
IPSJ SIG Technical Report

Node-perturbation Learning applied for Soft-committee
machine

Kazuyuki Hara1,a) Kentaro Katahira2,b) Masato Okada3,4,c)

Abstract: Node-perturbation learning is a stochastic gradient descent method for neural networks. It estimates the
gradient of the error surface by calculating the change in error between the perturbed output and the non-perturbed
output. Node-perturbation can be applied to problems where the objective function is not defined. We explore the
application of node perturbation learning to a multilayer neural network called a soft committee machine and analyze
the dynamic properties of the learning process. We conduct computer simulations to show the validity of the proposed
method.

1. Introduction
Supervised learning in neural networks [1] can be formulated

as an optimization of an objective function that quantifies the sys-
tem’s performance. The optimization is carried out by calculating
the gradient of the objective function explicitly and updating the
parameters by a small step in the direction of the locally greatest
improvement. However, computing a direct gradient to follow
can be problematic. For instance, reinforcement learning has no
explicit form of the objective function, so we cannot calculate a
gradient for it.

As a solution to this problem, Williams et al. [2] proposed
node-perturbation learning (NP learning) based on the stochastic
gradient method. NP learning estimates the gradient by examin-
ing the change in the scalar objective value when noise is added
to the output of the network noise. If the objective value becomes
smaller when noise is added to the network output, the weight
vector changes in the direction of the noise. As a result, NP learn-
ing can be formulated as a reinforcement learning in which all
the weight vectors are updated using a scalar reward, instead of a
target vector as in the gradient method. Here, Werfel et al. cal-
culated the learning curve of NP learning by using the ensemble
mean [4].

Statistical mechanics has been used to study online learning
[9], [10], [11], [12], mainly the simple perceptron. Statistical me-
chanics gives a compact description of the dynamics of learn-

1 College of Industrial Technology, Nihon University, Narashino, Chiba
275–8575, Japan

2 Graduate School of Informatics, Nagoya University, Nagoya, Aichi 464-
8601, Japan

3 Graduate School of Sciences, The University of Tokyo, Bunkyo, Tokyo
113-0033, Japan

4 Graduate School of Frontier Sciences, The University of Tokyo,
Kashiwa, Chiba, 277-8561, Japan

a) hara.kazuyuki@nihon-u.ac.jp
b) katahira.kentaro@b.mbox.nagoya-u.ac.jp
c) okada@edu.k.u-tokyo.ac.jp

ing that uses a large input dimension N and especially provides
an accurate model of the mean behavior for realistic values of
N[5], [6], [7], [8].

In a previous study, we analyzed the dynamics of NP learning
applied for linear perceptrons [13]. In particular, we used statisti-
cal mechanics to determine the generalization error of NP learn-
ing and arrived at two findings. The first is that NP learning is the
same as noisy learning that changes the amount of noise related
to the error. The second is that the generalization error increases
as a result of cross-talk noise generated by the other output noise.
Moreover, we analyzed the dynamics of NP learning in non-linear
perceptrons [14]. In that paper, we showed that NP learning per-
forms better when using nonlinear perceptrons than when using
linear ones.

In the current paper, we apply NP learning to a multi-layer
neural network called a soft-committee machine and analyze the
dynamics of the learning behavior. We implement NP learning in
two ways, i.e., by adding perturbation noise to the hidden layer
or by adding noise to the output layer. A soft-committee machine
has a simple network structure; however, it suffers from plateau
phenomena and symmetry breaking. Our findings give insights
for networks with more complicated layers.

2. Formulation
Here, we formulate the teacher and student networks and

derive a learning rule for applying the NP learning algorithm
to a soft-committee machine. Supervised-learning and online-
learning settings are assumed.

