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Abstract: Due to the recent prevalence of IoT (Internet of Things) devices, streaming data such as video data or sensor
data are collected and analyzed for real-time applications. The transaction time for data collection and analysis is one
of the main factors to improve performance of some real-time IoT applications. For instance, in real-time surveillance
camera systems, a shorter transaction time further reduces the delay to find thieves recorded by the cameras. However,
computational and communication capacities of processing computers give lower limits to transaction time. To break
this limitation, we propose an efficient data collection method using a progressive quality improvement approach. In
our proposed method, each data source produces some content data of those qualities are lower than the quality of the
original content data such as low resolution image data. Only the cases where higher quality data are needed for anal-
yses, the processing computer progressively collects them. Thus, by reducing the average data amount of collections
and for analyses, our proposed method reduces the average transaction time. We measured the transaction time of our
proposed method in our developed simulator and confirmed that our proposed method can reduce the transaction time.
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1. Introduction

Recently, various IoT devices such as cameras and weather
sensors connected to the Internet attract great attention. These
devices generate stream data such as video data or temperature
data and act as stream data sources. In most IoT applications,
processing computers collect stream data from these IoT devices
continuously and analyze them in real-time. The transaction time
for data collection and analysis (from the time to start transmit-
ting a content data from a stream data source to the time to finish
analyzing the content data) is one of the main factors to improve
performance of some real-time IoT applications. For example,
suppose a system in that a processing computer receives video
data continuously from some surveillance cameras and analyzes
image data of each video frame to find thieves. In this example,
a shorter transaction (image data receptions and analyses) time
enables the system to grasp their more recent positions.

Larger computational and communication capacities ofa pro-
cessing computer further reduce the transaction time. However,
these are actually limited and give lower limits to the transaction
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time. In stream data processing, a long transaction time has a
possibility to increase the transaction time continuously since the
transaction time increases if the time span of a transaction over-
laps with that of the next transaction. A longer transaction time
also requires a larger amount of data buffers since the collected
data are stored to the buffer of the processing computer while it
collects and analyzes them. Therefore, transaction time reduction
is one of the main research topics for real-time IoT applications.

To reduce the transaction time, many methods have been pro-
posed [1], [2], [3]. Most of these methods degrade the qualities
of the content data to complete analyses, such as resolutions for
image data to reduce the data amount to collect. Quality degra-
dations result in performance degradations of IoT applications.
Their performance can improve by reducing data to be collected
even when the analysis frequency is high or there is a large num-
ber of stream data sources.

In this paper, we propose an efficient data collection method us-
ing a progressive quality improvement approach. In our proposed
method, each stream data source produces some content data of
those qualities are lower than the quality of the original content
data such as low resolution image data. Only the cases where
higher quality data are needed for analyses, processing computers
progressively collect them (a detailed explanation is in Section 4).
Thus, by reducing the average data amount of collections and for
analyses, our proposed method reduces the average transaction
time. Here, the transaction time is afactor that affects the network
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mation Processing (JIP) by the chief examiner of SIGDPS.
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bandwidth or delays. A larger data amount causes using a large
network bandwidth, this causes a longer transaction time since
the time starting the next transaction is longer. In other hand, if
a smaller data amount causes using less network bandwidth, this
causes a shorter transaction time. Different from a traditional ap-
proach in that a transaction sequentially proceeds with improving
the quality of the content data, our progressive quality improve-
ment approach targets streaming data and the transactions occur
continuously. In stream data transactions, it is difficult to reduce
the transaction time since they continue to increase when the time
span for a transaction overlaps with that for the next transaction.
Therefore, as we stated above, the transaction time reduction is
an important performance for stream data transactions. In our
proposed method, the processing computer sets a priority to re-
duce the transaction time (stops redundant processes, executes
processes one by one) not to fail the stream data transactions.
The contributions of the paper are: 1) the proposal of a progres-
sive quality improvement (PQI) approach, 2) the proposal of a
method using the PQI approach.

The rest of this paper is organized as follows. In Section 2, we
introduce some works that are related to our proposed method.
In Section 3, we explain our assumed system environments. Our
proposed method is explained in Section 4, and evaluated in Sec-
tion 5. Finally, we will conclude the paper in Section 6.

