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Abstract: In this paper, we emphasize challenging task distribution on the self-organized systems and propose two-
fold heuristic mechanisms called QoS-oriented selection and on-demand offloading. The first-fold is a long-term
decision from performance and QoS-requirement factor coupling with a delay estimation technique. The second-
fold is a short-term decision utilizing a queuing theory to determine overloading state. In the evaluation part, there are
proof-of-concept experiments for the selection method and delay estimation model and a real-deployment showing that
processing results corresponding to task-specified QoS requirement and outperformance over the comparing approach.

1. Introduction
Integrating intelligence in real-time promises further bene-

fits on many kinds of applications from macro-scale (e.g., city

surveillance, transportation system) down to personal comforts

(e.g., home sensing and appliance control). To serve as a basis,

stream processing technology has been continuously studied and

developed for decades to overcome the challenge of a real-time

requirement. The stream processing engine is a tool to extract and

transform the physically sensing data into desirable/ready-to-use

knowledge. Beyond the concept of stream processing, Complex

Event Processing (CEP) ordinarily follows through the process

from sensing at sensors till activating the automated control ac-

tions at actuators according to user-defined requests.

Most engines enhance performance by increasing the number

of processing units distributed in-between to execute the gener-

ated tasks from collected sensor streams. Even if the centralized-

like approach on the cloud is illimitable to scale out, there are

also a few issues that need more concern such as budget, security,

latency, and connectivity. The edge computing is a welcomed so-

lution to deal with remote-processing problems [12][27]. With

powerful local servers, it can also parallelize the task generating

and distributing part like the system proposed in [7]. In spite of

that, an additional cost of local servers and their maintenance is a

considerable tradeoff. The way to cut down such a cost is to draw

out powerfulness from non-dedicated devices. For instance, in a

small collaborative community, the community may want to auto-

matically recognize activity in the public park from video frames

and submit to alarm devices. An intelligent security system with

a few smart cameras and smart alarms may be sustainable with

only collaborations from nearby-established such as workplace
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computers and passing-by devices such as mobile phones. Fur-

thermore, the video sources do not limit to only available cam-

eras but allow any community members to provide their data in

the close-up view or blind spot.

Without any known dedicated device, the self-organizing and

fully-distributed system requires a collaborative mechanism to

run independently on each participating device for serving the

global request set. In ref.[4], an agent in the multi-agent sys-

tem applies divide and conquer for exploring the sensing data in

structural topology to provide event learning service in a self-

organizing manner. It can migrate the tasks when finding unre-

liability of missing links or nodes by a hybrid approach of ran-

dom and attractive walk behavior with pre-defined routing. Nev-

ertheless, they work regardless of task variety. A different task

may focus on a different quality attribute. For example, an ur-

gent such as falling-detecting task requires a low latency while a

traffic-reporting task requires high reliability. To the best of our

knowledge, there was no discussion on the task-specific QoS on

multi-purpose processing systems in a self-organizing context.

In this paper, we introduce a self-organized scheme on

multi-purpose stream processing systems tearing off the task-

collaborating mechanism into two phases. The first phase, named

QoS-oriented recipe selection, is to choose a set of tasks to serve.

The second phase, named on-demand offloading, is to hand the

overloaded work to a potential neighbor. The QoS-oriented se-

lection algorithm finds the consensus to serve all tasks concern-

ing task-specific QoS over device performance and resource con-

straints. The on-demand offloading algorithm uses regression

technique and queuing theory to determine an overloading con-

dition. In the evaluation, firstly, we conduct proof-of-concept ex-

periments for QoS-oriented task selection algorithm and process-

ing time estimation model. Secondly, we deploy the proposed

system on real-world devices and evaluate its performance with

the standard policy. The results show that the proposed method

provides the best-compliance to the task-specific requirements.
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The rest of this paper is organized as follows. Section 2 states

related works and a summary of paper contributions. Next, sec-

tion 3 gives a background of the proposed system. Section 4 then

describes the proposed mechanism in detail. After that, section 5

presents the evaluation results. Lastly, section 6 provides the pa-

per conclusion.