2.1 Model
First, we formulate the teacher and student networks. Then, we

use their formulations to build the NP learning algorithm. The
teacher network (teacher) generates the target of the student net-
work (student) for a given input. By introducing a teacher net-
work, we can directly measure the similarity of the student weight

1ⓒ 2019 Information Processing Society of Japan

Vol.2019-MPS-126 No.2
2019/12/11

IPSJ SIG Technical Report

vector to the teacher weight vector.
Figure 1 shows the teacher and student, which are soft-

committee machines with N inputs and one linear output. The
teacher and student receive the same input vector x(m) at the mth
learning iteration. The teacher output t(m) is used as the scalar
target for x(m). Note that the iteration m is not shown in the fig-
ure. The teacher includes K hidden units, while the student in-
cludes M hidden units. The inner potential of hidden units of the
teacher and student are the inner products of the input vector and
the weight vector from the input to hidden layer. In the follow-
ing part of the paper, the weight vector from the input to hidden
layer is called the weight vector. The activation function of the
hidden unit output is a non-linear function and the function is ap-
plied to the inner-potential of hidden unit. All weights from the
hidden layer to the output layer for the teacher and student soft-
committee machines are set to one [6]. The hidden outputs are
determined by majority vote.

Output layer

Hidden layer

Input layer

w
w11

w w w w*
*

x x x x

M1
K MN

1N 1Nw* w

Fig. 1 Structure of Teacher and student networks.

Each element x(m)
j , j = 1 ∼ N of the input vector x(m) is drawn

from a probability distribution P(x j) with zero mean and unit vari-
ance. The statistics of x(m) in the thermodynamic limit, N → ∞,
are ⟨

x(m)
j

⟩
= 0,

⟨
(x(m)

j)2
⟩
= 1, ||x(m)|| =

√
N. (1)

Here, ⟨· · · ⟩ means the average of all elements, and || · || means the
norm of a vector.

The teacher is not to the object of the learning. Thus, the
teacher weight vectors w∗k , k = 1 ∼ K are not updated during the
learning process. The kth weight vector w∗k is an N-dimensional
vector, and each element w∗k j, j = 1 ∼ N is drawn from a prob-
ability distribution P(w∗k j) with mean zero and variance 1/N. The
statistics of the jth element of the kth weight vector for the teacher
w∗k j in the thermodynamic limit, N → ∞, are⟨

w∗k j

⟩
= 0,

⟨
(w∗k j)

2
⟩
=

1
N
, ||w∗k || = 1. (2)

The inner potential of the kth hidden unit for x(m) is written as

d(m)
k =

N∑
j=1

w∗k jx
(m)
j = w∗k · x(m), (3)

The inner potential of the hidden unit dk in the thermodynamic
limit, N → ∞, obeys a Gaussian distribution with zero mean and
unit variance. The kth hidden unit output is denoted as g(d(m)

k)
where g(·) is a non-linear activation function. The output of
teacher at the mth iteration t(m) is calculated as

t(m) =

K∑
k=1

g(d(m)
k) (4)

The student consists of M hidden units. To ease the analysis,
we assume that each element of the initial weight vector from the
jth element of k′th weight vector w(0)

k′ j is drawn from a probabil-
ity distribution P(wk′ j) with mean zero and variance 1/N. The
statistics of the jth element of the k′th weight vector wk′ j of the
student in the thermodynamic limit, N → ∞, are⟨

w(0)
k′ j

⟩
= 0,

⟨
(w(0)

k′ j)
2
⟩
=

1
N
, w(0)

k′ = 1. (5)

The inner potential of the k′th hidden unit for input x(m) at the
mth iteration is

y(m)
k′ =

N∑
j=1

w(m)
k′ j x(m)

j = w(m)
k′ · x

(m). (6)

The distribution of the inner potential yk′ in the thermodynamic
limit, N → ∞, becomes a Gaussian with mean zero and variance
Q2

k′k′ Here, Q2
k′k′ = wk′ ·wk′ . The output of the k′th hidden unit

of the student is denoted as g(y(m)
k′) where g(·) is a non-linear acti-

vation function. The output of the student at the mth iteration s(m)

is calculated as

s(m) =

M∑
k′=1

g(yk′) (7)

The weight vector wk′ is updated by using the stochastic gradient
descent algorithm. Note that the weights from the hidden layer
to the output of the student are fixed to +1 and are not objects of
learning.

