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Abstract: GPUs are playing an increasingly important role in general-purpose computing. Many algorithms require
synchronizations at different levels of granularity in a single GPU. Additionally, the emergence of dense GPU nodes
also calls for multi-GPU synchronization. Nvidia’s latest CUDA provides a variety of synchronization methods. Until
now, there is no full understanding of the characteristics of those synchronization methods. This work explores im-
portant undocumented features and provides in-depth analysis of the performance considerations and pitfalls of the
state-of-art synchronization methods for Nvidia GPUs. The provided analysis would be useful when making design
choices for applications, libraries, and frameworks running on single and/or multi-GPU environments. We provide a
case study of the commonly used reduction operator to illustrate how the knowledge gained in our analysis can be
useful. We also describe our micro-benchmarks and measurement methods.
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1. Introduction
GPUs have been playing an increasingly important role in

general-purpose computing. Different scientific areas exploit the
power of GPUs to accelerate science and engineering applica-
tions. Many complex algorithms require different levels of syn-
chronizations, through the use of barriers. Until recently *1, de-
velopers used two methods of synchronization in CUDA. First,
developers made use of CUDA thread block synchronization to
develop complex algorithms [2]. Second, for applications like
Deep Learning (DL), the CPU-side implicit barrier occurring af-
ter the kernel launch function is used for device-wide synchro-
nization [3].

Due to the importance of device-wide synchronization, sev-
eral researchers attempted to develop software device-wide barri-
ers [4], [5]. Yet the increase in complexity and density of GPUs in
GPU-based systems, e.g. Nvidia DGX-2 includes 16 GPUs, call
for a general and high-performance method for devices-wide and
multi-GPU synchronization. Recently Nvidia proposed methods
for synchronizations that spans all levels of granularity from a
small group of threads to a group of multi-device: warp level,
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*1 Nvidia introduced a hierarchy of synchronization methods (based on Co-

operative Groups(CG)) since CUDA 9.0 [1]

thread block level, and grid level. The grid level synchronization
can be a productive way to perform device-wide and multi-device
level synchronization. This hierarchy of synchronization methods
can make GPUs programming more productive. Thus, it is impor-
tant to study the performance characteristics of different levels of
synchronization methods.

In this paper, we characterize the synchronization methods in
Nvidia GPUs. Specifically, in this work:
• We identify the performance characteristics of different syn-

chronization methods in Nvidia GPUs.
• We use different implementations of the reduction opera-

tor as a motivating example to demonstrate how to use the
knowledge gained in this study to optimize the reduction ker-
nel.

• We explore the pitfalls of using several synchronization in-
structions.

• We provide our micro-benchmarks used in measurements.

2. Background
2.1 CUDA Programming Model

CUDA is a C-like programming model for Nvidia GPUs. It
offers three levels of programming abstractions: thread, thread
block, and grid. Among them, thread is the most basic program-
ming abstraction. At the hardware side, there is a hierarchy that
maps to the CUDA programming model. Three different kinds of
hardware resources exist: ALUs, Stream Multi-Processor (SM),
and the GPU. Take the Volta V100 [6] as an example, a V100
GPU consists of 80 SMs; an SM is partitioned into 4 processing
blocks, each consists of several ALUs, e.g. 16 FP32 Cores.

A warp in CUDA is a small number of threads executed to-
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Fig. 1 CUDA programming model and corresponding hardware structure

gether as a working unit in a SIMT fashion. A warp in all Nvidia
GPU generations consists of 32 threads. Inside an SM in V100
there are 4 warp schedulers corresponding to the 4 partitions in-
side one SM. CUDA’s runtime will schedule one thread block to
only one SM, and one grid to only one GPU, though it may oc-
cupy several SMs.

Figure 1 shows the details of CUDA programming model, its
corresponding hardware abstraction, and the mapping relation-
ship between them.

2.2 Related Work
There are different methods to micro-benchmark GPUs. Wong

et al. proposed the use of micro-benchmarks to understand the
performance of GPUs [7]. Mei et al. focus on the memory hier-
archy of GPUs [8], The authors discovered some cache patterns
that were missed by [7]. Recently, Jia et al. proposed to use
ASM code to run micro-benchmarks on new Nvidia Platforms,
i.e. V100 and P100 GPUs [9]. To the authors knowledge, none
of the GPU micro-benchmarking efforts focus on Nvidia’s hierar-
chy of synchronizations.

The work of [4], [5] analyzes software synchronization meth-
ods they developed by comparing the performance of implemen-
tations of several algorithms with and without their synchroniza-
tion methods. The analysis works on case-by-case approach and
can not be generalized to different kernels.

3. Overview of Synchronization Methods in
Nvidia GPUs

3.1 Primitive Synchronization Methods in Nvidia GPUs
Starting from CUDA 9.0, Nvidia added the feature of Cooper-

ative Groups (CG). This feature is planned to allow scalable co-
operation among groups of threads, and provide flexible parallel
decomposition. Coalesced groups and tile groups can be used as
a method to decompose thread blocks. Beyond the level of thread
blocks, grid synchronization is proposed for inter-block synchro-
nization. Multi-grid synchronization is proposed for inter-GPU
synchronization.

In the current version of CUDA (10.0), tile group and coa-
lesced group only work correctly inside a warp. Analysis of

Thread Group
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Group
Grip 

Group Block Group  Tile 
Group
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Grip Level 
Synchronization

Block Level 
Synchronization Warp Level SynchronizationSynchronization

 Methods

CUDA Groups {
{
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__syncthreads(); sync();API {

Fig. 2 Hierarchy of synchronizations in CUDA

PTX code show that those two instructions are transformed to the
warp.sync instruction. Hence, as it stands, we consider the syn-
chronization capability of those methods to be only applicable to
the warp level.