2. Related Work
There have been several studies towards distributed stream pro-

cessing encountering the challenge of continuous-but-irregular

demand over heterogeneity of distributed processing units [8].

Among those, the most engaging problem is task distribution as

it has a direct influence on service quality. This may be referred

by other interchangeable terms such as operator/content place-

ment in [28][24][25], task mapping in [3], and task assignment

in [13][16], and task allocation in [6]. The common point is to

map a set of tasks to a set of processing units. Tasks may refer

to the operator and the data input or either of them. Some pro-

pose a heuristic approach owing to simplicity advantage [16][2]

while some consider applying more complicated approximation

approach [7]. In the quality aspect, most proposed systems only

provide a best-effort solution rather than a requirement-guarantee

solution. To assure the satisfying quality, some add a negotiation

mechanism and violation constraints, for example, in [14].

The nature of the task in stream processing usually separates

input data apart from the operator since the operator is long-

lasting while the input data is always varied. For scaling-out the

distribution performance in complicated processing request, the

stream-processing systems mostly apply a decomposition tech-

nique [13] and perform operator placement. The decomposition

technique is to decompose the operator part in the recipe into

multiple operators connecting in sequence represented by a DAG

graph. An output from the previous sequence is an input of the

connecting operator, namely, temporary tables in the tuple-based

model and composite event in the event-based model. For utmost

power utilization, the decomposed component in one graph often

allows the reuse. The operator placement is to map the task graph

into physical processing topology [3]. With central synchroniza-

tion, RECEP introduces selection layer and formulates Quality of

Result estimation function as a key of distribution solution [23].

In ref [17], the geographic address has been introduced and auto-

configured by local matching service.

Since the operator is placed once and runs forever, a processing

unit may face the overloading situation from unexpected loads of

continuous streams, and that might cause an unacceptable latency.

Ref. [19] determines arrival distribution over time to predict fu-

ture workload [10], in the meantime, performs operator profiling

to calculate minimal parallel degree. With accurate prediction,

we may be able to distribute the load properly in advance. How-

ever, on-the-fly operators and self-organized distributing decision

making such detailed profiling more difficult. Another solution

is to detect the overloading situation and perform task offloading.

We consider that this is an applicable concept to task migration

from the dying state. In ref [13], when a device detects the dy-

ing state from battery level, it performs a probing mechanism to

find the neighbor with minimum cost to continue the task. Never-

Fig. 1: μEdgeCEP: Modularized EdgeCEP system

Fig. 2: Processor Class Relation

theless, such passive probing incurs unsatisfying interruption on

volunteering participants since most of responding participants

are not selected. In ref.[15], the authors introduce gradient model
to inform a current load level of each device. In ref.[21], the op-

erator (service) placement is adaptively scaled out to the nearby

cluster according to overloading demand. Despite that, there is

no overloading detection directly to the service time guarantee.

To summarize the idea, in this paper, we emphasize the im-

portance of a self-organizing mechanism for distributed stream

processing on non-dedicated networks of devices. We take mini-

mum requirement of neighbor interruption into consideration for

designing the collaborative mechanism. Throughout this paper,

we reconsider a placement problem of event-decomposition as

recipe selection (interchangeably with task selection). The fol-

lowing are our summarized contributions:

