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In recent years, methods using deep learning have been widely used in various fields. And It is known that a large portion of 

computation time in deep neural network is taken by matrix multiplication. There is close connection between neural network and 

matrix multiplication. In this paper, parallel computing solution for matrix-vector multiplication on certain ring-connected cores is 

automatically generated. The basic method is to formulate matrix-vector multiplication on ring-connected architecture as a SAT 

problem and use SAT solver to get the mapping solution. According to the experiment results, parallel computing solution of 16x16 

matrix can be generated in short time. Moreover, solutions for sparse matrix multiplication can be generated. 

 
 

1. Introduction     

In recent years, methods using deep learning have been widely 

used in various fields. For example, in the field of image 

recognition, the methods using deep learning outperform other 

methods. numerous deep neural networks such as VGG net, 

GoogLeNet, and ResNet have shown excellent performance. [1] [2] 

It is known that about 90% of the computation time in the deep 

neural network is taken in the convolution layer. Thus, 

accelerating and optimizing the matrix multipliers used in 

convolution can be benefitial. 

Parallel computing is an effective approach to reduce 

computing time. And in recent years, more and more 

computations have been performed with multicore CPU, GPU, 

and FPGA. There is diversity in the communication structure 

among nodes (cores or chips), such as ring [3][4], mesh [5], and 

others.  

In this paper, we have proposed a method to automatically map 

matrix-vector multiplication on certain ring-connected 

architecture to realize parallel computing. A ring-connected 

architecture with special structure is defined for matrix-vector 

multiplication, and formulation of matrix-vector multiplication 

on ring-connected architecture are introduced. For sparse 

matrices which are common in real neural network, we modify 

the formulation to fit matrix-vector multiplication with sparse 

matrix. Then, we transform formulation into a SAT problem in 

form of a BLIF (Berkeley Logic Interchange Format) file [6] and 

input it into ABC [7] to get the mapping solution. ABC is a public-

domain system for logic synthesis and formal verification of 

binary logic circuits appearing in synchronous hardware designs. 

It can transform BLIF file into CNF (Conjunctive Normal form) 

and internally solve it with a SAT solver. From the SAT solver, 

we can get the arrangement of variables to generate mapping 

solution. A program is written to realize automatic generation of 

mapping solution. Several experiments for dense matrix and 

sparse matrix are conducted respectively. Times to generate 

mapping solution under different circumstances with different 

parameters and examples of mapping solutions are presented.  
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figure 1 matrix-vector multiplication on ring-connected architecture 

The paper is organized as follows. In section 2, related works 

of matrix-vector multiplication and features of this research are 

introduced. In section 3, approach of the research is introduced. 

Section3.1 is about features of ring-connected architecture and 

structure inside each core. Section 3.2 explains the formulation. 

Section 3.3 introduces method of transformation. Section 4 

presents the experimental results. Section 5 concludes the paper. 

2. Related works 

  Several studies have been conducted about matrix-vector 

multiplication. Nathan Bell and Michael Garland discussed data 

structures and algorithms for sparse matrix-vector multiplication 

implemented on the CUDA platform and research for method to 

implement matrix-vector multiplication on throughput-oriented 

Processors [8][9]. Xia, Lixue, et al explored hardware realization of 

the analog matrix-vector multiplication with ultra-high energy 

efficiency on RRAM Crossbar Array. [10] Liu, Weifeng, and Brian 

Vinter proposed a sparse matrix-vector multiplication algorithm 

utilizing both types of cores in a CPU–GPU heterogeneous 

processor. [11] All these researches focus on matrix-vector 

multiplication on existing architectures, but in this paper, we 

proposed a ring-connected architecture specially defined for 

matrix-vector multiplication and try to generate matrix-vector 

multiplication on it.  

There has also been a research of matrix-vector multiplication 

on specially designed architectures. [12] In the research, matrix-

vector multiplication on a new reconfigurable architecture based 

on ILP formulation has been realized. Mapping for 4 × 4 matrix 

is first generated, then mapping for arbitrary size matrices similar 

to the case 4 × 4  can be generated with more constraints. 

Matrices here are dense matrices where most of the elements are 

nonzero. However, as we know, in deep neural network, most of 

matrices in matrix-vector multiplication are sparse matrices in 

which a large proportion of the elements are zero 

In this paper, we can realize automatic generation of matrix-
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vector multiplication with arbitrary matrix size from 2 × 2  to 

16 × 16 without generation of smaller matrix mapping result or 

additional constraints. Also, we take not only dense matrix but 

also sparse matrix into consideration. Matrix-vector 

multiplication with sparse matrix can be mapped on ring-

connected architecture in fewer time cycles. 