2.2 Node-perturbation Learning for soft-committee ma-
chine

Here, we describe the node-perturbation learning (NP learn-
ing) algorithm that is applied for the soft-committee machine.
First, we formulate the NP learning. The objective function is
the squared error. The squared error at the mth learning iteration
is defined as

E(m) =
1
2

(t(m) − s(m))2 =
1
2

 K∑
k=1

g(d(m)
k) −

M∑
k′=1

g(y(m)
k′)

2 . (8)

The weight vector of the student is updated in the direction of the
noise if the squared error becomes smaller when noise is added to
the network output. Accordingly, the learning equation is defined
as

w(m+1)
k′ j = w(m)

k′ j −
η

N
(Eξ − E)g′(yk′)

ξ

σ2
ξ

x j (9)

Here, Eξ is the squared error when the noise is added to the net-
work output. NP learning can be accomplished in two ways: (1)
by adding noise to the output layer or (2) by adding noise to the
hidden layer.
2.2.1 Adding noise to the output layer

The squared error when noise is added to the output layer (the
output NP case) is defined as

2ⓒ 2019 Information Processing Society of Japan

Vol.2019-MPS-126 No.2
2019/12/11

IPSJ SIG Technical Report

E(m)
ξ =

1
2

(
t(m) − (s(m) + ξ(m))

)2
=

1
2

 K∑
k=1

g(d(m)
k) −

M∑
k′=1

g(y(m)
k′) − (ξ(m))2

2 . (10)

Here, the added noise ξ is drawn from a probability distribution
with mean zero and variance σ2

ξ . E(m)
ξ − E(m) is calculated as

E(m)
ξ − E(m) = −1

2

2ξ(m)

 K∑
k=1

g(d(m)
k) −

M∑
k′=1

g(y(m)
k′)

 − (ξ(m))2

 .
(11)

In Eq. (11),
∑K

l=1 g(d
(m)
l) − ∑M

l′=1 g(yl′)(m) is the gradient of the
squared error. Although NP learning doesn’t use the gradient ex-
plicitly, as shown in Eq. (9), the gradient information is implicitly
included in Eq. (11). Eq. (11) becomes negative when Eξ < E,
and the weight vector is updated in the direction of the noise ξ[2].
Identical noise is added to the output layer unit at every learning
iteration. Accordingly, the learning equation of the output NP
case is defined as

w(m+1)
k′ j = w(m)

k′ j +
η

2N

2ξ(m)

 K∑
k=1

g(d(m)
k) −

M∑
k′−1

g(y(m)
lk)

−(ξ(m))2

}
g′(y(m)

k′)
ξ(m)

σ2
ξ

x(m)
j (12)

IIn Eq. (12), the same noise ξ is added to the output of every hid-
den unit; however, the independence of each hidden unit is kept
by the independence of the derivative at each hidden unit g′(yk′)
2.2.2 Adding noise to the hidden layer

As above, the noise ξk′ added to each hidden unit is drawn from
a probability distribution with mean zero and variance σ2

ξ . The
squared error in this case is defined as

Eξ =
1
2

 K∑
k=1

g(dk) −
M∑

k′=1

(g(yk′) + ξk′)

2 . (13)

Here, E(m)
ξ − E(m) is calculated as

Eξ − E = −1
2

2 M∑
k′=1

ξk′

 K∑
k=1

g(dk) −
M∑

k′=1

g(yk′)

−
 M∑

k′=1

ξk′

2
 (14)

Similar to the above expression for the noise added to the output
layer,

∑K
l=1 g(d

(m)
l) − ∑M

l′=1 g(yl′)(m) is the gradient of the squared
error. As well, Eq. (14) becomes negative when Eξ < E, and
the weight vector is updated in the direction of ξl′ . The learning
equation for the case of adding noise to the hidden layer (hidden
NP case) is defined as

w(m+1)
k′ j = w(m)

k′ j +
η

2N

2 M∑
l′=1

ξl′

 K∑
l=1

g(dl) −
M∑

l′−1

g(yl′)

−
 M∑

l′=1

ξl′

2
 g′(yk′)

ξk′

σ2
ξ

x j (15)