( 1 ) we propose a scoring method of task-specified QoS require-

ment over device performance to be a key factor

( 2 ) we introduce generic-granularity model to predict process-

ing time for comparing time-guarantee constraint

( 3 ) our task selection uses only long-term selection decision

from neighbors to find the system consensus

( 4 ) we apply a queuing theory to determine overloading state

and offloading decision

( 5 ) we conduct proof-of-concept experiments for our selection

method and processing-time prediction model

( 6 ) we develop system prototype and show our superiority in

terms of QoS-corresponding result and processing delay

3. Background and Modularized EdgeCEP
Nowadays, the term stream processing is interchangeable with

complex event processing as they both refer to the continuous

operation to execute processing request flow from data origins to

subscribing destinations defined by system users. In the proposed

system, we use Event model for specifying the flow origin and

destination instead of a fixed stream identifier. As a result, users

can define a request flow once and apply to all relevant producers

and consumers. Any producers or consumers can leave or join the

networks transparently to users. Devices can generate an event

from two origins: direct driver (called connector in Kafka[22])
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and processing content defined by users. Throughout this paper,

we use the term Recipe to refer to an event specification and use

the term Task to refer to a job to follows a user-specified process-

ing content. The driver interprets data such as sensing or logging

values in a designated sampling window to an event according to

an atomic event recipe, which contains only name and attributes.

The processing content produces a new type of events from the

other previously-defined events. In a complex event field, the

event from the driver is called atomic event, and that from the pro-

cessing content is called composite event. We implement the pro-

posed distributing mechanism on our developed EdgeCEP system

[5] in modular version, called μEdgeCEP.

EdgeCEP is a fully-distributed complex event processing for

driving on-the-fly recipes over networks of non-dedicated edge

devices. Edge devices may have any functionality of producers,

consumers, and processors. It has been first-time introduced with

monolithic architecture in [5]. Nevertheless, it might be too heavy

to put the processing burden to some limited or busy sensors and

actuators and even be worthless to keep processing-dependent li-

braries and tools on those incapable devices. To avoid such in-

efficient deployment, we decouple those functionalities from the

base service that is self-organizing communication, called post-
man, as shown in Fig. 1. In the proposed system, devices flexibly

install only preferable functionalities. For instance, the devices

with connection to sensing source or actuators may install only

driver or actuator service in case that they do not have enough

capability of processing. The devices with long-lasting online

hours may install coordinator service to help synchronize recipes

over the networks regardless of processing power. We note that

the system must have at least one coordinator service run at any

moment to keep all devices synchronizing.

A recipe in μEdgeCEP contains processing content set,

output-event constructor, and actuator function call. The process-

ing content set can have multiple content cases sharing the same

recipe name and output handling. For example, we may specify

falling one way from processing on smartwatches, and another

way from processing on cameras. A content case is a processing

specification comprising of an operator, input collection specifi-

cation, grouping policy, and consumption policy, found the de-

scription in [5]. In this paper, we mainly focus on the operator el-

ement in the processing content. The operator has information on

processing kind, processing-flow graph, input definition, and out-

put definition. We apply TensorFlow[1] packed module to handle

processing-flow graph and use the pre-defined processing kind to

designate the granularity of processing-time prediction model.

The processing flow starts from an event generated from driver
service, and forwarded to postman service. The filterer compo-

nent at postman service then performs fast-mapping of the event

to the related recipe name and content case identifier according

to the input collection specification in the recipe, and deliver the

filtred event and mapping results to the recipe agents in the pro-
cessor service. The processor service comprises of four classes.

Manager class provides GRPC service to handle messages from

the postman service. Orchestrator class acts as a coordinator of

processor services in different devices. Agent and Processing unit
classes are parallel threads. One agent is responsible for one task

Fig. 3: On-demand Task Selecting and Offloading Method

Fig. 4: Offloading Procedure

(τ) starting from collecting till handling the processing output

specified in a specific recipe. One processing unit is responsible

for executing a specific operator (ω) on collected input data from

agent class and returning output to the callback function of that

individual inputting. The class relations are depicted in Fig. 2.

Since multiple recipes can share an operator (i.e., reuse), a pro-

cessing unit may receive input from more than one agent. On the

other hand, as multiple content cases can apply a different oper-

ator, one agent may connect to more than one processing unit.

The callback function is to deliver the output as arguments to the

actor service specified in the recipe.

