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Abstract: It is widely known that scale-free networks are robust against random node removal, which is one of major
interesting findings in network science. This suggests that, for instance, communication networks such as the Internet
is robust against random node failures caused by breakdowns and/or malicious attacks if their network topologies are
scale-free networks. Generally, the ratio of failed devices (e.g., routers) to operational devices is not extremely high.
In this paper, we revisit the robustness of complex networks against random node removal. Through simulations, we
compare the robustness of scale-free and non-scale-free networks against random node removal as well as random
edge removal. Our findings include that, contrary to common understanding, non-scale-free networks are more ro-
bust than scale-free networks except under extremely high node removal ratio. We also show that the robustness of
non-scale-free networks can be further improved by bounding the minimum node degree of those networks.
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1. Introduction

In the literature, scale-free networks are widely known for their
robustness against random node removal (Fig. 1) which is a major
finding in network science and the robustness of scale-free net-
works against node removals (e.g., random node failures/attacks
in communication networks) has been extensively studied [1], [2].
For instance, authors of Ref. [1] showed that scale-free networks
are robust against random node removals since the connectivity of
a network can be preserved because of the existence of hub nodes
(i.e., a small number of high-degree nodes), even if some of the
nodes were eliminated. In contrast, the authors showed that by
removing high-degree nodes, the diameter (i.e., the average path
length of shortest-paths between any node pair in a network) of
scale-free networks rapidly increases as the node removal ratio
increases.

Figure 1 illustrates how the network connectivity is degraded
when a portion of the nodes (i.e., vertices) are randomly removed
from the network. As the node removal ratio increases, nodes are
more likely to be disconnected from the network and also clusters
of nodes are isolated each other.

However, contrary to the above, several questions on the ro-
bustness of scale-free networks and its implications for commu-
nication networks have been raised [3], [4]. For instance, the
authors of Ref. [3] have pointed out the confusion in Ref. [1]
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Fig. 1 An example of random node removal.

from not distinguishing between AS-level network topologies
and router-level network topologies Even if an AS-level network
topology has scale-free property, it does not mean the underly-
ing router-level topology has scale-free property. Also, authors
of Ref. [3] suggest that router-level network topologies might not
be scale-free since routers in the Internet have practical limita-
tion on the number of links (i.e., the number of communication
interfaces).

In this paper, we revisit the robustness of complex networks
against random node removal. The above description clearly
states that a scale-free network can be robust even if a significant
portion of its nodes are removed. However, the finding that scale-
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free networks are robust, might not be valid under typical node
removal ratios in actual computer networks. However, the find-
ing that scale-free networks are robust might not be valid under a
typical node removal ratio in actual computer networks. Gener-
ally, the ratio of failed devices (e.g., routers) and communication
links which comprise computer networks such as the Internet is
not extremely high [5], [6]. For this reason, it is necessary to clar-
ify the robustness of scale-free and non-scale-free networks under
typical node removal ratios in actual computer networks.

In this paper we use simulations to compare the robustness of
scale-free and non-scale-free networks by way of scale-free net-
works generated with Barabási Albert (BA) model, randomized
BA model and Li-Maini model [7] and non-scale-free networks
generated with Erdõs-Rényi (ER) model and Degree-Bounded
(DB) model against different levels of random node removal.
Specifically, we compare the largest component sizes (i.e., the
number of nodes contained in the largest cluster [1]) in five
classes of networks (networks generated with BA, randomized
BA, ER, DB, and Li-Maini models) after random node removal.

The main contributions of this paper are as follows.
• We reveal that, contrary to common understanding, random

networks are more robust than scale-free networks except
under extremely high node removal ratios.

• We show that the robustness of non-scale-free networks can
be further improved by bounding the minimum node degree
of those networks.

Our findings imply that under extremely severe failures (e.g.,
90% of routers were destroyed or malfunctioning due to some
reason), scale-free communication networks would actually be
more robust than non-scale-free communication networks. If
communication networks are scale-free, most of the remaining
10% of nodes would likely still be connected to other nodes.
However, on the contrary, if communication networks are non-
scale-free, those 10% nodes would be likely to be isolated with
others. However, if the failure ratio is not so exceptional (e.g.,
if the failure ratio is around 1–20%) [5], [6], then non-scale-free
communication networks are more robust than scale-free commu-
nication networks.

Phase transition at the critical threshold in a complex network
or namely the giant cluster in the network will disappear as the
node removal ratio exceeds the critical threshold is an interesting
phenomenon. Hence, a vast number of studies in the literature
investigate the robustness of complex networks near the critical
threshold. However, we should take account the likelihood of
those failures. For instance, what are the chances that 90% of
routers in the Internet were destroyed? Or that a 1% node failure
is likely to happen. The occurrence probability of 5% node failure
is much smaller than that of 1% node failure. Our findings indi-
cate that communication networks should be designed by taking
into account the probability of different levels of network failures
occurring.

