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Abstract: One of the most efficient post-quantum signature schemes is Rainbow whose hardness is based on the
multivariate quadratic polynomial (MQ) problem. ELSA, a new multivariate signature scheme proposed at Asiacrypt
2017, has a similar construction to Rainbow. Its advantages, compared to Rainbow, are its smaller secret key and
faster signature generation. In addition, its existential unforgeability against an adaptive chosen-message attack has
been proven under the hardness of the MQ-problem induced by a public key of ELSA with a specific parameter set
in the random oracle model. The high efficiency of ELSA is derived from a set of hidden quadratic equations used in
the process of signature generation. However, the hidden quadratic equations yield a vulnerability. In fact, a piece of
information of these equations can be recovered by using valid signatures and an equivalent secret key can be partially
recovered from it. In this paper, we describe how to recover an equivalent secret key of ELSA by a chosen message
attack. Our experiments show that we can recover an equivalent secret key for the claimed 128-bit security parameter
of ELSA on a standard PC in 177 seconds with 1,326 valid signatures.
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1. Introduction

Shor [15] proposed quantum algorithms to factor large inte-
gers and to find discrete logarithms over a finite field of large
order in polynomial time. This means that if large-scale quan-
tum computers will be realized in the future, most currently used
public key cryptosystems, such as RSA, DSA and ECC, will be
insecure. The aim of Post-Quantum Cryptography (PQC) is to
develop cryptosystems that are secure against attacks by future
quantum computers [1]. At PQCrypto 2016, the National Institute
of Standards and Technology (NIST) started the standardization
process of post-quantum cryptography, and there are currently 69
proposals of post-quantum cryptography [11].

Multivariate public key cryptosystems (MPKCs) [5] are con-
sidered to be promising candidates for PQC. The early MP-
KCs are the Matsumoto-Imai scheme [10] and the Moon Letter
scheme [16], and many MPKCs have been proposed until now.
Among them, some schemes UOV [8] and HFEv− [12], [13] have
survived in two decades, and seem efficient enough. Actually,
several MPKCs have been submitted to the NIST PQC standard-
ization. In particular, Rainbow [6], a multi-layered version of
the UOV scheme, has been gathered attention because of its effi-
ciency, modest computational cost, high security and simplicity.
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The ELSA [14] signature scheme, studied in this paper, is a
variant of Rainbow proposed at Asiacrypt 2017 by Shim et al.
and is more efficient than Rainbow; that is, its secret key is
smaller and its signature generation is faster. Shim et al. actu-
ally succeeded in reducing the complexity of signature generation
from O(n3) for Rainbow to O(n2), where n is the number of vari-
ables used in a public key, without weakening the security against
known attacks. The trick to reducing the complexity is choosing
the secret keys sparsely and attaching several hidden quadratic
equations in the process of signature generation (see Section 2.3).
Furthermore, ELSA has an existential unforgeability against an
adaptive chosen-message attack (EUF-CMA), which was proven
under the hardness of the MQ problem induced by the public
key of ELSA with a specific parameter set in the random oracle
model. Note that EUF-CMA security for Rainbow was proven
recently [4].

In this paper, we propose a chosen message attack on ELSA,
under the condition that we can obtain valid signatures by re-
peatedly accessing a signing oracle. Recall that ELSA possesses
hidden quadratic equations for accelerating the signature gener-
ation, that are not used in Rainbow. Once the hidden quadratic
equations are recovered, an attacker can obtain an equivalent se-
cret key of ELSA and forge a signature for an arbitrary message
by its equivalent secret key. We show that a piece of information
in the hidden quadratic equations can be recovered from at most

This paper has been published in the 13th International Workshop on Se-
curity (IWSEC2018) held on September 2018 and recommended to IPSJ
Journals by IWSEC2018 program Co-chairs. The preliminary version of
this paper was published at the 13th International Workshop on Security
(IWSEC 2018) [7].
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n2 valid signatures given by the chosen message attack. Our at-
tack is very efficient. More precisely, its complexity is O(n2ω),
where n is the number of variables and 2 ≤ ω < 3 is the linear
algebra constant. We implemented our attack on Magma [3], and
succeeded in recovering an equivalent secret key with 1,326 valid
signatures in 177 seconds for the parameters selected in Ref. [14]
as 128-bit security.

Our paper is organized as follows: in Section 2, we briefly sum-
marize the ELSA scheme and its previous security analysis given
in Ref. [14]. In Section 3, we discuss our new attack and give a
detailed algorithm to obtain an equivalent secret key of ELSA.
In Section 4, we perform the complexity analysis of our new at-
tack and present a Magma implementation of our algorithm. We
conclude our paper in Section 5.

2. The ELSA Signature Scheme

We briefly explain the basic concept of multivariate signature
schemes and summarize the construction of the ELSA scheme
and its previous security analysis following [14].