4. On-demand Task Selecting and Offloading
The idea of an on-demand approach is to act only when finding

it necessary. The goal is to reduce the network traffic as well as

communication cost and latency while preserving a recipe-focus

QoS. To achieve that, we propose a two-fold mechanism inte-

grated into the μEdgeCEP: QoS-oriented task selection and on-

demand offloading decision-making. The method flow is sum-

marized in Fig. 3. For the first fold, QoS-oriented recipe selec-

tion, orchestrator performs the recipe selection to limit the agent

and processing units threads to serve only a demanding set of

recipes. A preference score of each recipe according to its speci-

fied weight against QoS attributes is from QoS-over-Performance

scoring module, which further referring the device spec from the

performance classification module. To select a recipe into the

demanding set, it considers not only a high preference score but

also the memory and time constraints. In particular, the process-

ing delay prediction module provides a validity check over time-

guarantee constraint. For the second fold, on-demand offloading,

processing units hand its overloading work to neighbors when it

meets a dying state or overloading condition during task process-

ing. In this paper, we mainly contribute in the latter case where

the caller processing unit determines an overloading condition,

and the callee checks its availability to accept the offloaded tasks
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Data: τ+,Υ′

Result: Υ, score, Q
S = Pool (τ+)

S r = RequiredPool (S ,Υ′)
S copy = copy(S )

Υ = φ, μ = φ, d = φ, score = 0

if S r = φ then
S r = S , selector =MaxSelector ()

else
if is competitive (S r ,Υ

′) then
selector = OpportunisticSelector ()

else
selector = MaxSelector ()

end
end
while S r � φ do
υ′ ← selector.select (Υ, S r)

Υ′ ← Υ⋃{υ′}
valid = mem check (Υ′)
if valid then
valid, μ′, d

′ ←delay predict (Υ′, μ, d)

if valid then
Υ← Υ′, μ← μ′, d ← d

′

add Score (S copy, υ
′) to score

end
end
remove υ′ from S r and S
if S r = φ then

S r = S , selector =MaxSelector ()

end
end
Q←Queue (μ, d)

Algorithm 1: Pseudo code of QoS-oriented Recipe Selection

from the queue model. The queue model obtains the predicted

departure rate and acceptable delay from the processing delay

prediction module, and estimate arrival rate from the inter-arrival

statistic. The details of the modules on the flow are as below:

4.1 Performance Classification
In general, the performance indicators are clock speed and core

number. The CCM article, titled “A Quad-Core at 2.66Ghz or a

Dual Core at 3.33GHz?”, states the relation between both indica-

tors to the gaming performance metric (frames per seconds, FPS)

from a benchmark in magazine [18]. We fit those observations to

a linear regression model to predict processor performance from

clock speed and its available cores at idle state:

perf. = x1Speedclock + x2Coreavailable (1)

The available core at idle state is (100−%CPUidle)
100

× Coretotal. With

system-defined threshold (βc) of performance values, processors

fall into three classes: high, medium, and low.

4.2 Main Processing Delay Prediction
According to a finding from our experiments in section 5, the

number, and kind of processes running in parallel also affect each

other processing time added to its workload. To provide a flexi-

ble tradeoff between prediction accuracy and practicality, we cat-

egorize arbitrary operators into a predefined processing kind with

some co-features. The kind may be trivial like simple represen-

tative complexities (e.g., linear, polynomial, and exponential) or

derived from learning technique (e.g., k-means clustering). The

higher number of kinds may provide better fitting of the model.

However, it requires more observation to train on each kind. Let

Π be a predefined set of kinds, we model the main delay of a pro-

cessing operator kind π ∈ Π from the total number and average

load amount of all processing operator running in parallel, de-

noted by n′π and l′π, respectively. Suppose ∀π′∈Π aππ′ , bππ′ , and επ

for parameters from fitting the training data to the linear model of

π-kind delay, the general prediction function of π-kind delay is:

d(π) = Σπ′∈Π(aππ′nπ′ + bππ′ lπ′ ) + επ (2)

An acceptable delay for each operator kind is its base delay

multiplied by processor guarantee factor (αc). The base delay,

denoted by dbase(π), is the delay when there is no other paral-

lel processes, nπ′ = 1 if π′ = π otherwise nπ′ = 0. The processor

guarantee factor is a system-defined parameter to compromise the

processing overhead added to the base processing time. This fac-

tor may be different depending on the performance class. For

example, the high-class processor may provide 1.5-times guaran-

tee while the low-class processor may guarantee with 2.5-times

over the best-effort latency.