We separate the noise on k′th hidden unit ξk′ and those come from
other hidden units ξl′ , then the learning equation rewritten as the
next equation. ξk′ is considered as a signal and ξl′ is considered
as a noise in the signal to noise analysis.

w(m+1)
k′ j = w(m)

k′ j +
η

2Nσ2
ξ

2((ξk′)2 +

M∑
l′,k′
ξl′ξk′)

 K∑
l=1

g(d(m)
l) −

M∑
l′−1

g(y(m)
l′)

−((ξk′)3 +

M∑
l′,k′

(ξl′)2xk′ +

M∑
l=1

M∑
i′,l′
ξl′ξi′ξk′)

 g′(y(m)
k′)x(m)

j

(16)

Here, the iteration number m on the noise ξ is omitted.
In Eq. (16),

∑M
l′,k′ ξl′ξk′ and

∑M
l′,k′ (ξl′)

2xk′ +
∑M

l′
∑M

i′,l′ ξl′ξi′ξk′

are the cross-talk noise from other hidden units. Each hidden unit
receives the sum of the noises added to each hidden unit. How-
ever, the mean value of the cross-talk noise is eliminated because
ξk′ is independent of the other hidden-unit noises. The derivative
of each hidden unit g′(yk′) is independent from those of the other
hidden units.

2.3 Generalization Error
The generalization error of applying NP learning to a soft-

committee machine matches that of the soft-committee machine
itself. Therefore, it is given by the squared error averaged over all
possible inputs, as follows:

εg =

∫
dxP(x)E = ⟨E⟩ . (17)

Here, P(x) is the probabilistic distribution of the input. ⟨·⟩ de-
notes the average over the inputs. The generalization error of
the soft-committee machine using stochastic gradient descent is
given by D. Saad et al., and we follow their calculation [6]. The
number of hidden units in the teacher is denoted as K and that of
the student is denoted as M. Accordingly, the generalization error
is

εg =
1
2
⟨E⟩ = 1

2

⟨ K∑
k=1

g(dk) −
M∑

k′=1

g(yk)

2⟩

=
1
2

 K∑
k=1

K∑
l=1

⟨g(dk)g(dl)⟩ +
K∑

k′=1

M∑
l′=1

⟨g(yk′)g(yl′)⟩

−2
K∑

k=1

M∑
k′=1

⟨g(dk)g(yk′)⟩
 (18)

Here, g(·) is a sigmoidal function, i.e., g(x) = erf
(

x√
2

)
. Eq. (18)

can thus be rewritten as

εg =
1
π

 K∑
k=1

K∑
l=1

sin−1 Tkl√
1 + Tkk

√
1 + Tll

+

M∑
k′=1

M∑
l′=1

sin−1 Qk′l′√
1 + Qk′k′

√
1 + Ql′l′

−2
K∑

k=1

M∑
k′=1

sin−1 Rkk′√
1 + Tkk

√
1 + Qk′k′

 . (19)

3ⓒ 2019 Information Processing Society of Japan

Vol.2019-MPS-126 No.2
2019/12/11

IPSJ SIG Technical Report

Here, Tkl, Qk′l′ , and Rkk′ are the order parameters defined by the
next equations.

Tkl = ⟨dkdl⟩ = w∗k · (w∗l)T (20)

Qk′l′ = ⟨yk′yl′⟩ = wk′ ·wT
l′ (21)

Rkk′ = ⟨dkyk′⟩ = w∗k · (wk′)T (22)