Figure 2 shows the granularity of cooperative groups and syn-
chronization in the current version of CUDA.
3.1.1 Warp-level Synchronization (Synchronization Inside a

Single GPU)
Current CUDA supports two intra-warp synchronization meth-

ods, i.e. tile synchronization and the coalesced group synchro-
nization corresponding respectively to the tile group and coa-
lesced group in Figure 2. Previous versions of CUDA guaran-
tee that all threads inside a warp process the same instruction at
a time. Yet the introduction of synchronization methods inside
a warp plus the fact that each thread now has its own Program
Counter (PC) implies a future possibility of removing this fea-
ture.
3.1.2 Block-level Synchronization (Synchronization Inside a

Single GPU)
Block-level synchronization corresponds to the thread block in

the programming model. According to the CUDA’s programming
guide [1], this function of it is the same as the classical synchro-
nization primitive syncthreads().
3.1.3 Grid-level Synchronization (Single GPU Synchroniza-

tion)
Starting from CUDA 9.0, Nvidia introduced grid group grid-

level synchronization. Grid-level synchronization is a method to
do single GPU synchronization. In order to use a grid group,
cudaLaunchCooperativeKernel() API call is necessary, in com-
parison to traditional kernel launch (<<<>>>).
3.1.4 Multi-Grid Level Synchronization (Multi-GPU Syn-

chronization)
CUDA 9.0 also introduced the concept of multi grid group.

This group is initialized by a kernel launch API: cudaLaunchCo-
operativeKernelMultiDevice(). Synchronizing this group can act
as a way to do multi-GPU synchronization.

3.2 Non-primitive Synchronization
3.2.1 Software Barrier for Synchronization

Xiao etc. [5] introduced a software device-level synchroniza-
tion. The authors limit the number of blocks per SM to only one
in order to avoid deadlocks. Sorensen ett al. extended this work
by adding an automatically occupancy discovery protocol to dis-
cover activate warps [4].
3.2.2 Implicit Barrier for Synchronization

Before the introduction of grid level synchronization, the typ-
ical way to introduce a barrier to a program was to use several
kernels in a single CUDA stream. A stream is logical queue that
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enforces an execution order on the CUDA kernels in the stream,
i.e. the kernels and data movement commands are executed in the
order by which they are appear in the stream. For example, many
DL frameworks, e.g., Chainer [3], use this this method to enforce
execution ordering.
3.2.3 Multi-GPU Synchronization

The common way to do multi-GPU synchronization is to syn-
chronize CPU threads orchestrating the GPUs. The basic idea is
to use one CPU thread per device (or one MPI rank per device).
Additionally, with the help of the GPUDirect CUDA technology,
it is also possible to implement multi-GPU software barriers us-
ing GPUDirect APIs.

Since we are concerned in this paper with studying general and
intrinsic barrier methods, we would not discuss manually imple-
mentation barriers, including software barriers and GPUDirect
based manually implementations.

4. Synchronization via CPU-side Implicit Bar-
riers

Launching new kernels in a single stream can act as a device-
wide implicit barrier to maintain the order of the program. Yet
launching an additional kernel is not a free lunch: it will also in-
troduce overheads. This section will inspect the overhead of tra-
ditional launch function, i.e. the one with <<<>>> way, and the
new launch functions, i.e. cudaLaunchCooperativeKernel() and
cudaLaunchCooperativeKernelMultiDevice() Nvidia introduced
from CUDA 9.0 for CG. In addition, we consider using multi
CPU threads to synchronize multi-GPUs as special case of the
implicit barrier.

To simplify our discussion, this section does not consider the
extra overhead of launching the first kernel. Instead, in all our
measurements we assume a warm up kernel launch was already
launched, and we focus our analysis on the behavior of kernels
launched after the warm up launch.

Before further discussion in this section, we introduce the fol-
lowing terms:
• Kernel Execution Latency: Total time spent in executing

the kernel, excluding any overhead for launching the kernel.
• Launch Overhead: Latency that is not related to kernel ex-

ecution.
• Kernel Total Latency: Total latency to run kernels.

TKernel Total Latency = TKernel Execution Latency + TLaunch Overhead

Figure 3 is our sample code for micro-benchmarks. It also
shows the concept of kernel execution latency and kernel to-
tal latency. Kernel execution latency is controlled by the sleep
instruction. Tkerne totall latency = ((timer3 − timer2) − (timer2 −
timer1))/(5 − 1); Elaborate details on the bench-marking meth-
ods are discussed in Section 9.2.

4.1 Single GPU
By using the kernel fusion method we mentioned in Section

9.2, we found that the overhead does exist. We also test the ker-
nel total latency of a null kernel for comparison. Table 1 shows
the result.

1 g l o b a l vo id n u l l k e r n e l ( ) {
2 / / k e r n e l e x e c u t i o n l a t e n c y i s 10 us h e r e .
3 r e p e a t 1 0 ( asm v o l a t i l e ( ” n a n o s l e e p . u32 1000 ; ” )

; )
4 }

5 . . .
6 r e c o r d ( t i m e r 1 ) ;
7 r e p e a t 1 ( l a u n c h ( n u l l k e r n e l , l a u n c h p a r a m e t e r s ) ; ) ;
8 c u d a D e v i c e S y n c h r o n i z e ( ) ;
9 r e c o r d ( t i m e r 2 ) ;

10 r e p e a t 5 ( l a u n c h ( n u l l k e r n e l , l a u n c h p a r a m e t e r s ) ; ) ;
11 c u d a D e v i c e S y n c h r o n i z e ( ) ;
12 r e c o r d ( t i m e r 3 ) ;
13 . . .