4.3 QoS-over-Performance Scoring
This module is to give a score of the considering recipe (τ)

according to its specified QoS weights and processor spec. The

higher score infers a higher chance to be selected and handled by

an agent. In this paper, we focus on only commonly-considered

QoS attributes (θ) comprising of efficiency (e), reliability (r), and

availability (a) and denote processors performance class (c) as h,

m, l for high, medium, and low class, respectively. The weight

on efficiency, reliability, and availability are represented by we,

wr, and wa, respectively. The total weight (we + wr + wa) must

be 1.0. For reliability and availability, any class of processors re-

flects the same preference, denoted by p0. Meanwhile, efficiency

causes a different preference in a different class. We denote the

efficiency advantage for high, medium, and low classes by γh, γm,

and γl, respectively. To keep balance advantage of all attributes,

the total advantage of the efficiency attribute on all classes must

be γh + γm + γl = 3 × p0. For simplicity, we usually consider p0

as 1. The requirement of replications is directly from the weight

of reliability, wr. The recipe with reliability weight wr will have

�wr × M� replications. As the replication must be more than 0,

the reliability weight must be positive, wr > 0. To suppress the

advantage of replication, the preference over reliability decreases

upon the already-selected count. We consider only the selections

from neighbors with higher performance, denoted by Υ′+, have

stability and domination. Let |τ ∈ υ+neigh| be the number of times

that the considering recipe selected by higher-performance neigh-

bors, we compute the score of recipes at the processor with class

c ∈ {h,m, l} by the following equation:

scorec = (weγc +wa)×M +wr ×max(1,M − |τ ∈ Υ+neigh|) (3)

4.4 Processing Queue Model
Each processing unit owns its queue to serve processing re-

quest from referring agents in order. According to main process-
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ing delay prediction, we can estimate the departure rate of each

processing unit queue as μ = 1/d(π) and set the acceptable de-

lay to d = αcdbase(π). During the running time, a processing unit

records inter-arrival time when a new input added to find the av-

erage arrival rate, denoted by λ. We always consider departure

distribution as deterministic. On the other hand, the arrival dis-

tribution will be deterministic if and only if all referring recipes

are deterministic, modeled by D/D/1. Otherwise, it is stochas-

tic from merging property of Poisson processes [11], modeled by

M/D/1. Where the queue utilization is denoted by ρ = λ/μ, the

mean response time of processing unit with queue model is:

dq = d(π) + dwait =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
μ
+

ρ
2μ(1−ρ) ; Q=M/D/1 and ρ ≤ 1

1
μ

; Q=D/D/1 and ρ ≤ 1

∞ ; ρ > 1

(4)

4.5 QoS-oriented Recipe Selection
The recipe selection is a long-term decision done at the proces-

sor service on each device periodically. The service will advertise

its selection only when there is an update on its selection decision

or when it receives a message from a new or outdated neighbor.

Hence, the source devices can distribute the filtered input to the

processors according to those advertisements. Once the processor

leaves the networks, the source devices then remove that proces-

sor from the distributing list. The selection method is described

by pseudo-code in Algorithm 1. Firstly, we construct the com-

plete pool (S ) from a set of active recipes (τ+) accordingly to

the score from equation 3. Then, we construct the required pool

(S r) from deducting the complete pool with existing replications

selected by neighbors (Υ′). To converge global decision to a con-

sensus that is all recipes are selected by its requested number of

replicas while considering suitability between selected set and de-

vice performance, we provide two selection policy: opportunistic

and maximum selection. The opportunistic selection is for com-

petitive cases where more than one device with the same spec

fight for the same recipe. Otherwise, processors apply the maxi-

mum selection policy for obtaining the maximum score.