Note that Tkl is a constant value and is the correlation between
the weight vectors w∗k of the kth weight vector and the lth weight
vectors w∗l . In the limit N → ∞, Tkl = δkl, where δkl is the Kro-
necker delta. By substituting Eqs. (21) and (22) at each learning
iteration m into Eq. (19), we can calculate the generalization er-
ror at m. In the following part of the paper, we call Rkk′ and Qk′l′

as the overlap.
The overlaps Rkk′ and Qk′l′ in learning are determined with the

following procedure. Rkk′ is calculated at each learning iteration
as the inner product of the k′th weight vector of the student and
the kth teacher weight vector. Qk′l′ is calculated as the inner prod-
uct of the k′ weight vector of the student at each learning iteration
and the l′th student weight vector. For the output NP case, the
weight vector is updated using Eq. (12), while for the hidden NP
case, it is updated by Eq. (16). Equation (12) and (16) are recur-
sion forms for updating the weight. The weights at each iteration
are calculated in three steps: (1) initialize the weight vectors of
the teacher and student by drawing from a probability distribution
in accordance with Eq. (2) and (5); (2) generate input by drawing
from a probability distribution in accordance with Eq. (1); (3)
update the weights by using Eq. (12) or (16). Steps (2) and (3)
are repeated until the learning stopping conditions are satisfied.

From Eq. (8), the generalization error is zero when the teacher
and student are identical. As such, Rkk′ and Qk′l′ satisfy the fol-
lowing conditions in the thermodynamic limit, N → ∞.

Qk′l′ = δk′l′ (23)

Rkk′ = δkk′ (24)

3. Results
The hidden NP is the same as output NP except for the cross-

talk noise, so we only analyzed the dynamic properties of the
output NP (subsection 2.2.1) and results are compared with those
of noisy learning.

In this section, the same procedures as subsection 2.3 are used
to get the order parameters Rkk′ and Qk′l′ at each learning iter-
ation, and the generalization error is calculated by substituting
Rkk′ and Qk′l′ into Eq. (19). The initial values of the weight vec-
tors of teacher and student are set by the same procedures as in
subsection 2.1. In the following, the results of 10 trials that us-
ing different initial input-to-hidden weight vectors are plotted on
the same graph.Learning is stopped at t = m/N = 10000. Here,
N = 1000 and m is the iteration number of learning.

3.1 Effect of varying the number of hidden units
In this subsection, we analyze effect of changing the number

of hidden units in the generalization error.

In the output NP case, the noise added to the output unit prop-
agates to the hidden units as common noise. Consequently, the
number of hidden units is set to 3, 5, or 7.

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0.01 0.1 1 10 100 1000 10000

G
en

er
al

iz
at

io
n

E
rr

or

Time:t=m/N

(1) output layer NP K = 3

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0.01 0.1 1 10 100 1000 10000

G
en

er
ai

za
tio

n
E

rr
or

Time:t=m/N

(2) output layer NP K = 5

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0.01 0.1 1 10 100 1000 10000

G
en

er
al

iz
at

io
n

E
rr

or

Time:t=m/N

(3) output layer NP K = 7

Fig. 2 Time course of the generalization error in the output NP case. Num-
ber of hidden units K = 3, 5, or 7.

Figure 2 shows the results. We set the learning step size to η = 0.1
and drew the perturbation noise from a probability distribution
with mean zero and variance σ2

ξ = 10−5. The teacher and stu-
dent had the same architecture, so they had the same number of
hidden units, i.e., K = M. Figure 2 (1), (2), and (3) show the
results of the output NP case. In these figures, the horizontal axis
is time t = m/N, where m is the number of learning iterations and
N is the number of input dimensions, i.e., N=1000. The vertical
axis is the generalization error. From Fig. 2(1), (2), and (3), it
is clear that the residual error becomes larger as the number of
hidden units increases. However, the time it takes to escape from
the plateau changes slightly with the number of hidden units.

3.2 Effect of varying the learning step size
Next, we analyzed the effect of changing the learning step size.

As described in subsection 3.1, the number of hidden units in the
teacher and student was set to K = M = 3, and the number of in-
put dimensions was N = 1000. The variance of the perturbation
noise for both cases was set to σ2

ξ = 10−5. Moreover, the mean
of the noise was zero in both cases. The learning step sizes were
0.1, 0.2, 0.3, 0.4, 0.5, and 0.6.

Figure 3 shows the generalization error for the output NP case.