2.1 Multivariate Signature Scheme
Let n,m ≥ 1 be integers, q a power of prime, and Fq a finite

field of order q. In a multivariate signature scheme, the public
key P : Fn

q → Fm
q is a quadratic map, namely P(x1, . . . , xn) =

t(P1(x1, . . . , xn), . . . ,Pm(x1, . . . , xn)) given by

Pl(x1, . . . , xn) =
∑

1≤i≤ j≤n

α(l)
i j xix j +

∑
1≤i≤n

β(l)
i xi + γ

(l)

for 1 ≤ l ≤ m, where α(l)
i j , β

(l)
i , γ

(l) ∈ Fq. For such a signature
scheme, the public key P is generated by P = T ◦ F ◦ S with
invertible affine maps T : Fm

q → Fm
q , S : Fn

q → Fn
q and a quadratic

map F : Fn
q → Fm

q that can be feasibly inverted. Thus the secret
key consists of T , F and S.

To generate a signature of a message m ∈ Fm
q , one com-

putes z = T−1(m), finds y with F (y) = z, and then computes
w = S−1(y). A signature for m is given by w. The verification
involves checking whether P(w) = m.

2.2 Key Generation of ELSA
We now describe the construction of ELSA [14].
Let r, l, k, u be positive integers and set n = r + l + k + u and

m = k + u. Denote the sets of r, l, k, u and n variables by

xR := (xR,1, . . . , xR,r), xL := (xL,1, . . . , xL,l),

xK := (xK,1, . . . , xK,k), xU := (xU,1, . . . , xU,u),

x := t(xR, xL, xK , xU ) = t(xR,1, . . . , xU,u).

We first construct the central map of ELSA consisting of two
layers. Let Li(x) = Li(xR, xL, xK),Ri j(x) = Ri j(xL, xK) (1 ≤ i ≤
r, 1 ≤ j ≤ k) be linear polynomials and Φ j(x) = Φ j(xL) (1 ≤ j ≤
k) quadratic polynomials. The first layer (F1(x), . . . ,Fk(x)) of the
central map of ELSA is

F j(x) :=
∑

1≤i≤r

Li(xR, xL, xK)Ri j(xL, xK) + Φ j(xL),

for 1 ≤ j ≤ k. To construct the second layer, let Ri,k+ j(x) (1 ≤

i ≤ r, 1 ≤ j ≤ u), L′j(x) = L′j(xR, xL, xK) (1 ≤ j ≤ u) be linear
polynomials and Φk+ j(x) = Φk+ j(xL, xK) (1 ≤ j ≤ u) quadratic
polynomials. The second layer (Fk+1(x), . . . ,Fm(x)) is

Fk+ j(x) :=
∑

1≤i≤r

Li(xR, xL, xK)Ri,k+ j(x)

+ Φk+ j(xL, xK) + L′j(xR, xL, xK),

for 1 ≤ j ≤ u. The central map F : Fn
q → Fn

q of ELSA is given by

F (x) := t (F1(x), . . . ,Fk(x),Fk+1(x), . . . ,Fm(x)) .

The secret and public keys of ELSA are as follows.
Secret key. Two invertible affine maps S : Fn

q → Fn
q, T : Fm

q →
F

m
q , a linear polynomial L(x) = L(xL), constants ξ1, . . . , ξr ∈ F×q ,

and the quadratic map F : Fn
q → Fn

q constructed above,
Public key. The quadratic map

P := T ◦ F ◦ S : Fn
q → Fm

q .

2.3 Signature Generation and Verification of ELSA
In this subsection, we describe the signature generation and the

verification of ELSA.
Signature generation. For a message m ∈ Fm

q to be signed,
compute z = t(z1, . . . , zm) := T−1(m). Next, find y ∈ Fn

q with
F (y) = z and L(y)Li(y) = ξi for 1 ≤ i ≤ r. Finally, compute
w := S−1(y) ∈ Fn

q. The signature for m is w.
Signature verification. The signature w is verified if P(w) = m
holds.

In the process of signature generation, y ∈ Fn
q with F (y) = z

and L(y)Li(y) = ξi for 1 ≤ i ≤ r is found as follows.
How to find y ∈ Fn

q. First, choose yL ∈ Fl
q with L(yL) � 0 and

find a solution yK ∈ Fk
q of the system of k linear equations of xK

given by
∑

1≤i≤r

ξiRi j(yL, xK) = L(yL)(z j − Φ j(yL)) (1)

for 1 ≤ j ≤ k. Next, find a solution yR ∈ Fr
q of the system of r

linear equations of xR given by

Li(xR, yL, yK) = L(yL)−1ξi (2)

for 1 ≤ i ≤ r. Finally, find a solution yU ∈ Fu
q of the system of u

linear equations of xU given by
∑

1≤i≤r

ξiRi,k+ j(yR, yL, yK , xU )

= L(yL)
(
z j − Φk+ j(yL, yK) − L′j(yR, yL, yK)

) (3)

for 1 ≤ j ≤ u. Then y := t(yR, yL, yK , yU ) ∈ Fn
q is to be found.