Fig. 3 Sample code to micro-benchmark implicit barriers for a null (empty)
kernel

Table 1 Launch Overhead and Null kernel Latency of Different Launch
Functions

Null Kernel
Launch Type Launch Overhead Kernel Total Latency

(ns) (ns)
Traditional 1081 8888
Cooperative 1063 10248
Cooperative Multi-Device 1258 10874

1 # pragma omp p a r a l l e l num ) t h r e a d s ( GPU count ) {
2 u n i t g i d=o m p g e t t h r e a d n u m ( ) ;
3 c u d a S e t D e v i c e ( g i d ) ;
4 . . .
5 k e r n e l <<<>>>() ;
6 c u d a D e v i c e S y n c h r o n i z e ( ) ;
7 # pragma omp b a r r i e r
8 . . .
9 }

Fig. 4 Code example of using CPU threads for synchronization

4.2 Multi-GPU
We consider two ways to do multi-GPU synchronization:

4.2.1 Using multi-device launch function as an implicit bar-
rier

Kernels will not execute until all the previous operations in the
GPU stream have finished execution [10]. Although this implicit
barrier method is not commonly used, we nonetheless evaluate it
to assess if this method is a valuable alternative.
4.2.2 Using CPU-side barriers

Another common way to make a barrier between GPUs is to
use CPU threads or processes to synchronize different GPUs.
We use openMP to measure the overhead in this case. Each
thread calls the cudaDeviceSynchronize() API to ensure the asyn-
chronously launched GPU kernels are executed till their end.
Threads use OpenMP barrier API to make additional synchro-
nization. Figure 4 shows the code example for this kind of barrier.
We use the same method used for a single GPU to measure the
overhead. Additionally, we appropriately pin the CPU threads.

Figure 5 shows the result. This implicit CPU-side barrier re-
lying on openMP Barriers outperforms implicit barrier in multi-
device launch when the GPU count is larger than two. Also,
the overhead of CPU-side synchronization is relative steady w.r.t.
GPU count.
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Fig. 5 Comparison of implicit barriers performance: multi-device launch
vs. CPU-side barriers and multi-grid synchronization across 8 GPUs
in DGX-1

5. Single GPU Synchronization

In this section we characterize the performance of warp, thread
block, and grid level synchronization. Warp and block abstrac-
tions exist inside a SM. For warp and block we used the micro-
benchmark discussed in Section 9.3. Grid is an inter-SM abstrac-
tion, for that we used the micro-benchmark discussed in Sec-
tion 9.4. For the warp shuffle operation and block synchronization
operation, the throughput is reported by CUDA programming
guide [1] at the granularity of warps and blocks, respectively. Yet
it is possible that the size of a group that performs synchroniza-
tion or shuffle would influence the performance itself. So in this
work we take consider the group size when experimenting with
warp shuffle and block synchronization.

5.1 Warp Level Synchronization

The current CUDA (10.0) supports two kinds of warp level
synchronization: tile group based and coalesced group based (as
seen in Figure 2). Additionally, the CUDA shuffle operation,
which exchanges a register value among threads in a warp, is a
an operation that implies a synchronization after it. We also in-
clude the results of the shuffle operation.

Since the size of a synchronization group might influence the
result, we tested every possible group size for both tile group and
coalesced group. The possible tile group sizes are: 1, 2, 4, 8, 16,
and 32. The possible coalesced group size is 1 − 32. Latency is
tested by using only 32 threads (a warp) in a CUDA kernel with
one block. The throughput is tested by iterating every possibility
pair of up to 1024 threads and up to 64 blocks per SM, and record-
ing only the highest result. Table 2 shows the result of warp level
synchronization.

For tile group synchronization the size of the group does not
influence neither latency nor throughput. A possible explanation
is that CUDA could be merging all the concurrent tile group syn-
chronization instructions into a single instruction. For coalesced
group synchronization, the group size does not influence the per-
formance of P100. The group size does, however, influence the
performance of coalesced group in V100. The performance is the
highest when all the threads inside a warp belong to a single co-
alesced group. For convenience, because the group size do not
influence the total latency of tile group synchronization, we only
record the throughput in the case of group size of 32 in tile group

Table 2 Performance of Warp Synchronization in a Block

Type Latency Throughput Reference[1]
(group size) cycle (sync/cycle) thread op/cycle

V100 P100 V100 P100 V100 P100

Tile(*) 14 1 0.812 1.774 - -
Shuffle(Tile)(*) 22 31 0.928 0.642 32 32
Coalesced(1-31) 108 1 0.167 1.791 - -
Coalesced(32) 14 1 1.306 1.821 - -
Shuffle(COA)(*) 77 50 0.121 0.166 - -
block(warp)) 22 218 0.475 0.091 16 32

Fig. 6 Relationship between latency of block sync (per warp perspective)
(up) and between throughput and active warp/SM perspective (down)

synchronization.
We use the reference throughput of shuffle operation men-

tioned in CUDA programming guide [1] in Table 2. Apparently,
the performance of V100 is closer to the theoretical result in the
programming guide. On the other hand, there seems to be some
overhead that influence the throughput of P100 in shuffle opera-
tion.

5.2 Block Level Synchronization

Again, we tested every possible group size in the block level,
i.e. starting from 32 to 1024. We used the method mentioned
in Section 5.1 to test throughput. We fing that the throughput
of block level synchronization is related to the number of active
warps per sm.

Figure 6 shows the relationship between the throughput of
block synchronization divided by warp count (warp sync per us)
and the maximum number of activate warps per SM (as calculated
by [6]). When the warp count exceeds the size of max activate
warp per SM, the device is saturated and the throughput of block
synchronization reaches its maximum.

With this observation, we conclude that the performance of
block level synchronization is related to warp count per SM.
We further summarize the performance of block synchronization
from a warp perspective in Table 2.