4ⓒ 2019 Information Processing Society of Japan

Vol.2019-MPS-126 No.2
2019/12/11

IPSJ SIG Technical Report

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0.01 0.1 1 10 100 1000 10000

G
en

er
al

iz
at

io
n

E
rr

or

Time:t=m/N

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0.01 0.1 1 10 100 1000 10000
G

en
er

al
iz

at
io

n
E

rr
or

Time:t=m/N

(1) η = 0.1 (2) η = 0.2

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0.01 0.1 1 10 100 1000 10000

G
en

er
al

iz
at

io
n

E
rr

or

Time:t=m/N

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0.01 0.1 1 10 100 1000 10000

G
en

er
al

iz
at

io
n

E
rr

or

Time:t=m/N

(3) η = 0.3 (4) η = 0.4

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0.01 0.1 1 10 100 1000 10000

G
en

er
al

iz
at

io
n

E
rr

or

Time:t=m/N

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0.01 0.1 1 10 100 1000 10000

G
en

er
al

iz
at

io
n

E
rr

or

Time:t=m/N

(5) η = 0.5 (6) η = 0.6

Fig. 3 Time course of the generalization error of the output NP case for
different learning step sizes.

The generalization error was calculated following the procedure
in subsection 2.3. In Fig. 3, the generalization error decreases
until the learning step size η is less than 0.5. The time it takes
to escape from the plateau for 0.3 < η < 0.5 was independent of
size of the learning step size. The residual error was much larger
when η = 0.6. We will discuss the reason for the enlarged error
later. It took longer to escape from the plateau when η < 0.3 than
when 0.3 < η < 0.5.

3.3 Comparison with noisy learning
Perturbation noise is added to the output layer or hidden layer

of student to get gradient information of the squared error. How-
ever, it is also useful for clarifying the difference in effect of
adding noise in noisy learning and adding noise in NP learning.
The learning equation of noisy learning is as follows:

w(m+1)
k′ j = w(m)

k′ j +
η

N

 K∑
l=1

g(d(m)
l) −

M∑
l′=1

(
g(y(m)

l′

)
− ξ

×
√

2
π

exp
−y2

k′

2

 x(m)
j . (25)

Here, Eq. (25) is noisy learning in which noise is added to the
output layer. Figure 4 shows the results. Figure 4 show the learn-
ing results.

The learning step size was η = 0.1, and the added noise was

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0.01 0.1 1 10 100 1000 10000

G
en

er
al

iz
at

io
n

E
rr

or

Time:t=m/N

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0.01 0.1 1 10 100 1000 10000

G
en

er
al

iz
at

io
n

E
rr

or

Time: t=m/N

(1) output NP(left) and noisy learning at output layer (right). K = 3.

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0.01 0.1 1 10 100 1000 10000

G
en

er
ai

za
tio

n
E

rr
or

Time:t=m/N

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0.01 0.1 1 10 100 1000 10000

G
en

er
al

iz
at

io
n

E
rr

or

Time: t=m/N

(2) output NP(left) and noisy learning at output layer (right). K = 5.

Fig. 4 Generalization errors of NP learning and noisy learning.

drawn from a probability distribution of mean zero and variance
σ2 = 10−5. The number of hidden units was K = 3 or K = 5.
In the figures, the horizontal axis is time t = m/N, and the verti-
cal axis is the generalization error. The generalization error was
calculated using Rkk′ and Qk′l′ at each learning iteration and Eq.
(19). From Fig. 4(1) and (2), the time it takes to escape from
the plateau in the output NP case is almost the same as that of
noisy learning when noise is added to the output layer. How-
ever, the residual error is small in noisy learning. Although it is
not shown in Fig. 4(1) and (2), we found that the residual er-
ror of noisy learning when noise is added to the output layer was
2 × 10−11. The time it takes to escape from the plateau in both
the output NP case and noisy learning when noise is added to the
output layer did not change when the hidden units were increased
from K = 3 to K = 5. These results indicate that the output NP
case and noisy learning when noise is added to the output had
similar learning performances, except for the residual error. It is
interesting that NP learning using implicit gradient information
has similar performance to noisy learning using explicit gradient
information.