2. Related Works

To reduce communication traffic and improve stream data anal-
ysis for real-time, some methods have been proposed.

A two-layer system architecture for stream data analysis is pro-
posed in Ref. [4]. In the first layer, the system executes pre-
analyses to received data and determines whether to proceed to
the main analysis of the second layer. The proposed system ar-
chitecture can reduce processing loads since the system does not
execute redundant main processes. Though the method divides
processes, data are not divided into some parts as in our proposed
method.

A two-level indexing structure for data collection is proposed
in Ref. [5]. In this method, the data are first stored to the memory
having tree structures in the first level and then each data seg-
ment passes to the second level with their reference key tree. The
method can faster collect data due to each data segment being
stored separately. Their method is different from ourmethod in
the point that they reduce the loads of the processing computers
but we reduce the transaction time.

In Ref. [6], queuing models for processing stream data are an-
alyzed for improving the transaction time and a queuing method
is proposed. In the method, the received stream data are stored
to the buffer of processing computers. Processing computers use
different buffers for each application. The method reduces the
transaction time considering queuing situations of other buffers.
Our proposed method is different from this in the point that we
reduce the transaction time by managing how to process data.

In Ref. [7], a dynamic bitrate adaptationmethod is proposed. In
this proposed method, theappropriate bitrate is selected so as not
to exceed the communication buffer of the processing computer.
In the processing computer, the data is divided into series of seg-

ments then sent to the requested users. However, the method does
not aim to reduce the transaction time.

An efficient CPU resource allocationmethod for stream data
analysis is proposed in Ref. [8]. By allocating CPU resources to
each data stream and processing received stream data in a single
process manner, the method enables faster stream data analysis.
The approach of themethod is effective CPU resource allocations
and is different from our approach. In our approach, the trans-
action time is reduced by improving the quality of contents data
progressively.

A stream split processing model was proposed in Ref. [9]. This
model allocates data stream into two types such as normal data
and delay data. Each type of allocated data is executed separately.
The normal data gets faster for execution since the waiting time
for the next execution is shorter while the execution of the delay
data is long. However, this method has to share the output to each
other after complete execution of the normal data and delay data
in order to get the final results. Therefore, the average transaction
time to achieve the final results of this method cannot reduce. Our
method reduces the average transaction time.

A method for optimizing data transaction and computation was
proposed in Ref. [10]. In this method, the processing computer
collects only the image that contains the changed contents of im-
age data. By ignoring some duplicated contents of image data,
the method can keep transaction rates. This method is similar to
our method in the case that the processing computer stores only
the different contents of image data from the previous image data.
However, the quality of image in their method is not improved. In
our proposed method, the quality of image is improved progres-
sively.

The method proposed in Refs. [11] and [12] reduces the band-
width consumption and the amount of transmitted data keeping
the quality of stream data and communication delays by com-
pressing stream data. One of the drawbacks of the method is that
the data sources need to compress the data before their transmis-
sions and this causes further transaction time.

In addition, some stream data analysis systems have been de-
veloped in Refs. [13], [14]. However, the quality of stream data is
fixed under these methods. Our proposed approach in this paper
improves the quality progressively.

3. Assumed System

In this section, we explain our assumed system.

3.1 System Architecture
Figure 1 shows our assumed system architecture. An user des-

ignates processes for continuously generated data (stream data) to
a processing computer. The processing computer executes desig-
nated processes at every data reception. Such a type of processes
is called stream processing. The processing computer gathers
necessary data for processes and executes processes continuously.
The processing computer has a buffer for storing received data
and executes processes for the data.

Some IoT devices such as surveillance cameras continuously
get data about their observations such as video data and act as
stream data sources. They and the processing computer connect
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Fig. 1 Our assumed system architecture.

to a computer network. In the cases that the network bandwidth
is stable, the Internet can be assumed to be the computer network.
The data sources and the processing computer can communicate
with each other via the computer network. The data sources di-
vide their generated stream data into some parts and store them to
their buffer temporarily. When the processing computer requests
data to stream data sources, the requested data sources return it to
the processing computer. The processing computer receives the
requested data in its own buffer and performs processing.