3. Approach 

In this paper, we first define a special ring-connected 

architecture and then come up with formulation of mapping 

matrix-vector multiplication with dense matrix and with sparse 

matrix on the ring-connected architecture, transform it into a SAT 

problem. Finally, SAT solver in ABC is used to determine 

satisfiability of mapping. If the result is SAT, we get the mapping 

solution. 

3.1 Ring-Connected Architecture 

In this research, the architecture to be mapped on is a ring-

connected architecture with certain number of cores.  In the 

schematic diagram in figure 1, a ring-connected with 4 cores is 

presented. In this architecture, in every time cycle, cores work in 

parallel to realized distributed computing [13]. Data transfer here 

has directionality. Data can be transferred from one core to the 

next one but the transmission to the last core is prohibited. For 

example, we can transfer data from core1 to core2 and core4 to 

core 1, but we can’t get data from core2 to core1 or from core1 to 

core4. Also, at the end of every time cycle for each core, no more 

than one data can be transferred to the next core. 

Figure 2 explains the structure inside each core. In each core, 

there are several registers and an ALU (Arithmetic Logical Unit). 

One multiplication and one addition can be performed in ALU in 

every time cycle. And the sum of products from ALU is stored 

into the register.  

Is represents element in vector of multiplication and Istim 

represents element in result vector. 𝑤[𝑦][𝑥]  from the input 

matrix and 𝐼𝑠[𝑥]   from the vector are mapped on the cores 

before first time cycle. Before the last time cycle, 𝐼𝑠𝑡𝑖𝑚[𝑦] 

represents the sum of product up to now for each 𝐼𝑠𝑡𝑖𝑚[𝑦], and 

in the last time cycle, that is the result of the multiplication. For 

example, for the matrix-vector multiplication [11] in figure 1. The 

𝐼𝑠𝑡𝑖𝑚[1] should be: 

𝐼𝑠𝑡𝑖𝑚[1] = 𝑤11𝐼𝑠[1] + 𝑤12𝐼𝑠[2] + 𝑤13𝐼𝑠[3] + 𝑤14𝐼𝑠[4]  

 Assume that at time cycle 2, w11 is multiplied by 𝐼𝑠[1] and 

then added by  𝑤13𝐼𝑠[3] , the result w11𝐼𝑠[1] + 𝑤13𝐼𝑠[3]  is 

stored in a register, and that w11𝐼𝑠[1] + 𝑤13𝐼𝑠[3] is our 𝐼𝑠[1] 

at time cycle 2.  In every time cycle, there’s no more than one 

data of 𝐼𝑠[𝑥]or 𝐼𝑠𝑡𝑖𝑚[𝑦] comes from the last core. The received 

data is stored into one of the registers. After that, certain 𝐼𝑠[𝑥1] 

and 𝑤[𝑦][𝑥1] from registers are input into the multiplier of ALU. 

and the product 𝑤[𝑦][𝑥1] is added by the third input, 𝐼𝑠𝑡𝑖𝑚[𝑦] 

of last time cycle. The output of ALU, the new 𝐼𝑠𝑡𝑖𝑚[𝑦] , is 

stored into the register. At the end of each time cycle, there can 

be no more than one data of 𝐼𝑠[𝑥]  or 𝐼𝑠𝑡𝑖𝑚[𝑦]  from register 

transferred to the next core. At the last time cycle, the vector 

which is consist of 𝐼𝑠𝑡𝑖𝑚[𝑦] s is the result of matrix-vector 

multiplication. 

 
figure 2 ring-connected architecture and structure inside each core 

3.2  Formulation 

To correctly perform the matrix-vector multiplication on the 

aforementioned ring-connected architecture, several kinds of 

variables representing the mapping status of data and several 

kinds of constraints describing manner of data and cores are 

necessary. 

Formulation of matrix-vector multiplication with dense matrix 

will be introduced first. 

3.2.1 For Dense Matrix 

There are 6 kinds of binary variables. w[𝑦][𝑥](𝑡, 𝑐)  decides 

whether  w[𝑦][𝑥] is used on core c at time cycle t; 𝐼𝑠[𝑥](𝑡, 𝑐) 

decides whether  𝐼𝑠[𝑥]  is mapped on core c at time cycle t; 

𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡, 𝑐) decides whether  𝐼𝑠𝑡𝑖𝑚[𝑦] is mapped on core c 

at time cycle t; 𝐼𝑠_𝑛𝑒𝑥𝑡[𝑥](𝑡, 𝑐) decides whether  𝐼𝑠[𝑥] moves 

from core c to core c+1 at time cycle t; 𝐼𝑠𝑡𝑖𝑚_𝑛𝑒𝑥𝑡[𝑦](𝑡, 𝑐) 

decides whether  𝐼𝑠𝑡𝑖𝑚[𝑦]  moves from core c to core c+1 at 

time cycle t and w[𝑦][𝑥]𝐼𝑠[𝑥](𝑡, 𝑐)  decides whether 

multiplication w[𝑦][𝑥] × 𝐼𝑠[𝑥]  is executed on core c at time 

cycle t. For all these binary variables, when the value is 1 it means 

that the behavior defined by the variables happens and when the 

value is 0 it means that the behavior defined by the variables 

doesn’t happen. 𝐼𝑠_𝑛𝑒𝑥𝑡[𝑥](𝑡, 𝑐)  and 𝐼𝑠𝑡𝑖𝑚_𝑛𝑒𝑥𝑡[𝑦](𝑡, 𝑐) 

represent whether there are transmissions, and the other variables 

represent behaviors of registers. 

  Here’s an example of definition of variables in figure 3. This 

is the arrangement of variables to map the following matrix-

vector multiplication on 2 interconnected cores. 

 

figure 3 Example of Definition of Variables 

Here, 𝑤[1][1] is used on core 1 at time cycle 1, so 𝑤[1][1](1,1) 

is 1; 𝐼𝑠[1] is mapped on core 1 at time cycle 1, so 𝐼𝑠[1](1,1) is 

1; multiplication 𝑤[1][1] × 𝐼𝑠[1] is executed on core 1 at time 

cycle 1, and 𝑤[1][1]𝐼𝑠[1](1,1); 𝐼𝑠𝑡𝑖𝑚[2] is mapped on core 1 

at cycle 2, so 𝐼𝑠𝑡𝑖𝑚[2](2,1) is 1; 𝐼𝑠[1] moves from core 1 to 

core 2 after time cycle 1, so 𝐼𝑠_𝑛𝑒𝑥𝑡[1](1,1) is 1 and 𝐼𝑠𝑡𝑖𝑚[2] 

doesn’t move after time cycle 1, so 𝐼𝑠𝑡𝑖𝑚_next[2](1,2) is 0. 

  For these binary variables, to correctly perform matrix-vector 

multiplication on ring-connected architecture, there are several 

constraints. According to their functions, constraints can be 

divided into 4 groups. 

  Mapping constraints are in the first group and describe 

mapping behaviors of 𝑤[𝑦][𝑥], Is[x] and 𝐼𝑠𝑡𝑖𝑚[𝑦]. w mapping 
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constraints set that 𝑤[𝑦][𝑥]  must be used once on somewhere 

through all cycles and is (1). 

∀𝑥, 𝑦 ∑ ∑ 𝑤[𝑦][𝑥](𝑡, 𝑐)𝑐 = 1𝑡                          (1)                               

  Is mapping constraints ensure 𝐼𝑠[𝑥]  to exist once on 

somewhere every cycle and is shown in (2). 

∀𝑥, 𝑡 ∑ 𝐼𝑠[𝑥](𝑡, 𝑐) = 1𝑐                               (2)                                              

  With Istim mapping constraints 𝐼𝑠𝑡𝑖𝑚[𝑦]  must be mapped 

once on somewhere every cycle and the constraints are (3). 

∀𝑦, 𝑡 ∑ 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡, 𝑐) = 1𝑐                            (3)                                                 

  wIs mapping constraints ensure multiplication w[y][x] ×

𝐼𝑠[s] must be executed once on somewhere through all cycles, 

and is (4). 

∀𝑥, 𝑦 ∑ ∑ 𝑤[𝑦][𝑥]𝐼𝑠[𝑥](𝑡, 𝑐)𝑐 = 1𝑡                      (4)                             

   The last kind of mapping constraints are IsIstim mapping 

constraints. It defines that on each core, 𝐼𝑠[𝑥](1, 𝑐) is equal to 

𝐼𝑠𝑡𝑖𝑚[𝑦](𝑇, 𝑐) (T is the last time cycle). And that means x must 

be equal to y. The constraints are (5). 

∀𝑥, 𝑦, 𝑐 𝐼𝑠[𝑥](1, 𝑐) − 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑇, 𝑐) = 0                (5)                 

  Data transfer constraints describe data transfer of 𝐼𝑠[𝑥] and 

𝐼𝑠𝑡𝑖𝑚[y]  from core c to core c+1. when 𝐼𝑠[𝑥](𝑡, 𝑐)  exists, Is 

transfer constraints must be satisfied. They are shown in (6)(7). 

