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Improved Streaming Algorithms for
Maximizing Monotone Submodular Functions

under a Knapsack Constraint∗
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Abstract: In this paper, we consider the problem of maximizing a monotone submodular function subject to a knap-
sack constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the
algorithm has access only to a small fraction of the data stored in primary memory. For this problem, we propose a
(0.4 − ε)-approximation algorithm requiring only a single pass through the data. This improves on the currently best
(0.363 − ε)-approximation algorithm. The required memory space depends only on the size of the knapsack capacity
and ε.
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1. Introduction
A set function f : 2E → R+ on a ground set E is submodular if

it satisfies the diminishing marginal return property, i.e., for any
subsets S ⊆ T ⊊ E and e ∈ E \ T ,

f (S ∪ {e}) − f (S ) ≥ f (T ∪ {e}) − f (T ).

A set function is monotone if f (S ) ≤ f (T ) for any S ⊆ T .
Submodular functions play a fundamental role in combinatorial
optimization, as they capture rank functions of matroids, edge
cuts of graphs, and set coverage, just to name a few examples.
Besides their theoretical interests, submodular functions have at-
tracted much attention from the machine learning community be-
cause they can model various practical problems such as online
advertising [1], [26], [37], sensor location [27], text summariza-
tion [32], [33], and maximum entropy sampling [30].

Many of the aforementioned applications can be formulated
as the maximization of a monotone submodular function under a
knapsack constraint. In this problem, we are given a monotone
submodular function f : 2E → R+, a size function c : E → N,
and an integer K ∈ N, where N denotes the set of positive inte-
gers. The problem is defined as

maximize f (S ) subject to c(S ) ≤ K, S ⊆ E, (1)

where we denote c(S ) =
∑

e∈S c(e) for a subset S ⊆ E. Note that,
when c(e) = 1 for every item e ∈ E, the constraint coincides with
a cardinality constraint. Throughout this paper, we assume that
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every item e ∈ E satisfies c(e) ≤ K as otherwise we can simply
discard it.

The problem of maximizing a monotone submodular function
under a knapsack or a cardinality constraint is classical and well-
studied [20], [39]. The problem is known to be NP-hard but can
be approximated within the factor of 1 − e−1 (or 1 − e−1 − ε); see
e.g., [3], [15], [21], [28], [38], [40].

In some applications, the amount of input data is much larger
than the main memory capacity of individual computers. In
such a case, we need to process data in a streaming fashion (see
e.g., [34]). That is, we consider the situation where each item
in the ground set E arrives sequentially, and we are allowed to
keep only a small number of the items in memory at any point.
This setting effectively rules out most of the techniques in the lit-
erature, as they typically require random access to the data. In
this work, we assume that the function oracle of f is available at
any point of the process. Such an assumption is standard in the
submodular function literature and in the context of streaming
setting [2], [13], [41].

Our main contribution is to propose a single-pass (2/5 − ε)-
approximation algorithm for the problem (1), which improves on
the previous work [24], [41] (see Table 1). The space complexity
is independent of the number of items in E.

Theorem 1.1 There exists a single-pass streaming (2/5 −
ε)-approximation algorithm for the problem (1) requiring
O
(
Kε−4 log4 K

)
space.

2. Our Technique
Let us first describe approximation algorithms for the

knapsack-constrained problem (1) in the offline setting. The
simplest algorithm is a greedy algorithm, that repeatedly takes
an item with maximum marginal return. The greedy algorithm
admits a (1 − 1/

√
e)-approximation, together with taking one
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Table 1 The knapsack-constrained problem. The algorithms [16], [38] are not for the streaming setting.
See also [15], [28].

approx. ratio #passes space running time
Ours 2/5 − ε 1 O

(
Kε−4 log4 K

)
O
(
nε−4 log4 K

)
Huang et al. [24] 4/11 − ε 1 O

(
Kε−4 log4 K

)
O
(
nε−4 log4 K

)
Yu et al. [41] 1/3 − ε 1 O

(
Kε−1 log K

)
O
(
nε−1 log K

)
Huang et al. [24] 2/5 − ε 3 O

(
Kε−4 log4 K

)
O
(
nε−4 log4 K

)
Huang-Kakimura [22] 1/2 − ε O

(
ε−1
)

O
(
Kε−7 log2 K

)
O
(
nε−8 log2 K

)
Ene and Nguyen [16] 1 − e−1 − ε — — O

(
(1/ε)O(1/ε4)n log n

)
Sviridenko [38] 1 − e−1 — — O

(
Kn4
)

item with the maximum return, although it requires to read all
the items K times. Sviridenko [38] showed that, by applying
the greedy algorithm from each set of three items, we can
find a (1 − 1/e)-approximate solution. Recently, such partial
enumeration is replaced by a more sophisticated multi-stage
guessing strategies (where fractional items are added based on
the technique of multilinear extension) to improve the running
time in nearly linear time [16]. However, all of them require
large space and/or a large number of passes to implement.