The selection gives priority to the required pool. If there is no

more in-require recipe, it will continue with the rest recipes in the

full pool. For each new selection (υ′) and corresponding candi-

date set (Υ′), the memory usage is early computed and validated

from the accumulated operator module size. If the newly-selected

recipe does not violate the memory capacity, it will next validate

the time-guarantee constraint in the main-processing delay pre-

diction module. At the same time, the prediction module will

compute the departure rate (μ) and acceptable delay (d) of each

referred processing operator. If all constraints are satisfied, it will

add the newly-selected recipe to the demanding set (Υ) and up-

date departure rates, acceptable delays, and scores. Lastly, it will

construct the queue model from the final values of departure rates

and acceptable delays for the referred processing units.

4.6 On-demand Offloading
The offloading in the μEdgeCEP system is conceptually illus-

trated in Fig. 5 with dot lines. When the processor faces overload

condition, it will offload the ready input to its neighbor proces-

Fig. 5: Event Processing Flow

sor through postman connection. The offload-callee processors

will handle the rest part (output handling and delivering) without

returning anything to the offload caller. Fig. 4 presents the of-

floading procedure. In particular, it is a short-term decision by

the cooperation of agents and processing units. When the in-

put is ready, the agent will submit the current demand (i.e., the

number of input waiting in the queue), denoted by χ, and the pro-

cessing unit will compute probability to accept the new amount

of demand by the following equation corresponding to its queue

model under acceptable time constraint (d) Firstly, we compute

the maximum arrival number (λmax) during time period (T ) from

setting dq = d in equation 4, presented by equation 5.

λmax =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2μ(μd−1)

(2μd−1)
; Q=M/D/1

μ ; Q=D/D/1
(5)

Accordingly, the acceptance probability is the probability to have

χ inputs in the system with the maximum arrival rate (λmax):

P(χ|λmax) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[ λmax
μ

]n[1 − λmax
μ

] ; Q=M/D/1

1.0 ; Q=D/D/1 and χ ≤ 1

0 ; otherwise

(6)

If the processing unit rejects the request, the agent will ask or-

chestrator to offload the input content to other processors. When

the manager of a callee processor receives the offload request, it

will check the busyness (dq ≥ d) of its active agent and processing

unit. If both are available, the callee agent will directly enqueue

the input to its corresponding processing unit.

5. Experiment and Evaluation
In this section, we discuss results from a couple of preliminary

experiments and evaluate our proposed systems coupling with

different offloading approaches. The preliminary experiments run

on a logical environment setting for giving the proof of concept

on the proposed recipe selection algorithm and processing de-

lay modeling factors. For system evaluation, we deployed our

prototype developed in python to six Intel Edisons, four virtual

machines on macOS, host machine, and one portable laptop.

5.1 QoS-Oriented Recipe Selection
To study our proposed recipe selection algorithm, we assume

three types of recipes: efficiency-intensive, reliability-intensive,

and availability-intensive The efficiency advantages on high,

medium, and low processor classes are 2.4, 0.6, and 0, respec-

tively. The maximum replication (M) is 10. Supposing every task

costs the same main-processing delay, the high-class, medium-

class, and low-class processors respectively spend 0.02s, 0.05s,

and 0.1s to finish the task. To preserve the same utilization over
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Fig. 6: Summary of QoS-oriented throughput from all recipes

Fig. 7: QoS-oriented Throughput

the time window, the maximum capacity of memory units for

each class are 5, 2, and 1.

Since one reliability-intensive recipe requires at least ten pro-

cessors, we run two high-class, five medium-class, and ten low-

class processors to achieve the minimum requirement of repli-

cations and balance the total processing power of each class.

