, 2005, pp.106-113.

[15] Halfond, W. G. J., et al.: WASP: Protecting Web Applications Using
Positive Tainting and Syntax-Aware Evaluation, IEEE Trans. on
Software Engineering, vol. 34, no.1, 2008, pp. 65-81.

[16] Liu, A., et al.: SQLProb: A Proxy-based Architecture towards
Preventing SQL Injection Attacks, Proc. of the 2009 Symposium on
Applied Computing, 2009, pp.2054-2061.

[17] Su, Z., Wassermann, G.: The Essence of Command Injection Attacks
in Web Applications, Conf. Record of the 33rd SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2006,
pp.372-382.

[18] Date, C. J., Darwen, H.: A Guide to SQL Standard (4th ed.), Addison
Wesley, 1996.

[19] MITRE: CWE-89: Improper Neutralization of Special Elements
used in an SQL Command ('SQL Injection').

Vol.2019-DBS-170 No.11
2019/12/24

IPSJ SIG Technical Report

2019 Information Processing Society of Japan 6

https://cwe.mitre.org/data/definitions/89.html
[20] Clarke-Salt, J.: SQL Injection Attacks and Defense (2nd ed.),

Syngress, 2009.
[21] Perrotta, P.: Metaprogramming Ruby (2nd ed.), Pragmatic Bookshelf,

2014.
[22] Rack. https://github.com/rack/rack
[23] Mysql2. https://github.com/brianmario/mysql2
[24] Babel. https://babeljs.io/
[25] The ESTree Spec. https://github.com/estree/estree
[26] Express. https://expressjs.com/
[27] Mysql. https://github.com/mysqljs/mysql
[28] sqlmap. http://sqlmap.org/
[29] Node.js. https://nodejs.org/
[30] V8 JavaScript Engine. https://v8.dev/

Listing 3: User input tracking in Ruby

Listing 4: Defense procedure in Ruby

Listing 5: User input tracking in JavaScript

Listing 6: Defense procedure in JavaScript

Vol.2019-DBS-170 No.11
2019/12/24