CUDA’s programming guide [1] reports that the throughput for
syncthreads() (or block level synchronization) is 16 operations

per clock cycle for capability 7.x (V100) and 32 for capability 6.0
(P100). The throughput of V100 is relatively close to 16 op/cycle.
But the result of P100 is far away from 32 op/cycle. To further
support this result, the inverse of the gradient of the points in the
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V100 32 64 128 256 512 1024 P100 32 64 128 256 512 1024
1 1.43 1.45 1.46 1.50 1.71 2.21 1 1.77 1.78 1.79 1.83 1.91 2.26
2 1.81 1.82 1.88 1.99 2.48 3.49 2 2.06 2.07 2.11 2.23 2.65 3.52
4 2.85 2.90 3.07 3.53 4.52 4 3.45 3.50 3.62 4.04 4.90
8 5.07 5.26 5.70 6.71 8 6.53 6.58 7.04 8.39

16 8.52 8.81 10.30 16 12.20 13.46 14.92
32 19.29 24.51 32 31.69 28.42

Thread Per Block
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k 
Pe

r S
M

Fig. 7 Latency (us) of grid synchronization in V100 (left) and P100 (right)

1 GPU 32 64 128 256 512 1024 2 GPU 32 64 128 256 512 1024
1 1.45 1.41 1.43 1.52 1.80 2.50 1 7.29 7.26 7.34 7.35 7.67 8.44
2 1.72 1.74 1.82 2.10 2.92 4.56 2 7.92 7.91 8.00 8.24 9.00 9.93
4 3.02 3.07 3.33 4.01 5.72 4 10.14 10.19 10.02 10.71 12.17
8 5.42 5.54 6.59 8.48 8 16.35 16.15 17.11 18.84

16 8.84 9.98 12.75 16 29.85 30.83 33.56
32 20.81 26.23 32 62.80 68.05

Thread Per Block
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oc

k 
Pe

r S
M

Fig. 8 Latency (us) of multi-grid synchronization in P100 platform for one
GPU (left) and two GPUs (right)

right part of figure 6 can represent throughput. Obviously, the
gradient of block synchronization in P100 is larger than V100.
So, the throughput of P100 should not be larger than V100’s.

Admittedly, it is also possible that the performance of block
synchronization in P100 is not ideal due to over-subscription. Yet
the latency of block synchronization in P100 is so large that it
is nearly impossible to find a point that the instruction pipeline is
saturated while the overhead of over-subscription is not so severe.

5.3 Grid Level Synchronization
Figure 7 shows the heat map of grid synchronization. It shows

that that in both V100 and P100 the latency of grid synchro-
nization is more related to the grid dimension (specifically, block
count per SM) than to the block dimension.

No matter how small the grid is, it seems that it is still slower
than the overhead of kernel launch we measured in Section 4. Sin-
gle GPU grid synchronization might not bring about any benefit
in performance. Yet we argue that, this performance difference
is really negligible (at most 2.5 us with two blocks/SM) in real
applications.

6. Multi-GPU Synchronization Methods
Section 9.4 shows the detailed micro-benchmark we use in this

section. Figure 8 and Figure 9 show the heat maps of the latency
of multi-grid synchronization in V100 and P100. Because the
inter-connection in the P100 system is PCIe, the performance is
worse than the V100 system that is equipped with NVLink con-
nection between devices.

We experimented with all 8 GPUs in the DGX-1, we found
that the performance of multi-grid synchronization among 2-5
GPUs is similar to each other, and the performance of multi-
grid synchronization among 6-8 GPUs are similar to each other.
This behaviour is likely related to the internal NVLink network
structure of DGX-1. From Figures 8 and 9, we can see that the
performance of multi-grid synchronization is influenced by both
the grid dimension and number of active warps per SM. With
block/S M <= 8 and warp/S M <= 32, the performance is ac-
ceptable. Apart from the case of one GPU, latency in all cases
is no more than 2x slower than the fastest case (1 block/SM, 32
threads/block) and 2x faster than the slowest case (32 blocks/SM,
64 threads/block).

Figure 5 shows the latency of multi-grid synchronization

Thread Per Block
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k 
Pe

r S
M

1 GPU 32 64 128 256 512 1024
1 1.42 1.44 1.56 2.04 3.06 7.34
2 1.81 1.86 2.33 3.34 6.93 18.97
4 2.92 3.37 4.35 7.53 19.10
8 5.32 6.35 9.10 20.68

16 9.66 11.72 24.24
32 20.84 34.04

2 GPU 32 64 128 256 512 1024 5 GPU 32 64 128 256 512 1024
1 6.44 6.46 6.53 6.99 8.05 12.41 1 7.02 7.05 7.15 7.62 8.68 13.32
2 6.77 6.80 7.28 8.32 11.80 24.14 2 7.37 7.44 7.92 9.01 12.72 25.16
4 7.96 8.41 9.46 12.57 24.21 4 8.61 9.14 10.14 13.41 25.23
8 12.47 13.63 16.55 28.03 8 13.19 14.21 17.16 28.71

16 22.48 24.64 37.04 16 23.58 25.61 38.15
32 45.88 58.60 32 48.71 61.66

6 GPU 32 64 128 256 512 1024 8 GPU 32 64 128 256 512 1024
1 18.67 18.66 18.68 19.26 20.28 24.78 1 20.97 21.00 21.10 21.42 22.55 26.93
2 19.03 19.12 19.54 20.54 23.64 35.89 2 21.18 21.41 21.85 22.81 25.98 37.99
4 20.29 20.88 21.80 24.77 36.37 4 22.62 23.04 24.13 27.08 38.60
8 23.39 24.43 27.18 38.93 8 25.98 26.62 29.33 40.86

16 29.27 31.41 44.37 16 32.20 33.67 45.98
32 54.24 69.70 32 58.30 71.90

Fig. 9 Latency (us) of multi-grid synchronization in V100 platform

across 8 GPUs in DGX-1. We take three cases for this experi-
ment: a) one block/SM, 32 threads/block as the fastest case, b)
32 blocks/SM, 64 threads/block as the slowest case, and c) one
block/SM, 1024 threads/block as a general case, which is within
the parameters we recommended in the previous paragraph. In
addition to proving that the parameter setting we gave is practical,
Figure 5 also shows two performance drops. We anticipated that
the second drop would be between 4 GPUs and 5 GPUs, based
on the internal network structure of DGX-1 that groups 4 GPU
together. However, we find no reasons for the performance drop
between 5 GPU and 6 GPU.

We also plot the launch overhead in Figure 5. The figure
shows that multi-grid synchronization out-performs the multi-
device kernel launch function as an implicit barrier. On the other
hand, as long as the program is not oversubscribed, i.e., no more
than 1024 threads per SM, the performance of multi-grid syn-
chronization is at most 3x slower than CPU-side barriers. Yet the
difference is around 16 us, which is practically not an issue in the
situation of 8 GPU.We argue that this minor cost should not dis-
courage algorithms from considering the use of multi-grid syn-
chronization given the utility provided in terms of simplicity of
programming and avoiding reliance on third party libraries such
as openMP or MPI.