3.2 Application Scenario
In this subsection, we introduce an application scenario. Sup-

pose an area where some surveillance cameras are deployed and
a processing computer gathers their recorded video frame data.
They connect to a designated computer network and communi-
cate with each other similar to our assumed system architecture.

As an example application scenario, we assume a thieves find-
ing system by a face recognition. For this, the application des-
ignates the process that notifies to the user when the processing
computer detects the humans whose faces resemble to thieves’
faces in the video data got from surveillance cameras. To detect
faces, the user submits the face images of thieves to the process-
ing computer beforehand. The processing computer continuously
analyzes image data got from surveillance cameras and identi-
fies faces in received image data. When the processing computer
finds faces in an image data, it checks whether the found faces
are those of thieves’ faces. If the processing computer detects
thieves’ faces, it sends a notification to the user by e-mail or other
messaging services.

The transaction time in this scenario is from the time to start
transmitting an image data recorded by each camera to the time
that the processing computer finishes checking thieves’ faces.
One of the simple approaches to reduce the transaction time is
that the processing computer does not identify faces when the
difference between an image and the previous video frame is ex-
cessively small since the image does not change largely. Our pro-
posed method requires network connections among cameras and
computers, but it does not use any information about those net-
works such as bandwidth, delay, and hop counts. Therefore, the
application providers can deploy the system using our proposed
method with the network connections. The reduction of transac-
tion time has an advantage also in the application domain for the
viewpoint of resources usage including energy consumption.

We assume that the network connections among cameras and
computers, and those network performances are given such as
bandwidth and delay. Our assumed problem is caused by
these limited computational and communication capacities, and a
longer communication time lengthens the transaction time. This
is because the communication time strongly influences the trans-
action time in many cases compared to the time for local pro-
cesses. A longer transaction time requires higher costs in both of
computational and communication domains. Therefore, we pro-
pose a method to reduce the transferred data by collecting higher
quality data only in the cases that they are requested. The reduc-
tion of the transferred data enables to shorten the communication
time in the transaction time and save the network resources con-
sumed. In addition, a shorter transaction time has an advantage
also in the application domain for the limited computational re-
sources including energy consumption.

3.3 Transaction Time Definition
In this section, we explain the transaction time. The transaction

means the processes to complete sending the reserved data item
in each sending sequent between data sources and the process-
ing computer. We call the processes for receiving all divided data
of a data item a “transaction”. Each transaction takes some time
to transmit the data item from the data sources to the processing
computer. Therefore, the transaction time in our paper means the
time to get the first level of a divided data item to the time to finish
the processing of the last level of a divided data item.

3.4 Research Objective
In the scenario introduced in Section 3.2, the application per-

formance is the probability to catch thieves. This can increase by
a shorter transaction time since the system can grasp their more
recent positions. Moreover, the probability to detect thieves in-
crease by collecting video data from more surveillance cameras.

However, computational and communication capacities ofthe
processing computer are limited. Therefore, a more frequent
data analysis and also a larger number of data sources cause a
longer transaction time. A longer communication time lengthens
the transaction time from the time to start transmitting a content
data at a stream data source to the time to finish analyzing them.
Therefore, our research objective is reducing the transaction time
keeping the application performance.

3.5 Mathematical Definition
In this subsection, we explain a mathematical model for our

assumed system. Suppose that the system has N stream data
sources. These stream data sources cyclically send their observed
data every Cn (n = 1, · · · ,N) unit time. Let Dn,a(t) denotes
the whole stream data at tth cycle while n denotes the number
of streams. The a represents “all” and does not have any spe-
cific value. Whole stream data mean original stream data with-
out dividing them into some qualities. The system can divide
Dn,a(t) into Q data Dn,q(t) which is q th quality data of Dn,a(t).
The data amount of Dn,q(t) is denoted by S n,q(t). GTn,q(t) de-
notes the generation time of Dn,q(t) and Pn,q(t) denotes the time
required to process it. S Tn,q(t) is the time to start processing
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Dn,q(t) and FTn,q(t) is the time to finish processing it. Here,
FTn,q(t) = S Tn,q(t) + Pn,q(t). The transaction time, TTn(t), is the
time from data generation to end of processing the data. In the
case that the processing computer processes the divided data se-
quentially from the first quality data Dn,1(t) to the en(t)th quality
data Dn,en(t)(t), TTn(t) is given by the following equation:

TTn(t) = FTn,en(t)(t) −GTn(t) (1)

The average transaction time for the data source n is:

1
T

T∑

t=1

TTn(t) (2)

where T is the final cycle. The objective is maximizing the num-
ber of data sources to process, which corresponds to minimizing
Eq. (2).