This paper is organized as follows. Section 2 discusses related
studies on the robustness of complex networks. Section 3 ex-
plains the method to investigate the robustness of scale-free and
non-scale-free networks against random node removal. Section 4
presents our simulation results under different network sizes and

densities. Section 5 investigates the case of random link removal
to investigate whether our findings in Section 4 are valid in regard
to other types of errors. Finally, Section 6 provides the summary
of this paper and discusses future works.

2. Related Works

Robustness of complex networks is a well-studied topics in
network science and significant research has been devoted to
both mathematical and experimental studies of non-scale-free and
scale-free networks [1], [2], [3], [4], [8], [9], [10].

Types of failures in complex networks are classified by their
randomness (either random or deterministic e.g. adversary) and
their location (either node or link).

One of major findings is that scale-free networks are robust
against random node removal whereas those networks are fragile
against adversary node removal [1], [2], [8], [9]. In the literature,
there have been many studies on the evaluation of robustness of
scale-free networks against random node failure/attack in terms
of the diameter and the giant component size [1], and the effi-
ciency [8] (a measure of how efficiently information is exchanged
over a network which is defined in Ref. [11]). As a result, it is
shown that scale-free networks are more robust against random
node failure than non-scale-free networks.

Both random node removals and random edge removals are
similar, but it has been reported in Ref. [12] that, different from
random node removal, random edge removals will not preserve
scale-free property of the original network; i.e., the degree dis-
tribution of the network after edge removals does not follow a
power-law. Specifically, in Ref. [12], the authors analytically de-
rived a series of the number of nodes with an arbitral degree (re-
ferred to as the degree sequence in Ref. [12]) in a graph after
edges are randomly removed. Also, through numerical compu-
tations, they showed that the scale-free property does not remain
in a network in which edges are randomly removed.

Robustness of communication networks such as router-level
Internet topologies against random node/edge removal have been
studied in Refs. [3], [4], [10]. In Ref. [10], the authors focused on
the Internet topology at router-level and investigated the robust-
ness of the Internet against random node/edge removal through
experiments. Consequently, the authors showed that the Internet
is robust against random node/link failures, on the other hand, the
Internet is not robust against focused node failures (i.e., adversary
attacks; that is, adversaries target and attack a few nodes playing
an import role in maintaining the connectivity of a network).

Based on the above observations, several approaches have been
taken to design (or re-design) of a network topology to improve
its robustness against random failures [13], [14], [15]. In par-
ticular, several studies have been devoted for improving the ro-
bustness of scale-free network against adversary attacks by op-
timizing the topological structure of a network. The authors of
Ref. [14] revealed that an optimal network which is robust against
both of random node failures and attacks is comprised of one
node with a high degree and other nodes with the same degree
(almost the average degree of the network).

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

3. Method

Using synthetic networks, we generated scale-free and non-
scale-free networks, and we compared the robustness of scale-
free networks and non-scale-free networks against random node
removal when changing the node removal ratio (i.e., the ratio of
the number of removed nodes to the initial network size).

To generate scale-free networks, we used the BA (Barabási Al-
bert) model [16] and the randomized BA model (an extension of
the BA model).

Since the BA model generates a network by repeatedly adding
vertices with a fixed number m of edges, it can only generate net-
works with specific average degrees. The randomized BA model
relaxes this limitation; i.e., it can generate a scale-free network
with an arbitrary average degree.

The difference between the BA model and the randomized BA
model is in their preferential attachment stages. At the i-th cycle,
the randomized BA model adds a node with a random number Xi

of edges whereas the BA model adds a node with a fixed number
m of edges. More specifically, in the randomized BA model, the
number Xi of edges added at the i-th cycle is determined by the
Bernoulli process with the probability of 1/m.

Also, to generate scale-free networks with a cluster structure
which is widely observed in many social and biological net-
works, we used the Li-Maini model [7]. The Li-Maini model
is a network generation models for creating networks with clus-
ter (i.e., community) structure, and an evolving network model
based on inner-community and inter-community preferential at-
tachment.

We used the ER (Erdõs-Rényi) model [17] to generate non-
scale-free networks. We also used another network generation
model (i.e., a modified version of the ER model). As we will
show in Section 4, the robustness of a network is significantly in-
fluenced by nodes with small degrees. We therefore introduce a
network generation model called DB (Degree-Bounded) model.
The DB model generates a network with N nodes and the average
degree of k. Hereafter, a network generated with the DB model is
referred to as a degree-bounded random network. The DB model
generates a degree-bounded random network as follows; (1) N

nodes are initiated; and (2) for every node, k/2 links are added
between the node and another randomly-chosen node.