7. Case Study: Reduction
We use the reduction operator (summing the elements of an

array) as a case study to demonstrate how to capitalize on the
analysis in previous sections to make a decision between differ-
ent reduction implementations, depending on the input size and
number of GPUs. The benefits of careful use of synchronization
methods is the simplicity of programming and improved perfor-
mance for multi-GPU kernels, as will be shown with the reduction
kernel.

Additionally, there is a benefit to use multi-grid synchroniza-
tion in multi-GPU system in programming. In dense system like
DGX-1, the peer access feature enables one GPU to access the
memory of another GPU. In this case, multi-grid synchronization
provides an easy way to ensure sequential consistency. We would
explain this in detail in section 7.5.

It is important to mention another potential benefit, that does
not appear in the case of the reduction kernel. There is a potential
of improving data reuse by the means of replacing several kernel
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Table 3 Projected concurrency of the two configurations in Section 7.2

scenery bandwidth latency concurrency
B/cycle cycle B
V100 P100 V100 P100 V100 P100

1 1 thrd. 0.62 0.43 13.0 18.5 8 8
1 warp 19.6 13.8 13.0 18.5 256 256

2 32 thrd. 19.6 13.8 13.0 18.5 256 256
1024 thrd 215 141 13.0 18.5 2796 2615

invocations with a single persistent kernel that uses multi-grid
synchronization. An example for that would be replacing kernel
invocations in iterative stencil methods with a persistent kernel
that includes the time loop inside the kernel.

7.1 Performance Model
We assume that the throughput is indifferent to the size of prob-

lem (for a minimum problem size that fully utilizes the device).
We also assume that the cost of synchronization is the main cost
of multi-threading. We can use Equation 2 to know when to
use fewer threads. In this equation, ”basic” might refer to sin-
gle thread, single warp, single block, or single GPU, and ”more”
corresponds to more threads, more warps, more blocks, or multi-
GPU. We use Little’s Law [11] to compute concurrency (Equa-
tion 1). To simplify the problem, we consider Tbasic as the latency
in Little’s Law, and Tmore includes the overhead of synchroniza-
tion as Equation 3 shows. From this equation we can imagine
three different scenarios:
( 1 ) If the input size is not larger than the concurrency of ”ba-

sic” threads, using fewer threads would always be more prof-
itable.

( 2 ) If the input size is larger than concurrency of ”basic” threads
and no larger than the concurrency of ”more”, we can use
Equation 4 to compute the switch point.

( 3 ) If the input size is larger than concurrency of ”more” threads.
We can use Equation 5 to know at which point we should use
fewer threads.

C = T ∗ Thr (1)

Tbasic +
Max(0,N−Cbasic)

Thrbasic
< Tmore +

Max(0,N−Cmore)
Thrmore

(2)

Tmore = Tbasic + Tsync = T + Tsync (3)

Nm < (T + Tsync) ∗ Thrbasic (4)

Nl <
(Tsync)∗Thrmore∗Thrbasic

Thrmore−Thrbasic
(5)

∗(T represent Latency;Thr represent Throughput;

C represent concurrency)

7.2 Micro-benchmark and Basic Prediction
In the case of the GPUs we examine in this paper, when the

input size is large enough, the bottleneck of reduction algorithm
is device memory bandwidth. Hence we use a memory band-
width micro-benchmark to proxy the performance of reduction.
To make this micro-benchmark an accurate representative, we
add two add instruction to imitate the real computation in the re-
duction operation. Figure 10 shows the main instruction in micro-
benchmark.

Our objective is to identify when to use a single thread, a single

1 w h i l e ( i <n ) { sum+= g i d a t a [ i ] ; i +=g r o u p s i z e ; }

Fig. 10 Code example of the main instruction in the memory bandwidth
micro-benchmark for proxying the reduction operation

Table 4 Predicting the switch point between two configurations

scenery sync ltc* switch point
cycle B
V100 P100 V100 P100

1 1 warp Nl 110 155 70 70
2 1024 thrd Nl 420 2135 9076 32681

∗: 5 times synchronization

1 / / assume t h a t d a t a i n s h a r e d memory
2 f o r ( s t e p = 1 6 ; s t e p >=1; s t e p /=2 ) {
3 / / or use s h u f f l e o p e r a t i o n h e r e
4 i f ( t i d +s t e p <32)sm [ t i d ]+=sm [ t i d + s t e p ] ;
5 s y n c h r o n i z e ( ) ;
6 }

Fig. 11 Code example of warp level reduction with synchronization

Table 5 Latency (cycles) to Compute Sum of 32 values (double precision)

serial nosync tile coa tile coa
* shuffle shuffle

V100 299 89 237 237 164 1261
P100 383 112 281 251 212 1423

∗result of no synchronization version is incorrect

warp barrier, and until when would it be more efficient to to use
multi-GPU barrier. Instead of enumerating every possible case,
we only consider two configurations here (and it can be extended
to other cases):
• To use a single thread or single warp barrier
• To use a single block with 1024 threads or with 32 threads
Normally in the two configurations we mentioned, the data is

usually kept in shared memory or cache, so we only measure
shared memory for the following part. Table 3 shows the results
of bandwidth (throughput), latency and concurrency.

Take the double type as an example (8 Bytes). In this case,
in both configurations, the input size exceeds the concurrency of
both ”basic” and ”more” settings, hence we only need to compute
Nl in Equation 5. Table 4 shows the results.

Table 4 shows that: first, it is better to compute 32 data points
with a warp; second, there would be not benefit to compute 1024
data points with 1024 threads per block. Our further experiments
show that those predictions are correct.

In addition, another potential overhead caused by synchroniza-
tion would be that the synchronization would possibly clear the
instruction pipeline. Threads might need additional time to satu-
rate the pipeline. So the real switch point would likely be larger
than this.