We denote the probability for processes to proceed to the next
process PProbn,p(t) (p = 1, · · · ,Q − 1). For example, the prob-
ability to request D1,2(1) when the processing computer finishes
processing D1,1(1) is PProb1,1(1).

4. Proposed Method

In this section, we explain our proposed method.

4.1 Basic Idea
Generally, data have some qualities. Data analyses can be ap-

plied for each quality and data with the highest quality often give
the best performance for analyses. For example, one of qualities
for image data is resolution. Image data with 640× 480 pixel size
has a higher quality than image data with 320×240 pixel size. Im-
age analyses to find faces can be applied for various pixel sizes
while a higher resolution image data generally gives a higher ac-
curacy. By finally analyzing data with the highest quality, ap-
plications can achieve the same performance. When processing
computers analyze data sequentially in the order of quality from
the lowest to the highest, they can stop data analyses when the
subsequent analyses for higher quality data are meaningless. For
example, same as the example in the introduction section, sup-
pose the case that a processing computer analyzes image data of
each video frame to detect faces. The processing computer first
receives the lowest quality image data of a frame and analyzes the
difference from the previous frame. In case that the difference is
small, the processing computer skips the analysis of higher qual-
ity image data since new humans do not appear in those frames
because of small differences. In such cases, the processing com-
puter does not need to receive higher quality image data when
subsequent analyses are meaningless. Therefore, by analyzing
data in the order of data quality and stopping analyses when sub-
sequent analyses are meaningless, the processing computer can
skip the receptions of higher quality image data.

In cases that the probability to proceed to analyses of higher
quality image data is small, the total amount of received data is
reduced, compared with the case that all quality data are received.
Generally, the amount of a lower quality data is smaller. There-
fore, the data amount to be collected by the processing computer
is further reduced than that under the conventional method when

Fig. 2 Stream data collection of an conventional approach and of our pro-
posed approach.

the probability is small. Thus, the transaction time is reduced
keeping the application performance. We call this approach pro-

gressive quality improvement approach.

4.2 Data Stream Processing
In this subsection, we explain the processes of data collection

in the conventional approach and our proposed approach. In this
example, the data sources are two cameras.

We first explain data streams transaction under the conven-
tional approach. Camera 1 sends its recorded video data to the
processing computer. It sends image data for each video frame
each time it acquires it. In Fig. 2, the t th frame data is shown
by D1,a(t) (t = 1, · · · , T ). For example, when the frame rate is
10 [Hz], Camera 1 sends image data every 100 [msec.]. Hence,
GT1,a(t + 1) = GT1,a(t) + 0.1. In addition, Camera 2 sends its
recorded video data to the processing computer. In this example,
the frame rate for Camera 2 is the same as that for Camera 1,
but the time to start sending the video data differs. After Camera
1 sends D1,a(t), Camera 2 sends D2,a(t). While both Camera 1
and Camera 2 send data, the input communication bandwidth for
the processing computer is equally divided between them. There-
fore, the transaction speed of Camera 1 decreases as shown in the
figure. After Camera 1 finishes sending D1,a(t), the input com-
munication bandwidth is dedicated for the transaction with Cam-
era 2 and the transaction speed of Camera 2 increases as shown
in the figure. When the processing computer finishes receiving
D1,a(t), it starts processing D1,a(t). While processing D1,a(t), the
processing computer finishes receiving D2,a(t). Since the process-
ing computer processes D1,a(t) at this time, it stores the received
D2,a(t) in its transaction buffer and starts processing it after fin-
ishing processing D1,a(t). Similarly, while processing D2,a(t), the
processing computer finishes receiving D1,a(t+1). The processing
computer starts processing it after finishing processing D2,a(t).
The transaction time for D1,a(t + 1) in this case is shown in the
figure. This is the time from the start of sending D1,a(t + 1) to the
end of processing D1,a(t + 1).