Note that the equations (1)–(3) are derived from

L(xL)F j(x) = L(xL)z j, L(xL)Li(xR, xL, xK) = ξi, (4)

and then y ∈ Fn
q computed above satisfies F (y) = z and

L(yL)Li(yL, yK , yR) = ξi for 1 ≤ i ≤ r.
We now study the efficiency of the signature generation. The

system of Eq. (1) is written by

xK A + c = L(yL)
[
zK − b(yL)

]
, (5)
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where A is a k × k matrix over Fq, c ∈ Fk
q, zK := (z1, . . . , zk)

and b(yL) = (Φ1(yL), . . . ,Φk(yL)) ∈ Fk
q. Since the entries of A

do not depend on yL, the process of finding yK of Ep. (5) can be
implemented by

yK = L(yL)
[
zK − b(yL)

]
A1 − cA1,

where A1 := A−1 is also independent of yL. This means that, if we
store A1 as a part of the secret key and choose l small enough, the
complexity of finding yK is O(k2) = O(n2). For the Eqs. (2) and
(3), the situations are similar. Then, if one chooses Φk+ j sparsely
as given in Ref. [14], the complexities of finding yR, yU are also
O(n2). Thus the total complexity of the signature generation in
ELSA is O(n2), which is smaller than the complexity O(n3) of
the signature generation of Rainbow (see Ref. [14], Section 5).

2.4 Previous Security Analysis and Parameter Selection
In this subsection, we give a short survey of the security anal-

ysis of ELSA discussed in Ref. [14] and state the 128-bit security
parameter based on that security analysis.
Direct Attack. The direct attack generates a dummy signature
of a given message by solving a system of quadratic equations
P(x) = m directly. It is known that, if the polynomial system
P(x)−m is semi-regular, the complexity of the hybrid method [2]
between the Gröbner basis attack and the exhaustive attack is

	 min
k≥0

qk ·
(
m

(
n − k + dreg − 1

dreg

))w
, (6)

where dreg is the degree of regularity given as the first non-
positive coefficient of (1 − t2)m/(1 − t)n−k, and 2 ≤ w < 3 is
the linear algebra constant. In Ref. [14], the authors chose Ep. (6)
with w = 2 as a lower bound of security against the direct attack.

Rainbow Band Separation (RBS). Let ϕ : Fn
q → Fn

q be the affine
map with

ϕ(x) = t (L1(x), . . . , Lr(x), xL, xK , xU )

and F ′ := F ◦ ϕ−1. Note that

P = T ◦ F ◦ S = T ◦ F ′ ◦ (ϕ ◦ S).

Due to the discussions in Ref. [14], Section 3.2, we see that the
coefficient matrices F′1, . . . , F

′
m of F ′1 (x), . . . ,F ′m(x), i.e., F ′j (x) =

txF′jx + (linear form), are written by

F′j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0r ∗ ∗ 0

∗ ∗l 0 0

∗ 0 0k 0

0 0 0 0u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1 ≤ j ≤ k),

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗r ∗ ∗ ∗
∗ ∗l ∗ 0

∗ ∗ ∗k 0

∗ 0 0 0u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (k + 1 ≤ j ≤ m).

(7)

Then there exist vectors s = t(s1, . . . , sn−1) ∈ Fn−1
q and t =

t(t1, . . . , tm) ∈ Fm
q such that

∑
1≤i≤m

tiPi

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ In−1 s

0 1

⎞⎟⎟⎟⎟⎠ x

⎞⎟⎟⎟⎟⎠ = tx

⎛⎜⎜⎜⎜⎝ ∗n−1 0
0 01

⎞⎟⎟⎟⎟⎠ x + (linear form).

Such a pair (s, t) gives partial information of the secret key (S,T ).
To recover (s, t), the attacker has to solve a system of cubic poly-
nomial equations of s, t. While it is not easy to estimate its com-
plexity in general, the authors of Ref. [14] concluded that ELSA
is secure enough against RBS attack under a suitable parameter
selection.

Rank Attacks. Let P1, . . . , Pm be the coefficient matrices of
P1(x), . . . ,Pm(x), i.e., Pi is an n × n (symmetric) matrix with
Pi(x) = txPix + (linear polynomial in x). The rank attack recov-
ers an equivalent secret key partially by finding α1, . . . , αm ∈ Fq

such that the rank of

α1P1 + · · · + αmPm

is small. By checking the coefficient matrices F′1, . . . , F
′
m of

F ′1 (x), . . . ,F ′m(x) as given in Ep. (7) carefully, the authors of
Ref. [14] estimated the complexities of the rank attacks as fol-
lows.

Min-Rank Attack: O
(
qmin{l+k+1,l+2r−k+1,l+2r+1,2l+k+1} · (polyn.)

)
.

High-Rank Attack: O
(
qu · n3

)
.