7.3 Warp Level Reduction
In this subsection, we compare different warp level synchro-

nization methods in the reduction kernel by observing their be-
haviour in the current generations of GPUs. Figure 11 shows our
sample code, and Table 5 shows the result.

As shown in Table 5, We observe that the results for using the
shuffle operation with the tile group has the lowest latency.
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1 d e v i c e REAL summing ( . . . ) { . . .
2 u i n t i = t h r e a d i d + b l o c k i d ∗ blockdim ;
3 sum=0;
4 w h i l e ( i <n ) {
5 sum+= g i d a t a [ i ] ;
6 i+=blockdim ∗ g r i d d i m ;
7 }
8 r e t u r n sum ;
9 }

10 d e v i c e REAL b l o c k r e d u c e ( . . . ) { . . .
11 i = t h r e a d i d ;
12 sum=0;
13 w h i l e ( i <n ) { sum+= t d [ i ] ; i+=blockdim ; }
14 t d [ t h r e a d i d ]=sum ;
15 sum=0;
16 b l o c k . sync ( ) ;
17 i f ( warp id==0)
18 {
19 i = t h r e a d i d ;
20 w h i l e ( i <blockDim ) { sum+= t d [ i ] ; i +=32; }
21 sum = s h u f f l e r e d u c e w a r p ( sum ) ;
22 }
23 r e t u r n sum ;
24 }

Fig. 12 Basic function of device wide reduction

1 / / works i n bo th s i n g l e and m u l t i gpu
2 g l o b a l vo id Exp l i c i tGPU ( . . . ) { . . .
3 w h i l e ( s t e p . n o t f i n i s h ( ) ) {
4 / / d i r e c t l y s t o r e d a t a i n t h e t a r g e t GPU
5 d e s t i n a t i o n [ s t e p ] [ t h r e a d i d ] = summing ( . . . ) ;
6 g r i d . sync ( ) ; / / e x p l i c i t s y n c h r o n i z e ;
7 }
8 i f ( g p u i d ==0)
9 {

10 sum=b l o c k r e d u c e ( . . . ) ;
11 i f ( t h r e a d i d ==0)
12 o u t p u t [ t h r e a d i d ]=sum ;
13 }
14 }

Fig. 13 Code example of reduction with explicit device synchronization

Table 6 Bandwidth (GB/s) in different reduction methods
implicit grid sync CUB CUDA sample theory

V100 865.40 855.59 849.39 852.98 898.05
P100 592.40 590.85 543.96 590.65 732.16

7.4 Single GPU Reduction

In this Subsection, we directly apply the knowledge in Sec-
tion 7.2 in implementing device-wide reduction. Figure 13 shows
the code of reduction with explicit synchronization and Figure 14
shows the code of reduction with implicit synchronization for a
single GPU.

The widely used GPU library CUB [12] and CUDA SDK
samples [13] include single GPU reduction implementations, we
would compare the performance of those implementations with
our implementation.

Figure 15 and Table 6 show the results. Our implementation
is comparable to state of art implementations on V100 and is no-
ticeably better on P100. We can learn from Figure 15 that using
a CPU-side barrier (”implicit” in the figure) always outperforms
using grid synchronization (”grid sync” in the figure), though the
performance difference is not so distinct.

1

2 g l o b a l vo id Kerne l1 ( . . . ) { . . .
3 u i n t i = t h r e a d i d + b l o c k i d ∗ blockdim ;
4 sum=summing ( . . . ) ;
5 o u t p u t [ i ]=sum ;
6 . . . }
7 g l o b a l vo id Kerne l2 ( . . . ) { . . .
8 sum=b l o c k r e d u c e ( . . . ) ;
9 i f ( t h r e a d i d ==0)

10 o u t p u t [ t h r e a d i d ]=sum ;
11 . . . }
12

13 / / f o l l o w i n g p a r t s a r e CPU f u n c t i o n s
14 vo id i m p l i c i t S i n g l e G P U ( . . . ) { . . .
15 Kernel1 < < < . . . > > > ( . . . ) ; / / i m p l i c i t s y n c h r o n i z a t i o n
16 Kernel2 < < < . . . > > > ( . . . ) ; . . . }
17

18 vo id i m p l i c i t M u l t i G P U ( ) { . . .
19 # pragma omp f o r n u m t h r e a d s ( gpucoun t ) { . . .
20 c u d a D e v i c e S e t ( t i d ) ;
21 Kernel1 < < < . . . > > > ( . . . ) ;
22 / / g a t h e r d a t a t o one GPU t h a t would do t h e

r e m a i n i n g c o m p u t a t i o n .
23 w h i l e ( s t e p . n o t f i n i s h ( ) ) {
24 c u d a D e v i c e S y n c h r o n i z e ( ) ;
25 # pragma omp b a r r i e r ;
26 / / t r a n s f e r d a t a from c u r r e n t GPU t o a n o t h e r GPU
27 t r a n s f e r d a t a ( s r c [ s t e p ] [ t i d ] , d s t [ s t e p ] [ t i d ] ) ;
28 }
29 c u d a D e v i c e S y n c h r o n i z e ( ) ;
30 # pragma omp b a r r i e r ;
31 i f ( t i d ==0) Kernel2 < < < . . . > > > ( . . . ) ;
32 }
33 . . . }

Fig. 14 Code example of reduction with implicit device synchronization

Fig. 15 Comparison of the performance of single reduction in V100(left)
and in P100 (right)

Fig. 16 The throughput of reduction on DGX-1

7.5 Multi-GPU Reduction

In this section, we use the code in Figure 13 and implicitMulti-
GPU code in Figure 14. Figure 16 shows the results. Though it
is hard to notice, an implicit barrier is always slightly better than
the multi-grid synchronization method. As section 4 mentioned,
the overhead in cooperative multi-launch might be the cause of
this performance difference.