Accordingly, the densest scenario is to fill with recipes from

efficiency-intensive and availability-intensive types equally (i.e.,

three for each). To summarise, there is a memory capacity for

thirty recipe-operating units from seventeen processors, and there

are sixteen memory units required (i.e., 10 memory units for one

reliability-intensive recipe, 6 memory units for each of the rest

six recipes). As a recipe cannot reserve more than one memory

unit in the same device, the maximum reservation (i.e., selectable

count) equals to the number of processors. We set the sampling

rate of each input stream to a minimum value of delay (0.02s) and

total testing time to 60 seconds. The compared approaches are

random, round-robin (RRB), and QoC selections. QoC selection

follows the explicit policy. It firstly lets the high-class processors

select the efficiency-intensive tasks, then, reserves the memory

units for the reliability-intensive task, and, lastly, gives the left

memory units to availability-intensive tasks. For the random ap-

proach and our proposed method, we perform 10-times running

samples and use an average value due to opportunistic selection.

From the result presented in Fig. 6, the proposed method yields

the highest total throughput, specifically, 29.4%, 17.6%, and

31.3% higher from random, RRB, and QoC methods. Further-

more, our method reflects the QoS requirement satisfaction, as

observed in the distribution of throughput from a sample run, pre-

sented in Fig. 7. The efficiency-intensive recipes mostly run on

high-class processors, and all processor classes select any of the

availability-intensive recipes.

(a) Varied Polynomial operator (b) Varied Exponential operator

Fig. 8: Effects of Parallel Processing

Fig. 9: Assuming Scenario

5.2 Processing Delay Prediction Model
As the processing agent threads sharing the resources on the

same machine, the number and complexity of running processes

in parallel affect the performance of each other additionally to a

trivial factor like a workload. In this experiment, we aim at pri-

marily investigating those effects. We run the test on Quad-core

2.9GHz Processor. For simplicity, we consider only three pro-

cessing kinds of representative time complexities: linear (single

for-loop), polynomial (nested for-loop), and exponential (recur-

sive). With a fixed number of the linear process as five, Fig. 8

shows the influence of parallel processes over different load size.

The common finding is that the number of processes does affect

the processing delay in considering tasks. Furthermore, the differ-

ent complexity of those processes also incurs different influences

as noticeable in Fig. 8a and in Fig. 8b. Despite a small load size,

the exponential process adds a larger effect on the considering

process comparing to the polynomial process.

5.3 System Deployment
For evaluating our proposed system, we assume the small com-

munity environments consisting of four common areas, gym,

park, kitchen and office, illustrated in Fig. 9. Given event streams

of video frame are available, clients request three recipes ap-

plying learning model to recognize activity on gym, park, and

kitchen areas from a sampling frame then activate correspond-

ing actions that are adjusting gym air condition (GymActDe-

tect), reporting police (ParkActDetect), and turning and tuning

kitchen lights (KitchenActDetect), respectively. In this scenario,

the video streams in parks are from dynamic and mobile de-

vices without processor service activated. Therefore, the police-

reporting recipe gives more weight to reliability than efficiency

and availability. Meanwhile, the light-tuning recipe gets input

from a static camera with processing power and requires a low-

latency response. Similarly, the air-adjusting recipe processes

video streams from a static empowered camera. Conversely, it
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recipe (e,r,a) scoreh scorem scorel

GymActivity (0.4, 0.2, 0.4) 16 9 6

ParkActivity (0.1, 0.3, 0.6) 12 10 9

KitchenActivity (0.7, 0.1, 0.2) 20 8 3

Table 1: QoS weight and selection chance at each performance

class of each recipe

# core CPU service location
1 4 2.9GHz coordinator,processor,actor office

2 8 2.6GHz processor office

3-4 1 2.9GHz processor,driver gym

5 1 2.9GHz processor,actor gym

6 1 2.9GHz processor,driver kitchen

7-8 2 500MHz actor kitchen

9-11 2 500MHz driver park

12 2 500MHz actor park

Table 2: CPU spec and installed services and location

class, c threshold, βc guarantee, αc eff. advantage, γc

High ≥ 40 1.5 0.8

Medium ≥ 20 2 0.2

Low ≥ 0 2.5 0

Table 3: Performance Class Specification
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Fig. 10: number of event received at each processing unit

requires higher coverage from multiple cameras. As a result,

we set the QoS weight of each recipe, as presented in table 1.