Utilizing these five network generation models, we randomly
generated multiple networks for given N and k. Some example
scale-free and non-scale-free networks generated with those net-
work generation models are shown in Table 1.

We denote the node removal ratio by p. By removing randomly
selected nodes from a generated network, we obtained a degener-
ated network. The original network and the degenerated network
with the node removal ratio p are denoted by G and G(p), respec-
tively.

To investigate the robustness of scale-free and non-scale-free
networks against random node removal, we obtained the largest
component size in network G(p). The largest component size is
the number of nodes contained in the largest cluster [1].

To compare the largest component sizes in networks with the
same size and the density, we conducted simulations by fixing the

number of nodes N and the average degree k. Thus, the average
number of links (i.e., |E| = k N/2) is identical in all networks.
In our simulations, we varied the number of nodes from 1,000 to
10,000 and the average degree from 4 to 6, respectively. Note
that the number of nodes of ISP networks ranges between 10 and
10,000, and the average degree of ISP networks also ranges be-
tween 3.2 and 5.7 [3], [18].

We generated 100 network instances with each network gener-
ation model for given conditions (i.e., the number of nodes and
the average degree). For each instance, we performed simulations
to measure the largest component size while changing the node
removal ratio p. From those 100 simulations, we calculated the
mean and the 95% confidence interval of the largest component
size for the node removal ratio p.

4. Results and Discussion

Figure 2 shows the relation between the node removal ratio
and the largest component size in five types of networks with
N = 10,000 and k = 4 (i.e., |E| = 20,000). Figure 2 (b) shows the
normalized largest component size. The normalized largest com-
ponent size is defined as the ratio of the largest component size to
the network size (i.e., the number of remaining nodes excluding
removed nodes).

From this figure, it is found that when the node removal ratio
is small, the largest component size in non-scale-free networks
is larger than that of scale-free networks. In particular, it is also
found that the degree-bounded random network shows the best
robustness among networks generated with other network gener-
ation models. However, the normalized largest component size in
scale-free networks is larger than that of non-scale-free networks
when the node removal ratio is very high (i.e., p ≥ 0.7), which
coincides with the observation reported in Refs. [1], [2]. Further-
more, those results indicate that the difference in scale-free and
non-scale-free networks highly affects the number of nodes in the
main cluster. Specifically, under the small node removal ratio
(i.e., p = 0.1), the number of nodes contained in the main clus-
ter is varied around 8,500–9,000 due to the difference in network
topologies.

Next, we investigate whether our observations hold (or are still
valid) in smaller networks. Figure 3 shows the relation between
the node removal ratio and the largest component size in five
types of networks with N = 1,000 and k = 4.

Comparing Figs. 2 through 3 indicates that these results show
a similar tendency. Namely, the robustness of scale-free net-
works and non-scale-free networks is not significantly affected
by the network size. Namely our observations regarding Fig. 2
(N = 10,000) are still valid in smaller networks.

Also, we investigate how the robustness of scale-free networks
and non-scale-free networks are affected by the network density
(i.e., the number of links). Figure 4 shows the relation between
the node removal ratio and the largest component size in denser
networks of the same size with N = 10,000 and k = 6 (i.e.,
|E| = 30,000).

From this figure, by comparing results with the DB model and
those with the BA model when p ≤ 0.5, it can be found that even
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Table 1 Example networks with the average degree of 4 created with different network generation models.

Fig. 2 Relation between node removal ratio p and the largest component size for N = 10,000 and k = 4.

Fig. 3 Relation between the removal ratio p and the largest component size for N = 1,000 and k = 4.
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Fig. 4 Relation between node removal ratio p and the largest component size for N = 10,000 and k = 6.

though the network density is high, the largest component size in
non-scale-free networks is at most 5% larger than that of scale-
free networks. Hence, the difference in the normalized largest
component sizes in random and scale-free networks is around
0.05. Even though the network density is high (i.e., the number
of links increases), superiority of non-scale-free networks against
scale-free networks is not reversed. Namely, in the case of denser
networks, non-scale-free networks are more robust than scale-
free networks in terms of the largest component size.

The validity of our observation — invariant superiority of non-
scale-free networks to scale-free networks in terms of the robust-
ness against random node removal — is confirmed by Figs. 2
through 4, which present how normalized largest component sizes
are affected by the network size N and the average degree k.

We then try to examine why non-scale-free networks are more
robust than scale-free networks under modest node removal ra-
tios. Understanding the superiority of non-scale-free networks to
scale-free networks is helpful for improving the robustness of a
network.