4. Conclution
We proposed adding noise to either the output layer or hid-

den layer of a soft-committee machine. We analyzed the dy-
namic behavior of these NP learnings in terms of the overlaps
Rkk′ and Qk′l′ . The results indicated that proposed NP learnings
were learnable, and they could avoid plateaus. We compared the
cases of adding noise to output and that of adding noise to the
hidden layer while varying the number of hidden units and learn-
ing step size. The results showed that the case of adding noise to
the output can learn a wider numerical range of hidden units and
step sizes. This difference between it and the case of adding noise
to the hidden layer comes from cross-talk noise in the hidden NP
case; the cross-talk noise increases the squared error. This makes

5ⓒ 2019 Information Processing Society of Japan

Vol.2019-MPS-126 No.2
2019/12/11

IPSJ SIG Technical Report

the norm of the weight vector longer and the generalization error
larger. Moreover, we compared the proposed NP learnings with
noisy learning. The results showed that adding noise to the out-
put was similar in effect to noisy learning. In the future, we will
analyze the application of NP learning to a two layer network.

References
[1] B. Widrow and M. A. Lehr: 30 years of adaptive neural networks: Per-

ceptron, Madaline, and Backpropagation, Proc. IEEE, Vol.78, No.9,
pp.1415-1442 (1990).

[2] R. J. Williams, ”Simple statistical gradient-following algorithms for
connectionist reinforcement learning”, Machine Learning, 8, pp. 229-
256 (1992).

[3] Fiete, I.R., Fee, M.S. and Seung, H.S.: Model of Birdsong Learn-
ing Based on Gradient Estimation by Dynamic Perturbation of Neu-
ral Conductances, Journal of Neurophysiology, Vol.98, pp.2038-2057
(2007).

[4] J. Werfel, X. Xie and H. S. Sueng, ”Learning curves for stochastic
gradient descent in linear feedforward networks”, Neural Computa-
tion 17, pp. 2699-2718 (2005).

[5] D. Saad editor: On-line learning in neural networks. Cambridge:
Cambridge University Press, (1999).

[6] D. Saad, S. A. Solla: On-line learning in soft committee machines,
Physical Review E, vol. 52, no. 4, (1995).

[7] Biehl, M. and Riegler, P.: On-Line Learning with a Perceptron, Euro-
physics Letters, Vol.28, No.7, pp.525-530 (1994).

[8] A. Biehl and H. Schwarze: ”Learning by on-line gradient descent”, J.
Phys. A: MAth. Gen. , 28, 643 (1995).

[9] H. ‾ Nishimori: Statistical physics of spin glass and information pro-
cessing: An introduction. Oxford: Oxford University Press, (2001).

[10] A. Engel and C.V den Broeck : Statistical Mechanics of Learning,
Cambridge University Press, Cambridge, UK, 1st edition (2001).

[11] A. Krogh : Learning with noise in a linear perceptron, Journal of
Physics A: Mathematical and General, Vol.25, No.5, pp.1119-1133,
(1992).

[12] A. Krogh and J. A. Hertz: Generalization on a linear perceptron in the
presence of noise, Journal of Physics A: Mathematical and General,
Vol.25, No.5, pp.1135-1147, (1992).

[13] K. Hara, K. Katahira, K. Okanoya and M. Okada: ”Statistical mechan-
ics of on-line node-perturbation learning,” Information Processing So-
ciety of Japan Trans. on Mathematical Modeling and Its Applications:
4, 1, 72–81, (2011).

[14] K. Hara, K. Katahira, K. Okanoya, M. Okada: ”Statistical mechanics
of Node-perturbation Learning for nonlinear perceptron”, Journal of
Physical Society of Japan, 82 054001 (2013).

[15] J. E. Moody: ”The effective number of parameters: An analysis of
generalization and regularization in nonlinear learning systems”, Pro-
ceeding of Advances in Neural Information Processing Systems 4, pp.
847–854 (1991).

[16] C. M. Bishop: ”Training with noise is equivalent to Tikhonov regular-
ization”, Neural Computation, 7, no. 1, pp. 108-116 (1995).

6ⓒ 2019 Information Processing Society of Japan

Vol.2019-MPS-126 No.2
2019/12/11