Kipnis-Shamir’s (UOV) Attack. Kipnis and Shamir [9] pro-
posed a polynomial time attack to recover an equivalent secret
key of the oil and vinegar signature scheme, and Kipnis et al. [8]
generalized it to the unbalanced oil and vinegar signature scheme
(UOV). It is known that this attack is also possible when the

coefficient matrices are in the form

⎛⎜⎜⎜⎜⎝0o ∗
∗ ∗v

⎞⎟⎟⎟⎟⎠ and its complex-

ity is O(qmax{v−o,0} · (polyn.)). The authors of Ref. [14] con-
cluded that the complexity of Kipnis-Shamir’s attack on ELSA
is O

(
qmin{r−u,k+u,l+r,n−2u−1} · (polyn.)

)
by studying the structure of

the coefficient matrices F′1, . . . , F
′
m of F ′1 (x), . . . ,F ′m(x) given in

Ep. (7) and the process of this attack carefully.

Security Parameters. Based on the security analyses above, the
following 80, 96, and 128-bit security parameters are estimated.

ELSA-80 : (q, r, l, k, u, n,m) = (28, 19, 1, 17, 9, 46, 26),

ELSA-96 : (q, r, l, k, u, n,m) = (28, 23, 2, 20, 11, 56, 31),

ELSA-128 : (q, r, l, k, u, n,m) = (28, 30, 6, 28, 15, 79, 43).

(8)

The 128-bit security parameter ELSA-128 was recommended in
Ref. [14], and the others are security parameters we estimated.

3. Our Attack on ELSA

In this section, we describe a chosen message attack on ELSA.
Indeed, we show how to recover an equivalent secret key from the
information associated with Eq. (4) by launching a chosen mes-
sage attack. We also explain the construction of the equivalent
secret key and a method for forging a signature from it.

3.1 Chosen Message Attack
A chosen message attack is a standard security notion in sig-

nature schemes. Let O be a signing oracle which computes the
signature w ∈ Fn

q from a message m ∈ Fm
q using the secret key

of ELSA. The chosen message attack tries to generate a valid

c© 2019 Information Processing Society of Japan
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pair of a message m′ and signature w′ by repeatedly accessing
the signing oracle O, where P(w′) = m′ for the public key P.
The authors of ELSA [14] proved that ELSA is existentially un-
forgeable against the chosen message attack. However, we show
that there is a way to recover an equivalent secret key by launch-
ing a chosen message attack. Recall that the signature generation
of ELSA uses Eq. (4) in order to accelerate the signature gener-
ation. The reduced problem used in ELSA is different from that
used in Rainbow, namely, ELSA has a special structure of using
Eq. (4), which leaks the information related to the secret key. We
propose an attack that recovers the information associated with
Eq. (4) from the signatures w given in the chosen message attack.

In a weaker setting, the attacker is not allowed to choose the
message m before asking the signing oracle, which is sometimes
called the known message attack. We show that our attack is also
feasible in this setting.

3.2 Recovering the Hidden Polynomials
In this subsection, we describe how to recover the space

LS := Span
Fq
{L1(S(x)), . . . , Lr(S(x))} ⊂ Fq[x] (9)

from N := max
(
n + 1, 1

2 (n − r + 2)(n − r + 3)
)

valid signatures.
Let W ⊂ Fn

q be the set of signatures generated by ELSA. Recall
Section 2.3 that a signature w ∈ W is given by w = S−1(y), where
y ∈ Fn

q satisfies L(y) � 0 and L(y)Li(y) = ξi for 1 ≤ i ≤ r. Then
any w ∈ W satisfies L(S(w)) � 0 and

L(S(w))Li(S(w)) = ξi (10)

for 1 ≤ i ≤ r. Multiplying Lj(S(w)) to both hand sides of (10),
we have

ξiL j(S(w)) − ξ jLi(S(w)) = 0 (11)

for 1 ≤ i, j ≤ r. Let

L1
S := Span

Fq

{
Li j(x) := ξiL j(S(x)) − ξ jLi(S(x))

}
1≤i, j≤r

,

V1 :=
{
h ∈ Fq[x]

∣∣∣ deg h ≤ 1, h(w) = 0 (∀w ∈ W)
}
.

It is clear that L1
S ⊂ LS and dimFq L1

S = r − 1 since any
polynomial in L1

S is a linear combination of L12(x), . . . , L1r(x)
and L12(x), . . . , L1r(x) are linearly independent. Furthermore,
due to Eq. (11), we see that L1

S ⊂ V1, and L1
S = V holds if

dimFq V1 = r − 1. While estimating dimFq V1 theoretically is not
easy, we computed it experimentally in 100 times for the param-
eters (8) and checked that dimFq V1 = r − 1 always holds. We
can thus consider that L1

S = V1. Note that we can recover L1
S by

using n + 1 valid signatures since the number of coefficients of a
linear form of n variables is n + 1.

Recall that L1
S ⊂ LS, dimFq LS = r and dimFq L1

S = r − 1.
Then one more linear form is required to recover LS. We can ob-
tain such a linear form by L1

S and quadratic forms derived from
Eq. (10) in the following way.