One possible explanation on the robustness of non-scale-free
networks is their homogeneity or namely unskewed degree dis-
tributions. Except under extremely high node removal ratios, a
network with homogeneous nodes can be less prone to node fail-
ures than a network with heterogeneous nodes.

The heterogeneity of five types of networks with N = 10,000
and k = 4 is plotted in Fig. 5. The heterogeneity of a network
is measured by three metrics: the standard deviation of node de-
grees (labeled as ‘stddev’), the skewness of the degree distribu-
tion (labeled as ‘skewness’), and the kurtosis of the degree distri-
bution (labeled as ‘kurtosis’).

Comparing Figs. 2 and 5 clearly indicates a negative corre-
lation between the network heterogeneity and the robustness
against random node removal. Also, from Fig. 5, it can be found
that the standard deviation, the skewness, and the kurtosis in non-
scale-free networks are smaller than those in scale-free networks.

Among the three heterogeneity metrics (i.e., standard devia-
tion, skewness, and kurtosis), the kurtosis of the degree distribu-
tion shows the strongest correlation with the robustness in terms
of the largest component size. Namely, this result indicates that
a network in which the variation in degrees of all nodes is small
like non-scale-free network becomes robust against random node
removal.

The advantage of a low kurtosis explains why non-scale-
free networks generated with our DB (Degree-Bounded) model

Fig. 5 Heterogeneity of a network with N = 10,000 and k = 4.

achieve the best robustness among five network generation mod-
els.

From these observations, we conclude that, contrary to com-
mon understanding, (1) non-scale-free networks are more robust
than scale-free networks when the node removal ratio is not ex-
tremely high, and (2) robustness of non-scale-free networks can
be further improved by bounding the minimum node degree.

5. Case of Random Link Removal

This section investigates the robustness of complex network
against random link removal. In particular, we try to answer
the following question: are our observations on the robustness
of complex networks against random node removal still valid
against random link removal?

Our methodology for investigating the robustness of complex
networks against random link removal is equivalent to that against
random node removal except that a fraction p of links are ran-
domly removed from a generated network. We calculated the
mean and the 95% confidence interval of the largest component
size for the link removal ratio p while changing the link removal
ratio p for 100 network instances with each network generation
model.

Our simulation results with random link removal are shown in
Figs. 6 through 8. Figures 6 (a), 7 (a), and 8 (a) show the relation
between the link removal ratio and the largest component size in
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Fig. 6 Relation between link removal ratio p and the largest component size for N = 10,000 and k = 4.

Fig. 7 Relation between link removal ratio p and the largest component size for N = 1,000 and k = 4.

Fig. 8 Relation between link removal ratio p and the largest component size for N = 10,000 and k = 6.

five types of networks. Also, Figs. 6 (b), 7 (b), and 8 (b) show
the normalized largest component size. Hence, different from the
case of the random node removal, the normalized largest compo-
nent size is defined as the ratio of the largest component size to
the number of remaining nodes excluding nodes whose degree is
zero.

Comparison of the random link removal case (Figs. 6
through 8) with the random node removal case (Figs. 2
through 4) reveals that our observations discussed in Section 4
are still valid for random link removal; i.e., under modest link
removal ratios, non-scale-free networks are more robust than
scale-free networks and non-scale-free networks generated with
the degree-bounded model shows the best robustness among
others.

Notable differences in node removals and link removals are that
the largest component size with random link removal decreases
quadratically whereas that with random node removal decreases
almost linearly, and that the normalized largest component size
with random link removal are almost identical under modest link
removal ratios. The reason for the former is that a network is
more robust against link removal than node removal since the

network is not isolated as long as any of links connecting sub-
networks remains.

6. Conclusion

In this paper, we compare the robustness of scale-free and
non-scale-free networks against random node and link removal
through simulations. Specifically, we generate multiple scale-
free and non-scale-free networks using five network generation
models, and compare the largest component sizes after random
node removals. Our findings include that, when the node re-
moval ratio is not extremely high, non-scale-free networks are
more robust than scale-free networks. In particular, the degree-
bounded random network with bounding of the minimum node
degree shows the best robustness against random node removal
among five types of networks. Furthermore, we have investigated
the robustness of complex network against random link removal
and revealed observations in the our findings for random node re-
moval are still valid for random link removal. Our findings and
common understanding on scale-free networks (e.g., Ref. [1]) are
not contradictory. Namely, our findings indicate that the robust-
ness of a network is quite dependent on the degree of node/link
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failures. Under massive failures (e.g., 90% of node removal),
scale-free network are more robust than non-scale-free networks.
However, on the contrary, under moderate failures (e.g., 5% of
node removal), non-scale-free networks exhibit more robustness.

As future works, we are planning to investigate the robustness
of scale-free and non-scale-free networks under adversary attacks
as well as non-adversary attacks.
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