Next, we explain data streams processing under our proposed
approach. Similar to the example for the conventional method,
Cameras 1 and 2 send their recorded image data to the processing
computer cyclically. In contrast with the conventional method,
the image data is divided into 2 levels. Each level has a differ-
ent quality. For example, the data for the first level is the lowest
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Fig. 3 Processes in data sources.

quality image data and the data for the second level is an addi-
tional data to improve the quality of the data. Here, we assume
that the data for the second level only includes the difference data
from the first level and that the amount of the data for each level
is the same. To make the example simple, we assume that the
data amounts for each level are just half of the data amount of
D1,a(t) (t = 1, · · · , T ). The time needed to send Dn,q(t) (n = 1, 2,
q = 1, 2) is the half of the time needed to send Dn,a(t). Therefore,
the transaction of D1,1(t) does not overlap that of D2,1(t) though
the transaction of D1,a(t) overlaps that of D2,a(t). An example of
the reason not to request the second level data is that the differ-
ence of the image data from the previous image data is not so
large. The processing computer does not request the second level
data in the first cycle. In the t + 1 th cycle, the processing com-
puter starts processing D1,1(t+1) after finishing receiving it. After
processing D1,1(t + 1), the processing computer requests the sec-
ond level data. An example of the reason to request the second
level data is that the difference of the image data from the pre-
vious image data is large. When Camera 1 receives the request
for D1,2(t + 1), it starts sending D1,2(t + 1). The processing com-
puter does not request the second level data for the Stream 2 in
this case. After receiving D1,2(t + 1), the processing computer
processes it and completes the data analysis of the t + 1 th cycle.
D1,2(t + 1) includes only the data different from D1,1(t + 1). By
combining D1,1(t + 1) and D1,2(t + 1), we can get a higher data
quality. The transaction time for D1(t + 1) in this case is shown
in the figure. This is the time from the start of sending D1,1(t + 1)
to the end of processing D1,2(t + 1).

In this case, the transaction time under our approach is shorter
than that under the conventional approach since the processing
time for D2(t) is reduced.

4.3 Algorithms
In this subsection, we explain the algorithms for our proposed

approach.
4.3.1 Algorithm for Data Sources

Figure 3 shows the flow chart of data sources. When the t

th cycle starts, each data source n gets Dn,a(t) from their sensors

Fig. 4 Dataprocessing in the processing computer.

and stores it to their storages temporarily. First, they generate
Dn,1(t) from Dn,a(t). The data sources cyclically send Dn,1(t) to
the processing computer with the interval I. The data sources
send higher quality data when they receive the requests except
for the transmission of the first quality data.

When the data source n receives the request of Dn,q(t), it gener-
ates Dn,q(t) from stored Dn,a(t) and sends Dn,q(t) to the processing
computer.
4.3.2 Algorithm for Processing Computer

Figure 4 shows the flow chart of the processing computer.
When the processing computer receives Dn,q(t), it processes
Dn,q(t). When q = Q and Dn,q(t) is the final quality data, the
transaction of t th cycle finishes. Otherwise, the processing com-
puter judges the necessity of Dn,q+1(t). Here, the time to judge
the necessity of Dn,q+1(t)) is affected by many factors such as the
processing computer and image data. In this paper, however, we
assume that the processing computer has a specific performance
and the time for local processes is not so long compared to the
communication time. In case where Dn,q+1(t) is needed for the
process execution, the processing computer requests Dn,q(t) to the
data source n.

Note that the receptions of the first quality data are push-based
receptions from the data sources. The receptions of higher quality
data are pull-based receptions by the processing computer.
4.3.3 How to Divide Data

In our proposed method, each stream data is divided into some
qualities. We suppose two approaches to divide data.

The first one is the case where a higher quality data can be
constructed by combining some data. For example, image data
with 640×480 pixel size can be constructed by 4 image data with
320 × 240 pixel size. In this case, the data amount of the q th
quality data of the stream data n at the t th cycle is given by:

q∑

i=1

S n,i(t) + αn,i(t) (3)

Here, αn,i(t) is an overhead caused by combining data.
The second one is the case where a higher quality data is con-

structed separately. For example, it is difficult to fully decode
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image data with 640 × 480 pixel size by combining compressed
4 image data with 320 × 240 pixel size. In this case, the data
amount of the q th quality data of the stream data n at the t th
cycle is given by S n,q(t).