In the streaming setting, Badanidiyuru et al. [2] proposed
a single-pass thresholding algorithm that achieves a (0.5 − ε)-
approximation for the cardinality-constrained problem. The al-
gorithm just takes an arriving item e when the marginal return ex-
ceeds a threshold and the feasibility is maintained. However, this
strategy gives us only a (1/3−ε)-approximation for the knapsack-
constrained problem. This drop in approximation ratio comes
from the fact that, while we can freely add an item as long as our
current set is of size less than K for the cardinality constraint, we
cannot take a new item if its addition exceeds the capacity of the
knapsack.

To overcome this issue, in [24] a branching technique is in-
troduced, where one stops at some point of the thresholding al-
gorithm and use a different strategy to collect subsequent items.
The ratio of this branching algorithm depends on the size of the
largest item o1 in the optimal solution; when c(o1) is overly large,
other strategies must be employed. Overall, the proposed ap-
proach of [24] gives a (4/11 − ε)-approximation.

How does one improve the ratio further when c(o1) is large?
One can certainly guess the size c(o1) and the f -value f ({o1})
beforehand and in the stream pick the item of similar size and f -
value. The difficulty lies in how to pick such an item that, together
with the rest of the optimal solution (excluding o1), guarantees a
decent f -value. Namely, we need a good substitute of o1. In [24],
a single-pass procedure, called PickOneItem, is designed to find
such an item.Once equipped with such an item, it is not difficult
to collect other items so as to improve the approximation ratio to
2/5−ε. The down-side of this approach is that one needs multiple
passes.

In this paper, we introduce new techniques to achieve the same
ratio without the need to waste a pass to collect a good substi-
tute of o1. Depending on the relative size of o1 and o2 (second
largest item in the optimal solution), we combine PickOneItem
with the thresholding algorithm in two different ways. The first
one is to perform both of them dynamically, that is, each time
we find a candidate e for an approximation of o1, we perform the

thresholding algorithm starting from e with the current set. In
contrast, the other runs both of them in a parallel way; we per-
form the thresholding algorithm and PickOneItem independently
for some subset of items, and combine their results in the end.
For the details, see a conference version of this paper [23].

3. Related Work
Maximizing a monotone submodular function subject to var-

ious constraints is a subject that has been extensively studied
in the literature. We do not attempt to give a complete sur-
vey here and just highlight the most relevant results. Besides a
knapsack constraint or a cardinality constraint mentioned above,
the problem has also been studied under (multiple) matroid con-
straint(s), p-system constraint, multiple knapsack constraints.
See [9], [11], [12], [15], [19], [28], [31] and the references
therein.

In the streaming setting, Badanidiyuru et al. [2] proposed a
single-pass (0.5−ε)-approximation algorithm with O(Kε−1 log K)
space for the cardinality-constrained problem. Recently, the
space complexity is improved to O(Kε−1) [25]. Moreover, single-
pass streaming algorithms have been proposed for the problem
with matroid constraints [10], [18] and knapsack constraint [24],
[41], and without monotonicity [13], [36]. Multi-pass streaming
algorithms, where we are allowed to read a stream of the input
multiple times, have also been studied [3], [10], [22], [24]. In par-
ticular, Chakrabarti and Kale [10] gave an O(ε−3)-pass streaming
algorithms for a generalization of the maximum matching prob-
lem and the submodular maximization problem with cardinality
constraint. Huang and Kakimura [22] designed an O(ε−1)-pass
streaming algorithm with approximation guarantee 1/2 − ε for
the knapsack-constrained problem. Other than the streaming set-
ting, recent applications of submodular function maximization to
large data sets have motivated new directions of research on other
computational models including parallel computation model such
as the MapReduce model [6], [7], [29] and the adaptivity analy-
sis [4], [5], [14], [17].

The maximum coverage problem is a special case of monotone
submodular maximization under a cardinality constraint where
the function is a set-covering function. For the special case, Mc-
Gregor and Vu [35] and Batani et al. [8] gave a (1 − e−1 − ε)-
approximation algorithm in the multi-pass streaming setting.
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