Choose a basis {L1, . . . ,Lr−1} of L1
S and recover an invertible

affine map S0 : Fn
q → Fn

q with

(Li ◦ S0)(x) = xR,i (12)

for 1 ≤ i ≤ r − 1. Since (Li ◦ S0)(S−1
0 (w)) = Li(w) = 0 holds

for w ∈ W and 1 ≤ i ≤ r − 1, the xR,1, . . . , xR,r−1-components of
w′ := S−1

0 (w) are zero, i.e. any w′ ∈ S−1
0 (W) is written by

w′ =
(
0, . . . , 0, w′R,r,w

′
L,w

′
K ,w

′
U

)
.

We can then consider that S−1
0 (W) is a subset of Fn−r+1

q .

Now define the quadratic forms Q1(x), . . . ,Qr(x) by

Qi(x) := (L ◦ S ◦ S0) (0, . . . , 0, xR,r, xL, xK , xU )

· (Li ◦ S ◦ S0) (0, . . . , 0, xR,r, xL, xK , xU ) − ξi,

i.e., Qi(x) is a quadratic form of n − r + 1 variables
xR,r, xL,1, . . . , xU,u, and study the relation between the following
two sets.

L2
S := Span

Fq
{ Qi(x) }1≤i≤r,

V2 :=
{
h ∈ Fq[xR,r, xL, xK , xU ]

∣∣∣
deg h ≤ 2, h(w′) = 0(∀w′ ∈ S−1

0 (W))
}
.

Since

Qi(w′) = (L ◦ S ◦ S0)(w′) · (Li ◦ S ◦ S0)(w′) − ξi
= (L ◦ S)(w) · (Li ◦ S)(w) − ξi = 0 (13)

for any w′ ∈ S−1
0 (W), we have L2

S ⊂ V2. Due to Eq. (11), we see
that

ξ1Li((S ◦ S0)(w′) = ξiL1((S ◦ S0)(w′)

for 2 ≤ i ≤ r and then the polynomials Q2(x), . . . ,Qr(x) are con-
stant multiples of Q1(x), namely L2

S = Q1(x) · Fq. While prov-
ing V2 = L2

S = Q1(x) · Fq theoretically is not easy, we com-
puted V2 experimentally in 100 times for the parameters (8) and
checked that dimFq V2 = 1 always holds. We can thus consider
that L2

S(= Q1(x) · Fq) = V2. Note that we can recover L2
S by us-

ing N′ := 1
2 (n− r+2)(n− r+3) valid signatures since the number

of coefficients of a quadratic form of n − r + 1 variables is N′.
Once Q1(x) is recovered, decompose Q1(x) by

Q1(x) = D1(x)D2(x) + c

with linear forms D1(x), D2(x) and a constant c ∈ Fq. By the def-
inition of Q1(x), we see that one of D1(x), D2(x) is L((S◦S0)(x))
and the other is L1((S ◦ S0)(x)). We thus conclude that the space
LS is one of the following two spaces.

Span
Fq
{L1(x), . . . ,Lr−1(x),D1(S−1

0 (x))},

Span
Fq
{L1(x), . . . ,Lr−1(x),D2(S−1

0 (x))}.

While we cannot distinguish LS from the other in the two spaces
above at the present time, the number of candidates of LS is only
two. We can try our attack given in the next subsection for both
cases and (at least) one of them will recover a desired equivalent
secret key.

3.3 Equivalent Secret Key and Forging a Signature
The aim of our attack is to recover a pair of two maps (S̄, T̄ ),

which is enough to forge a signature for a given message. In this
subsection, we describe such a pair (S̄, T̄ ).

c© 2019 Information Processing Society of Japan
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Recall Section 2.4 that the invertible affine map ϕ : Fn
q → Fn

q is
defined by

ϕ(x) = t (L1(x), . . . , Lr(x), xL, xK , xU ) ,

F ′ := F ◦ ϕ−1 and

P = T ◦ F ◦ S = T ◦ F ′ ◦ (ϕ ◦ S).

The quadratic forms F ′1 (x), . . . ,F ′m(x) in F ′(x) are written by the
coefficient matrices (7). The equivalent secret key of ELSA is
defined as follows.

Equivalent Secret Key. Let S̄ : Fn
q → Fn

q, T̄ : Fm
q → Fm

q be
invertible affine maps and

P̄ := T̄ ◦ P ◦ S̄ = (T̄ ◦ T ) ◦ F ′ ◦ (ϕ ◦ S ◦ S̄).

If P̄(x) =
(
P̄1(x), . . . , P̄m(x)

)
is written in the following form, the

pair (S̄, T̄ ) is called an equivalent secret key.

P̄ j(x) = tx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗r ∗ ∗ 0
∗ ∗l 0 0
∗ 0 0k 0
0 0 0 0u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x

+ (linear form of xR, xL, xU ), (1 ≤ j ≤ k),

P̄ j(x) = tx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗r ∗ ∗ ∗
∗ ∗l ∗ 0
∗ ∗ ∗k 0
∗ 0 0 0u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x

+ (linear form of x), (k + 1 ≤ j ≤ m).