The application of the stream processing system selects an ap-
propriate method to divide data.
4.3.4 How to Process Data

In cases where the processing computer executes processes
in parallel, the transaction time for each transaction lengthens
because the computational resource is divided between them.
Therefore, in our proposed method, the processing computer ex-
ecutes processes one by one. The processing computer earlier
executes a process for a faster received content data (FIFO man-
ner).

5. Evaluation

In this section, we show evaluation results of our proposed
method by using our developed simulator.

5.1 Evaluation Setup
In this evaluation, we assume the application explained in Sec-

tion 3.2. Under our proposed method, the processing computer
calculates difference values between the current frame image data
(Dn,q(u), n = 1, · · · ,N, q = 1, · · · ,Q, u = 2, · · · ) and the previous
one (Dn,q(u − 1)) only when the difference value of the previous
quality q − 1 is large. Finally, the processing computer detects
faces in Dn,Q(u) in the cases that the difference values of all the
lower qualities data are large. In the cases that a difference value
is small, the processing computer stops the image analysis and
waits for the next frame. In our assumption for real applications,
the condition that the clients wait for the next frame is based on a
designated (threshold) for its quality, and the condition is differ-
ent by applications, e.g., whether the current frame has a enough
quality to detect humans. Instead of the condition to wait for the
next frame, this simulation tentatively has the additional parame-
ter called “final probability” FProb as the probability to proceed
to the final level. Table 1 shows other parameters and those val-
ues.

Input Bandwidth is the input communication bandwidth for the
processing computer. When the processing computer communi-
cates with some data sources, the input bandwidth is fairly shared
among data sources. Output Bandwidth is the output communica-
tion bandwidth of each data source. Input Data is the data amount
of Dn,a(t) (n = 1, · · · ,N, t = 1, · · · , T ).

To make the evaluation results as realistic, we use an open
image dataset in ‘changedetection.net’ [15] named ‘pedestrians’.
The dataset includes 1,099 image data of standard JPG type with
360 × 240 resolution. These images are the frames of a video
data got from a surveillance camera. To extract some data with
different qualities from one original image data, we converted
them into progressive-JPG type. A progressive-JPG image in-

Table 1 Parameter values.

Input Bandwidth 10 [Mbps]
Output Bandwidth 10 [Mbps]
1,099 frames Data changedetection.net

Image Size 360 × 240

cludes some images with different qualities (called ‘scans’ in
progressive-JPG) and we regard each of them as Dn,q(t). We
cannot show the images in the data set for the reason of copy-
rights. Therefore, to show the qualities for each scan in images
of progressive-JPG type, we show some images of each quality
in Fig. 5, those are different from the images we used in the eval-
uation section. As shown in Fig. 5, the quality progressively im-
proves. We calculate the difference values for each frame us-
ing the norm function in OpenCV [16]. The average processing
time is 66.4 [usec.] We got the difference values of static images
(no large change) and assume that the processing computer pro-
ceeds to the calculation of the next quality only when the values
differ 5% from the values for static images. Also, we detected
faces in the highest quality data. The average processing time is
389 [msec.]

We simulate the stream processing system for 300 seconds and
get the transaction time.

5.2 Transaction Time for Actual Data
We show the transaction time for each transaction. We ex-

plained in Section 5.1, the processing computer calculates the
difference values between Dn,q(u) and Dn,q(u − 1). Only when
the difference values for all of lower quality data are large, the
processing computer detects faces in Dn,Q(u). We set Q = 10
since the default number of scans for images of progressive-JPG
is 10. The average data amounts for each quality are shown in
Table 2. We separated all image data fairly into N groups to get
multiple actual video streams. Figure 6 shows the evaluation re-
sult. The horizontal axis is transaction IDs. A transaction ID is
given to each transaction in that the processing computer collects
a video frame data and analyzes it. Transaction IDs are given
to each transaction sequentially. ‘No PQI’ means a conventional
method in that the data sources do not divide the original data.
‘PQI’ is our proposed method.