On the other hand, we want to emphasize here the benefit for
programming. We can use fewer code in explicit barrier (Fig-
ure 13) compared with implicit barrier (Figure 14). More impor-
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1 i f ( t i d ==0) { t i m e r ( s t a r t ) ; sync ; t i m e r ( end ) ; }
2 e l s e i f ( t i d ==1) { t i m e r ( s t a r t ) ; sync ; t i m e r ( end ) ; }
3 . . .
4 e l s e i f ( t i d ==30) { t i m e r ( s t a r t ) ; sync ; t i m e r ( end ) ; }
5 e l s e { t i m e r ( s t a r t ) ; sync ; t i m e r ( end ) ; }

Fig. 17 Code example to verify sequential consistency inside a warp
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Fig. 18 Timer of threads inside a warp when calling tile synchronization in
V100 (left), and in P100 (right)

tantly, the kernel function requires no knowledge of the of the
hardware structure.

8. Considerations of Using CUDA Synchro-
nization Instructions

In this study we found several situations that the synchroniza-
tion instructions might not work as intended. In this section, we
summarize some of those issues.

8.1 Synchronization Inside a Warp
In this section we examine synchronization at the warp level.

To see if a barrier inside a warp is effective on all threads in the
barrier, we run the code in Figure 17. In the ideal case the timers
in all threads in the warp after the barrier are larger than the timers
before the sync in every thread. We test all the synchronization
methods. Results show that P100 does not assure all threads in-
side a warp are blocked at the barrier (also the shuffle operation
do not work correctly in this code). On the other hand, in V100,
we observed anticipated behavior (likely due to the fact that in
V100 each thread has its own program counter). Figure 18 shows
our observation when calling tile synchronization. We observed
the same phenomenon when running all other synchronization in-
structions in V100.

8.2 Deadlocks in Synchronization of Parts of Thread
Groups

In this section we examine the behaviour of synchronization
with a subset of a thread group: would synchronizing a subset
of a group cause a deadlock or not? We implement a test suite
to see what happens when part of a thread group calls the syn-
chronization function. We test through every granularity includ-
ing threads, warps, blocks and GPUs. As a result, we observed
deadlocks when we synchronize parts of blocks in grid group,
multi-grid group, and when we synchronize parts of GPUs in a
multi-grid group. In summary, one should be careful, after ini-
tializing a grid group or a multi-grid group, since current CUDA
does not support synchronizing sub-groups inside.

Table 7 Environment Information
Platform Default Freq Driver CUDA
P100 X 2 1189MHz 418.40.04 V10.0.130

V100 X 8(DGX-1) 1312MHz 410.129 V10.0.130

9. Benchmarking CUDA Synchronization
Methods

9.1 Experiments Environment
We use Pascal P100 and Volta V100 cards to conduct our ex-

periments. We set the application frequency of both platforms to
default. We use the latest stable driver. Table 7 shows the details
of the environment.

9.2 Micro-benchmark for Implicit Barriers
We use the terminologies in Section 4. We do a warm-up ker-

nel call before every measurement that we don’t report the results
for.

We found that directly using a null kernel would not give a cor-
rect result here. Because at this point the stream pipeline is not
saturated enough: the overhead tested would be larger than usual.
The kernel execution latency need to be larger than a certain num-
ber. This value is around 5 us in single GPU and around 250 us
in 8 GPUs in DGX-1. In order to control the kernel latency, we
use the sleep instruction introduced in CUDA for Volta platform.
We use kernel fusion to unveil the overhead hidden in kernel la-
tency. The basic assumption here is that merging the work of
multiple argumentless kernels into one single kernel does not in-
troduce additional launch overhead, and then the time saved when
using kernel fusion should be equal to the overhead of launching
an additional kernel. From our previous observations, the sleep
instruction has insignificant overhead and fits well into this as-
sumption. In this situation, we can compute the overhead with
Equation 6.

Since we use the sleep instruction as a tool to analyze launch
overhead, which is only available in Volta Platform in CUDA, we
only conduct experiments on the V100 GPU for this experiment.

O =
Latencyi j−Latency ji

i− j (6)

∗(O represents Overhead; In Latencyij (the left one),

i represents call launch function i times,

j represents launch kernels with j wait unit)

9.3 Micro-benchmark for Intra SM instructions
We directly use Wong’s [7] method. Wong’s method relies on

the GPU clock. The basic methodology is to build a chain of de-
pendent operations to repeat a single instruction enough times to
saturate the instruction pipeline. By using the clock register to
record the being and end time stamps of the series of operations,
it is possible to average the repetitions to infer the latency of that
instruction. Figure 19 shows an example sample code to measure
the latency of an add instruction.

9.4 Micro-benchmark for Inter SM Instructions
Jia’s work [9] can work correctly only inside a single thread,

Wong’s work [7] can work correctly only in a single SM. Yet
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1 g l o b a l vo id k e r n e l 1 ( ) {
2 s t a r t =c l o c k ( ) ;
3 r e p e a t 2 5 6 ( p=p+q ; q=p+q ) ; / / r e p e a t =512
4 end=c l o c k ( ) ;
5 r e t u r n q ; }

1 g l o b a l vo id k e r n e l 2 ( ) {
2 s t a r t =c l o c k ( ) ;
3 r e p e a t 5 1 2 ( p=p+q ; q=p+q ) ; / / r e p e a t =1024
4 end=c l o c k ( ) ;
5 r e t u r n q ; }

1 c p u c l o c k ( ) ;
2 k e r n e l ( ) ;
3 s y n c d e v i c e ( ) ;
4 c p u c l o c k ( ) ;

Fig. 19 Sample code to measure the latency of the add instruction in GPU

current synchronization instructions might involve cooperation
across different threads, different SMs, and even different GPUs.
As we move to grid level synchronization and beyond, we need a
new method.