(14)

Due to Eq. (7), we can easily check that (S̄, T̄ ) satisfying the
following condition is an equivalent secret key.

(
ϕ ◦ S ◦ S̄

)
(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗r 0 0 0
∗ ∗l 0 0
∗ ∗ ∗k 0
∗ ∗ ∗ ∗u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x,

(
T̄ ◦ T

)
(y) =

⎛⎜⎜⎜⎜⎝ ∗k 0
∗ ∗u

⎞⎟⎟⎟⎟⎠ y.

(15)

Once an equivalent secret key (S̄, T̄ ) is recovered, we can forge
a signature w ∈ Fn

q for a given message m ∈ Fm
q as follows.

Forging a signature. First, compute z = t(z1, . . . , zm) := T̄ (m)
and choose yR ∈ Fr

q, yL ∈ Fl
q randomly. Next, find a solution

yK ∈ Fk
q of the system of k linear equations of xK given by

P′(yR, yL, xK) = z j, (1 ≤ i ≤ k).

After that, find a solution yU ∈ Fu
q of the system of u linear equa-

tions of xU given by

P′j(yR, yL, yK , xU ) = z j, (k + 1 ≤ j ≤ m).

Finally, compute w = S̄(yR, yL, yK , yU ), which is a signature of
the message m.

We can easily check that the complexity of forging is O(n3).
While it is larger than the complexity O(n2) of the signature gen-
eration of ELSA, it is enough for attackers.

3.4 Recovering an Equivalent Secret Key
In Section 3.2, we show how to recover the space LS defined

in Eq. (9) from N valid signatures. In this subsection, we ex-
plain how to recover an equivalent secret key in the form Eq. (15)
from LS. For simplicity, we assume that LS is correctly chosen,
F1(x), . . . ,Fm(x) are homogeneous quadratic forms and S, T are
linear maps. Note that our attack below can be modified without
these assumptions easily.

First, choose a basis {L1(x), . . . ,Lr(x)} of the space LS
and find an invertible linear map S1 : Fn

q → F
n
q such that

L1(S1(x)), . . . ,Lr(S1(x)) are linear forms of xR. Since Li(x) is
a linear sum of L1(S(x)), . . . , Lr(S(x)), we have

(ϕ ◦ S ◦ S1) (x) =

⎛⎜⎜⎜⎜⎝ ∗r 0
∗ ∗l+k+u

⎞⎟⎟⎟⎟⎠ x =:

⎛⎜⎜⎜⎜⎝A 0
B C

⎞⎟⎟⎟⎟⎠ x,

where A, B, C are r×r-, (l+k+u)×r-, (l+k+u)×(l+k+u)-matrices
respectively. Due to Eq. (7), we see that

P′(x) = t(P′1(x), . . . ,P′m(x))

:= (P ◦ S1) (x) =
(T ◦ F ′ ◦ (ϕ ◦ S ◦ S1)

)
(x)

is written by

P′j(x) = tx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗r ∗

∗ tC

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∗l ∗ 0
∗ ∗k 0
0 0 0u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠C

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x

for 1 ≤ j ≤ m. Then there exists an invertible (l+k+u)×(l+k+u)
matrix C1 such that

P′j

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝Ir 0

0 C1

⎞⎟⎟⎟⎟⎠ x

⎞⎟⎟⎟⎟⎠ = tx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗r ∗ ∗ ∗
∗ ∗l ∗ 0
∗ ∗ ∗k 0
∗ 0 0 0u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x

for 1 ≤ j ≤ m. Such a matrix C1 can be recovered easily and

it holds CC1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∗l ∗ 0
∗ ∗k 0
0 0 0u

⎞⎟⎟⎟⎟⎟⎟⎟⎠. This means that the linear map

S2 : Fn
q → Fn

q defined by S2(x) =

⎛⎜⎜⎜⎜⎝Ir 0
0 C1

⎞⎟⎟⎟⎟⎠ x satisfies

S̃(x) := (ϕ ◦ S ◦ S1 ◦ S2) (x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗r 0 0 0
∗ ∗l ∗ 0
∗ ∗ ∗k 0
∗ ∗ ∗ ∗u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x.

(16)

Due to Eqs. (7) and (16), we have

F ′j
(
S̃(x)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗r ∗ ∗ 0

∗ ∗l ∗ 0

∗ ∗ ∗k 0

0 0 0 0u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x, (1 ≤ j ≤ k),

tx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗r ∗ ∗ ∗
∗ ∗l ∗ 0

∗ ∗ ∗k 0

∗ 0 0 0u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x, (k + 1 ≤ j ≤ m).
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Since P′ ◦ S2 = T ◦ F ′ ◦ S̃, there exists an invertible linear map
T1 : Fm

q → Fm
q such that

P′′(x) =
(P′′1 (x), . . . ,P′′m(x)

)
:=

(T1 ◦ P′ ◦ S2
)

(x) =
(
(T1 ◦ T ) ◦ F ′ ◦ S̃

)
(x)

is given by

P′′j (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗r ∗ ∗ 0

∗ ∗l ∗ 0

∗ ∗ ∗k 0

0 0 0 0u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x, (1 ≤ j ≤ k),

tx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗r ∗ ∗ ∗
∗ ∗l ∗ 0

∗ ∗ ∗k 0

∗ 0 0 0u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x, (k + 1 ≤ j ≤ m).