For benchmark data sets, we use videos of realistic actions from

UFC50 [26] for park and gym activities and first-person vision

videos from EPIC Kitchen fir kitchen activity [9]. The processing

intervals of each recipe are all set to 0. Hence, all recipes are non-

deterministic. Table 2 lists our deployment detail. The first two

processors run as a host while the rests execute the program from

inside of Docker containers [20]. The deployment on Intel Edison

utilizes BalenaCloud platform, the container-based platform for

deploying applications on IoT devices. The function-operating

module works with FlatBuffers file from TensorFlow Lite API

[1]. For memory requirement, the device with only actor service

requires approximately 500MB, whereas the device with a pro-

cessor or driver service asks for twice for library dependency. The

parameters of performance class, described in section 4, are set as

presented in table 3. Each video driver samples and generates a

frame event to its postman for every second. The recipe selection

performs every minute. We set a batch size for arrival and pro-

cessing time predictions to 10. The comparing methods are (1)

our proposal, (2) proposed selection with round-robin offloading

approach, RRB, (3) proposed selection without offloading, No Of-
fload, and (4) round-robin offloading without task-selection (i.e.,

place all operators), No Selection. The round-robin approaches

forcibly en-queue the offloaded input regardless of availability.

According to performance prediction, the processor #1 and #2

are classified as high while the rest (#3 to #6) are medium. Since

the #1 runs multiple processes, the highest-spec device is #2. The

number of distributed work on each processor is shown in Fig. 10.

With the proposed selection, both high-class processors tend to

choose the top two recipes when considering weight on efficiency,

that is KitchenActDetect and GymActDetect. GymActDetect has

two-times replication and distributes over high and medium class.

ParkActDetect mostly distributes over medium class due to low-

est efficiency weight. Without selection, all recipes randomly

distributed over all processors depending to network conditions.

Seeing that the device number #3 and #4 is the event source of

GymActDetect and #6 is the event source of KitchenActDetect,
there has no problem of network traffic compared to the others.

To cut off the network connection bias in comparison results,

we use only main-processing time and accumulated time, which

includes waiting and offloading time for the evaluation metrics.

As presented in Fig. 11, the efficiency-weighted recipe, which

runs KitchenActDetect operator, achieves low latency from recipe

selection decision. The GymActDetect and ParkActDetect is

slightly higher respectively with on-demand offloading method.

The RRB approach has noticeably higher processing delay as the

high-class devices offload the GymActDetect tasks to medium-

class devices more frequent with no necessary. Meanwhile, the

filterer in No Offload method distributes some of the GymAct-
Detect work to the medium-class device and the processing unit

never offloads those work to the higher class even if it meets over-

loading condition. As a result, the processing without offloading

suffers from queue waiting. The average time results of all oper-

ators in No Selection are not significantly different since all de-

vices equally execute all tasks. The different only comes from the

number of replications and origin point.

6. Conclusion
To distribute tasks in a self-organized distributed stream pro-

cessing system using our developed μEdgeCEP as a paradigm,

we introduce two-fold mechanisms for long-term and short-time

decision. The former is QoS-oriented task selection. It is a heuris-

tic algorithm to pick up tasks according to the task-specific QoS

against processing unit performance under memory and time con-

straints. The later is on-demand offloading. It applies the queuing

theory to determine whether it should offload the task to another

neighbor or not. Both mechanisms work independently at each

device. The evaluation results highlight the significance of com-

bining both mechanisms from the processing delay metric com-

paring to the other combination with commonly-found policy.
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Fig. 11: Delay Comparison Results collected from All Processing Units
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