Our proposed PQI method relatively gives shorter transaction
time than those under the conventional method because the pro-
cessing computer does not collect and analyze redundant data by
dividing the original data into some qualities. In case that the

Fig. 5 Resolution examples for some scans of progressive-JPG images.
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Table 2 Average data amounts for each scan [bytes].

Scans 1 2 3 4 5 6 7 8 9 10
Data amounts 7204 1739 177 421 1630 3571 297 67 134 1421

Fig. 6 Transaction time of each transaction for an actual data.

difference value from the previous frame image is small under
the PQI method, the process does not proceed to the final quality
and the transaction time becomes short. Otherwise, the transac-
tion time is long. A larger number of the streams gives a longer
transaction time since the data amount that the processing com-
puter collects and analyzes increases. Even when the number of
the streams is 3, the transaction time does not diverge under the
PQI method because some processes stop at lower qualities. In
the conventional method, the transaction time diverges when the
number of streams is 2 or 3.

5.3 Transaction Time for Simulated Data
We change some parameters to investigate the change of the

transaction time under the conventional No PQI method and our
proposed PQI method. For that, we simulate situations for stream
processing based on the actual data used in the Section 5.2.

We use the same data amount and the same processing time
with the actual data. We use the same values for PProbn,p(t)
(p = 1, · · · ,Q−1). For this, we set the final probability FProb for
processes to proceed to the final level. PProbn,p(t) = FProb1/N .
We set the value of FProb by 0.788 and this is the same as the av-
erage probability to proceed to the next quality for the actual data
used in the previous subsection. The interval is 0.4 and this is also
the same as the interval for the actual data. The result is shown in
Fig. 7. Similar to the actual data, the transaction times under the
PQI method are shorter than those under the conventional method
in many cases. In the cases that the number of the streams is less
than 3 under both methods, the transaction time saturates. There-
fore, in the remaining subsections, we use the average transaction
time for the cases that the transaction time saturates as the index
of the performance.

5.4 Influence of Number of Streams
The data amount that the processing computer receives in-

creases as the number of streams increase. Thus, the average
transaction time is influenced by the number of streams. We in-
vestigate the influence.

Fig. 7 Transaction time of each transaction for a simulated data.

Fig. 8 Average transaction time under different final probabilities.

Figure 8 shows the result of the average transaction time
changing with the number of the streams. The horizontal axis
is the number of the streams and the vertical axis is the average
transaction time. We simulate the transaction time under differ-
ent final probabilities. The final probabilities are 0.001, 0.01, 0.1,
0.3, 0.5, 0.7, and 1.0. The intervals for all data streams are the
same and is 0.4 [sec.]. The number of qualities under our pro-
posed method is 5.

A larger final probability causes a longer transaction time since
the processing computer collects and analyzes a larger amount
of data to proceed to a higher quality. The average transaction
time under the No PQI method increases as the number of the
streams increases for the cases where it is less than 3, because the
data amount that the processing computer receives increases. For
the cases where the number of the streams is larger than 2, the
average transaction time increases sharply. This is because the
transaction time increases as the time proceeds as shown in the
case of 3 streams in Fig. 7 and the system fails to process stream
data continuously. We can see similar phenomena for the cases
of our proposed method. However, the maximum number of the
streams that the system works is larger compared with the No
PQI method. For example, in case where the final probability is
0.1, the average transaction time sharply increases when the num-
ber of the streams is 4. Therefore, the processing computer can
collect data from more data sources by using our proposed PQI
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Fig. 9 Distribution of transaction time when the number of streams is 3.

method compared with the conventional No PQI method.
The average transaction time in the cases of the maximum

number of the streams just before the system fails under the PQI
method is longer than that under the No PQI method except for
the case where the final probability is 0.001. This is because the
processing computer receives a higher quality data after request-
ing it to data sources in the PQI method. For example, in case
where the final probability is 0.1, the average transaction time
is 447 [msec.] for 4 streams under the PQI method though it is
318 [msec.] for 2 streams under the No PQI method. This is a
demerit of the PQI method.