It is easy to see that such T1 satisfies

(T1 ◦ T )(y) =

⎛⎜⎜⎜⎜⎝ ∗k 0
∗ ∗u

⎞⎟⎟⎟⎟⎠ y. (17)

Let C2 be the (l+k)× (l+k) matrix with S̃(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∗r 0 0
∗ C2 0
∗ ∗ ∗u

⎞⎟⎟⎟⎟⎟⎟⎟⎠x.

Due to Eqs. (7), (16) and (17), we see that P′′1 (x), . . . ,P′′k (x) are
written by

P′′j (x) = tx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗r ∗ 0

∗ tC2

⎛⎜⎜⎜⎜⎝ ∗l 0
0 0k

⎞⎟⎟⎟⎟⎠C2 0

0 0 0u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x

for 1 ≤ j ≤ k. Then there exists an invertible (l+k)×(l+k) matrix
C3 with

P′′j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Ir 0 0
0 C3 0
0 0 Iu

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
tx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗r ∗ ∗ 0
∗ ∗l 0 0
∗ 0 0k 0
0 0 0 0u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x

for 1 ≤ j ≤ k and it holds C2C3 =

⎛⎜⎜⎜⎜⎝ ∗l 0
∗ ∗k

⎞⎟⎟⎟⎟⎠. Note that such a

matrix C3 can be recovered easily. The linear map S3 : Fn
q → Fn

q

defined by S3(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Ir 0 0
0 C3 0
0 0 Iu

⎞⎟⎟⎟⎟⎟⎟⎟⎠x then satisfies

(
S̃ ◦ S3

)
(x) = (ϕ ◦ S ◦ S1 ◦ S2 ◦ S3) (x)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗r 0 0 0
∗ ∗l 0 0
∗ ∗ ∗k 0
∗ ∗ ∗ ∗u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x.

(18)

We thus conclude that (S̄, T̄ ) = (S1 ◦S2 ◦S3,T1) is an equivalent
secret key recovered from the space LS.

In Algorithm 1, we describe the algorithm of our attack in
detail. Note that our attack requires N = max{n, 1

2 (n − r +

2)(n − r + 3)} valid signatures for ELSA with a given parame-
ter (q, r, l, k, u, n,m).

Algorithm 1 The Proposed attack on ELSA
Input: The public key P(x) = t(P1(x), . . . ,Pm(x)) ∈ Fq[x]m of ELSA with

parameter (q, r, l, k, u, n,m) and N valid signatures w1, . . . ,wN ∈ Fn
q,

where N := max
{
n + 1, 1

2 (n − r + 2)(n − r + 3)
}
.

Output: An equivalent secret key (S̄, T̄ ) defined in §3.3.

1: Compute a basis {L1(x), . . . ,Lr−1(x)} of the following r − 1 dimensional

vector space over Fq.{
h(x) ∈ Fq[x]

∣∣∣ deg h ≤ 1, h(wi) = 0, (1 ≤ i ≤ n + 1)
}
.

Find an invertible affine map S0 : Fn
q → Fn

q such that

(Li ◦ S0)(x) = xR,i

for 1 ≤ i ≤ r − 1.

2: Compute a non-zero polynomial Q(x) of the following one-dimensional

vector space.{
h ∈ Fq[xR,r , xL, xK , xU ]

∣∣∣ deg h ≤ 2, h(S−1
0 (wi)) = 0, (1 ≤ i ≤ N)

}
.

Decompose Q(x) by

Q(x) = D1(xR,r , xL, xK , xU ) · D2(xR,r , xL, xK , xU ) + c

with linear forms D1(xR,r , xL, xK , xU ),D2(xR,r , xL, xK , xU ) and a constant

c ∈ Fq.

3: Let

D(x) := D1(xR,r , xL, xK , xU ). (19)

Find an invertible affine map S1 : Fn
q → Fn

q such that

(D ◦ S−1
0 ◦ S1)(x) = xR,r ,

(Li ◦ S1)(x) = xR,i

for 1 ≤ i ≤ r − 1.

4: Let P̃′j be the coefficient matrix of size l + k + u associated with the

quadratic polynomial (P j ◦ S1)(0, xL, xK , xU ) for 1 ≤ j ≤ m. Find an

invertible (l + k + u) × (l + k + u) matrix C1 such that

tC1P̃′jC1 =

(
∗l+k 0
0 0u

)

for 1 ≤ j ≤ m. If there is no such matrix, return to Step 3 and reset (19)

by

D(x) := D2(xR,r , xL, xK , xU ).

Let S2 : Fn
q → Fn

q be the invertible linear map with

S2(x) =

(
Ir 0
0 C1

)
x.