In order to test the performance of synchronization beyond
a single SM, a global clock is necessary. In CUDA’s execu-
tion model, a CPU thread launches a kernel and it can call the
DeviceSynchronize() function to block the CPU thread until the
GPU kernel finishes execution. So it is possible to use the clock
in that CPU thread as a global clock to test GPU instructions. Yet
we need to fix two issues before we can use the CPU clock:
• We need to eliminate any latency not related to the target

instruction
• Account for the relative inaccuracy in the CPU clock mea-

surement, in comparison to the GPU’s clock measurement.
In order to solve those issues, we need to additionally introduce

two assumptions:
• The measurement of the latency of every instruction be-

comes more accurate when the pipeline is saturated
• Additional instructions in a kernel do not increase the launch

overhead of kernel launch
Under those assumptions, if we increase the repetitions of in-

structions in the GPU kernel (in Figure 19), the additional kernel
latency is only related to the additional repeat times of instruc-
tions. In this manner, we are able to avoid unrelated latency that
might come from kernel launch (to get more accurate measure-
ments). Equation 7 shows how to measure the instruction latency
with this method. (First issue solved)

Equation 8 shows the standard deviation of the instruction
tested, and its deduction (the measurement of kernel 1 and kernel
2 is independent to each other). And by deduction, if the differ-
ence in repeat times is large enough, the standard deviation of the
instruction latency we seek to measure will be small. (Second
issue solved)

In order to verify that the method we proposed in Section 9.4
matches our assumptions, we use both Wong’s method and our
method to test the single precision add instruction. Both results
show that float-add costs 6 cycles in P100 and 4 cycles in V100.
Those results match the result in [9]. We can conclude that the
inter SM micro-benchmark method we propose is a reliable mea-

Table 8 Summary of Observations

Warp Level Sync Does not work on Pascal;
Shuffle performs better in real code.

Block Sync The number of active warps per SM af-
fect performance

Grid Sync The number of blocks per SM mainly af-
fect performance;
Generally, the performance is acceptable
if block/S M <= 2;
Currently, only parts of blocks inside a
grid calling grid level synchronization
would cause deadlock.

Multi-Grid Sync Both the number of blocks per SM and
active warps per SM affect performance;
If thread/S M <= 1024 and
block/S M <= 8 the performance
is relatively acceptable;
Currently, only parts of grids inside a
grid calling grid level synchronization
would cause deadlock.

Implicit Sync Generally, its performance is slightly
better than explicit synchronization
when in single GPU or when the GPU
count is large, or when there is no much
synchronization steps;
The issue for implicit synchronization is
programmability, especially in the situa-
tion of multi-GPUs.

surement tool that approaches the accuracy of the GPU clock.

Tinstruction =
Lk1−Lk2

r1−r2
(7)

σ k1−k2
r1−r2

=

√∑N
n=1 (

Lk1−Lk2
r1−r2

)
2

−
∑N

n=1 (
Lk1−Lk2

r1−r2
)

2

N−1

= 1
r1−r2

√∑
L2

k1
−Lk1

2

N−1 +

∑
L2

k2
−Lk2

2

N−1

= 1
r1−r2

√
σ2

k1
+ σ2

k2

(8)

∗(Lki represents kernel total latency of kernel i;

ri represents repeat times in kernel i)

We additionally verify that the repeat times of a synchroniza-
tion instruction itself would not influence the performance itself
in block and grid level. Tile shuffle in warp level also works as
we anticipated. Other warp level synchronization can be unstable:
the latency of the synchronization instruction might increase sud-
denly when increasing repeat times. It could be the case that this
warp synchronization relies on a software implementation. So
when repeating an instruction too many times, instruction cache
overflow can occur. We only record the fastest result for warp
level synchronization instructions.

10. Conclusion
In this paper, we conduct a detailed study of different synchro-

nization methods in Nvidia GPUs, ranging from warp to grid, and
from single GPU to multi-GPU.

We find that the performance of block synchronization is re-
lated to the number of warps involved, and the performance of
grid level synchronization is mainly affected by the number of
blocks involved. In addition, the performance of multi-grid level
synchronization depends on the network structure connecting the
GPUs, and the number of blocks and active warps.
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CPU-side implicit barriers generally performs better than grid
level and multi-grid level synchronization. But if the program
size is large enough, the performance difference would not be
so severe, with the added benefit that multi-grid synchronization
simplifies multi-GPU programming.

We use the reduction operator as an example to use the knowl-
edge we gain from micro-benchmark. We build a performance
model to predict where would be the point that using fewer
threads is more profitable. Additionally, using code samples, we
show a possible simple way to do multi-GPU programming with-
out much performance degradation. Moreover, with more multi-
grid barriers in a kernel, the launch overhead in multi-device ker-
nel launch would become more insignificant. Table 8 summarize
the knowledge we gained from this study.
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Z. Rakamarić, “Portable inter-workgroup barrier synchronisation for
gpus,” in ACM SIGPLAN Notices, vol. 51, pp. 39–58, ACM, 2016.

[5] S. Xiao and W.-c. Feng, “Inter-block gpu communication via fast bar-
rier synchronization,” in 2010 IEEE International Symposium on Par-
allel & Distributed Processing (IPDPS), pp. 1–12, IEEE, 2010.

[6] NVIDIA, “V100 gpu architecture,” 2017.
[7] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and

A. Moshovos, “Demystifying gpu microarchitecture through mi-
crobenchmarking,” in 2010 IEEE International Symposium on Perfor-
mance Analysis of Systems & Software (ISPASS), pp. 235–246, IEEE,
2010.

[8] X. Mei and X. Chu, “Dissecting gpu memory hierarchy through mi-
crobenchmarking,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 1, pp. 72–86, 2016.

[9] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
nvidia volta gpu architecture via microbenchmarking,” arXiv preprint
arXiv:1804.06826, 2018.

[10] Nvidia, “Nvidia cuda runtime api,” 2019.
[11] J. D. Little and S. C. Graves, “Little’s law,” in Building intuition,

pp. 81–100, Springer, 2008.
[12] Nvidia, “Cub library,” 2019.
[13] Nvidia, “Nvidia cuda sample,” 2019.

c© 2019 Information Processing Society of Japan 10

Vol.2019-HPC-172 No.14
2019/12/19