Not only the average transaction time, we investigate the dis-
tribution of transaction time from over 700 simulations. Fig-
ure 9 shows the distribution of transaction time in the cases of
“No PQI” and “PQI (Final Probability=0.1)” when the number
of streams is 3. We picked the result up as an example, and the
result shows that our proposed method keeps the transaction time
under 100 [msec.] for nearly 80% cases in this simulation en-
vironment. In addition, our implemented simulator has a small
percentage result whose transaction time is over 1,000 [msec.].

5.5 Influence of Intervals
The processing computer frequently receives data as the inter-

val shortens and the average processing time increases. There-
fore, we investigate the influence of the intervals.

The result of the evaluation is shown in Fig. 10. The horizon-
tal axis presents the interval values and the vertical axis presents
the average of transaction time. In this evaluation, the number of
streams is 2. For our proposed method, the number of the quali-
ties is 5.

Similar to the previous evaluation result, the system fails when
the interval is excessively short and the average transaction time
sharply increases. In the No PQI method, the average transaction
time is constant when the interval is larger than 0.4 [sec.]. This is
because the transaction time sharply increases in the cases where
the processing computer receives the next data during processing
in the No PQI method. In the PQI method, the shortest inter-
val that the system works is shorter compared with the No PQI
method. For example, in the cases where the final probability is
0.1, the average transaction time sharply increases when the in-

Fig. 10 Average transaction time under different intervals.

Fig. 11 Average transaction time user different number of qualities.

terval is 0.15. Therefore, the processing computer can collects
data with a shorter interval by using our proposed PQI method
compared with the conventional No PQI method.

5.6 Influence of Number of Qualities
The number of qualities influences the average transaction

time. We investigate the influence.
Figure 11 shows the average transaction time under different

numbers of the qualities. The horizontal axis presents the num-
bers of the qualities and the vertical axis presents average trans-
action time. The intervals value is 0.4 [sec.] and the number of
the streams is 2.

The average transaction time for the case where the number of
the qualities is 1 represents the average transaction time under the
No PQI method. The other qualities 2 to 10 are the average trans-
action times under the PQI method. The average transaction time
decreases as the number of the qualities increases except for the
case where the number of qualities is 7. When the number of lev-
els is 7, the data reception overlaps with that of the next transac-
tion and the computational resources of the processing computer
intercept. Therefore, the average transaction time is long.

5.7 Influence of Number of Final Probabilities
As shown in the previous evaluation results, the average trans-

action time depends on the final probability. We show the trans-
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Fig. 12 Average transaction time under different final probabilities.

action time changing the final probability.
Figure 12 shows the result of average transaction time under

different final probabilities. The horizontal axis presents the final
probability with a logarithmic scale. The vertical axis presents
the transaction time. To keep the consistency with the previous
results, we set the number of qualities to 5 and the interval to
0.4 [sec.]

The transaction time increases as the final probability increases
since more processes proceed to analyses of higher quality data
and the transaction time increases. When the number of streams
is 3, the transaction time sharply increases when the final prob-
ability is larger than 0.2. This is because, as explained in the
previous subsections, the transaction time increases as the time
proceeds and the system fails to process stream data continuously.

6. Conclusion

Transaction time is one of the main factors to improve per-
formances of some IoT applications. To reduce the transaction
time, we proposed an efficient data collection method using a pro-
gressive quality improvement approach. In our proposed method,
only for cases where higher quality data are needed for analy-
ses, processing computers progressively collect them by reduc-
ing the average data amount of collections and for analyses, our
proposed method reduces the average transaction time. Our sim-
ulation evaluation revealed that our proposed method can reduce
the transaction time while keeping the application performances
compared with a conventional No PQI method.

In the future, we plan to propose a method for the situation
where there are multiple processing computers. In addition, we
will consider parallel processing of collected data. If smartphones
with multi-core become popular in the future, it is possible to
send streams using these devices. The extension of our method
considering power consumption is interesting and a new chal-
lenge.
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Editor’s Recommendation
This paper achieves to efficiently collect stream data such as

video data or sensor data for real-time IoT applications. Since the
line capacity limits the real-time performance and analysis fre-
quency, the proposed method controls the data quality according
to the application requirements. The paper gives insights to read-
ers in this research field and thus is selected as a recommended
paper.
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