5: Find an invertible linear map T1 : Fm
q → Fm

q such that the variables xU

do not appear in P′′j (x) for 1 ≤ j ≤ k, where

P′′(x) = (P′′1 (x), . . . ,P′′m(x)) := (T1 ◦ P ◦ (S1 ◦ S2))(x),

namely P′′1 (x), . . . ,P′′k (x) are quadratic forms of xR, xL, xK .

6: Let P′′j be the coefficient matrix of size l + k associated with

P′′j (0, xL, xK , 0) for 1 ≤ j ≤ k. Find an invertible (l + k) × (l + k) ma-

trix C3 such that

tC3P′′j C3 =

(
∗l 0
0 0k

)

for 1 ≤ j ≤ k. Let S3 : Fn
q → Fn

q be the invertible linear map such that

S3(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Ir 0 0
0 C3 0
0 0 Iu

⎞⎟⎟⎟⎟⎟⎟⎟⎠ x.

The equivalent secret key is

(S̄, T̄ ) = (S1 ◦ S2 ◦ S3,T1) .

c© 2019 Information Processing Society of Japan
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Table 1 Experiments of our attack on ELSA.

Parameters (q, r, l, k, u, n,m) N Running Time

ELSA-80 (28, 19, 1, 17, 9, 46, 26) 435 9.42 sec.

ELSA-96 (28, 23, 2, 20, 11, 56, 31) 630 25.00 sec.

ELSA-128 (28, 30, 6, 28, 15, 79, 43) 1326 176.68 sec.

4. Complexity and Experiments of Our Attack

In this section, we estimate the complexity of our attack pro-
posed in Section 3 and describe the experimental results.

4.1 Complexity
In the first step of Algorithm 1, we solve a system of n+1 linear

equations of n + 1 variables to find the space

{
h ∈ Fq[x]

∣∣∣ deg h ≤ 1, h(wi) = 0, (1 ≤ i ≤ n + 1)
}
.

Then the complexity of Step 1 is O(nω). Similarly, we can es-
timate the complexity of Step 2 by O(Nω) = O(n2ω). In Step

3, we can find C1 such that tC1P′1C1 =

⎛⎜⎜⎜⎜⎝ ∗k+l 0
0 0u

⎞⎟⎟⎟⎟⎠ with the

complexity O((l + k + u)ω) and verify that C1 satisfies tC1P′jC1 =⎛⎜⎜⎜⎜⎝ ∗k+l 0
0 0u

⎞⎟⎟⎟⎟⎠ also for 2 ≤ j ≤ m. Then the complexity of Step

3 is at most O(nω+1). Similarly, we can estimate the complexi-
ties of Step 4 and 5 by O(nω+1). We thus conclude that the total
complexity of our attack is O(n2ω).

This means that our attack is efficient enough to break ELSA.
As shown in the next subsection, we implemented our attack on
Magma and succeeded in recovering an equivalent secret key effi-
ciently. To preserve 128-bit security for ELSA under the security
O(n2ω), one must choose n sufficiently larger than 220. It is no
longer practical.

4.2 Experiments
We implemented our attack on Magma V2.21-6 [3] with a

1.6 GHz Intel R© CoreTM i5 processor and using an 8 GB of mem-
ory for the three parameters (8). Table 1, we describe the aver-
ages of the running times of 100 experiments to recover equiva-
lent secret keys by Algorithm 1. Note that N := max{n+ 1, 1

2 (n−
r + 2)(n− r + 3)} is the number of valid signatures required in our
attack. These experimental results show that our attack works
well and is quite efficient to recover an equivalent secret key of
ELSA.

5. Conclusion

We studied the security of ELSA [14], an efficient variant of
Rainbow. ELSA uses special hidden quadratic equations to ac-
celerate signature generation. However, such hidden quadratic
equations weaken the security. In fact, we proved that such hid-
den quadratic equations can be recovered from sufficiently many
valid signatures, and an equivalent secret key of ELSA can be
obtained from the hidden quadratic equations. Our attack imple-
mented on Magma with a standard personal computer succeeded
in recovering an equivalent secret key in about 177 seconds with
1,326 valid signatures for the claimed 128-bit security parameter
of ELSA.

Finally, we stress that the original Rainbow has no hidden
quadratic equations discussed in this paper. Our attack is thus
unusable on Rainbow.
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Editor’s Recommendation
In this paper, they proposed an efficient chosen message attack

method for the existential forgeability of ELSA, that is a signa-
ture scheme based on the solving Multivariate Quadratic problem
(MQ) of multivariate quadratic polynomials appeared a confer-
ence of Asiacrypt2017.

Not only an efficient attack method for the structure of central
quadratic map on ELSA, but also they reported results of an im-
plementation and an experimentation. Consequently we selected
as IWSEC2018 best paper, so we would like to recommend this
paper to IPSJ journals.

(The 13th International Workshop on Security (IWSEC2018)
Program Co-Chairs Atsuo Inomata)
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