∀𝑥, 𝑡, 𝑐 0 ≤ −𝐼𝑠[𝑥](𝑡, 𝑐) + 𝐼𝑠[𝑥](𝑡 + 1, 𝑐) + 𝐼𝑠[𝑥](𝑡 + 1, 𝑐 + 1) ≤ 2    

(6)                                                                           

∀𝑥, 𝑡, 𝑐 0 ≤ −𝐼𝑠[𝑥](𝑡, 𝑐) + 𝐼𝑠[𝑥](𝑡 − 1, 𝑐) + 𝐼𝑠[𝑥](𝑡 − 1, 𝑐 − 1) ≤ 2    

(7)                                                                                       

  Figure 4 gives explanation of Is transfer constraints. Because 

in every time cycle, no more than one of 𝐼𝑠[𝑥]  and 𝐼𝑠𝑡𝑖𝑚[𝑦] 

can be transferred from core c-1 to core c and from core c to core 

c+1. If 𝐼𝑠[𝑥](𝑡, 𝑐) = 1 , which means that 𝐼𝑠[𝑥]  is mapped on 

core c at time cycle t, at time cycle t+1 𝐼𝑠[𝑥] must be mapped at 

core c or core c+1,  𝐼𝑠[𝑥](𝑡 + 1, 𝑐)  or 𝐼𝑠[𝑥](𝑡 + 1, 𝑐 + 1) 

must be 1. Also, if 𝐼𝑠[𝑥](𝑡, 𝑐) = 1 , 𝐼𝑠[𝑥]  must be mapped on 

core c at time cycle t-1 or mapped on core c-1 at cycle t-1, 

𝐼𝑠[𝑥](𝑡 − 1, 𝑐)  or 𝐼𝑠[𝑥](𝑡 − 1, 𝑐 − 1)  must be 1. In the above 

two situations, left part of (6) and (7) is 0.  If 𝐼𝑠[𝑥](𝑡, 𝑐) = 0, 

which means that 𝐼𝑠[𝑥] is not mapped on core c at time cycle t 

If 𝐼𝑠[𝑥](𝑡 + 1, 𝑐 + 1)  can be 1 because 𝐼𝑠[𝑥](𝑡, 𝑐 + 1)  could 

be 1, and 𝐼𝑠[𝑥](𝑡 − 1, 𝑐 − 1) can be 1 because 𝐼𝑠[𝑥](𝑡, 𝑐 − 1) 

could be 1. When 𝐼𝑠[𝑥](𝑡+, 𝑐 + 1)  and 𝐼𝑠[𝑥](𝑡 − 1, 𝑐 − 1)  is 

one, left part of (6) and (7) is 1. 

 

figure 4 Explanation of Is Transfer Constraints 

  Istim transfer constraints can be inferred from Is transfer constraints 

and the explanation is also similar. Istim transfer constraints are (8) and 

(9). 

∀𝑦, 𝑡, 𝑐 0 ≤ −𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡, 𝑐) + 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡 + 1, 𝑐) + 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡 + 1, 𝑐 +

1) ≤ 2                                                   (8)                                                                               

∀𝑦, 𝑡, 𝑐 0 ≤ −𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡, 𝑐) + 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡 − 1, 𝑐) + 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡 − 1, 𝑐 −

1) ≤ 2                                                  (9)     

  Is_next constraints and Istim_next constraints describe the 

relationships which must be met when and  𝐼𝑠_𝑛𝑒𝑥𝑡[x](𝑡, 𝑐)  and 

𝐼𝑠𝑡𝑖𝑚_𝑛𝑒𝑥𝑡[y](𝑡, 𝑐)  exist. Is_next constraints are (10) and Istim_next 

constraints are (11) 

∀𝑥, 𝑡, 𝑐  0 ≤ −2 × 𝐼𝑠_𝑛𝑒𝑥𝑡[𝑥](𝑡, 𝑐) + 𝐼𝑠[𝑥](𝑡, 𝑐) + 𝐼𝑠[𝑥](𝑡 + 1, 𝑐 + 1) ≤

1                                                      (10)                                             

∀𝑦, 𝑡, 𝑐  0 ≤ −2 × 𝐼𝑠𝑡𝑖𝑚_𝑛𝑒𝑥𝑡[𝑦](𝑡, 𝑐) + 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡, 𝑐) + 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡 +

1, 𝑐 + 1) ≤ 1                                            (11)                                               

 
figure 5 Possible Situations in Is_next constraints 

 

Figure 6 Impossible Situations in Is_next constraints 

 

Figure 5 and figure 6 describe the relationship of 𝐼𝑠[x](𝑡, 𝑐) 

and 𝐼𝑠_𝑛𝑒𝑥𝑡[x](𝑡, 𝑐)  in detail. Figure 5 shows the possible 

situations in Is_next constraints according to the definition of 

𝐼𝑠_𝑛𝑒𝑥𝑡[x](𝑡, 𝑐)  and figure 6 shows the impossible situations. 

From figure 5 and figure 6, we can conclude that algebraic part 

of (10) can’t be smaller than 0 or bigger than 1. Istim_next 

constraints have similar principle. Thus, algebraic part of (10) 

can’t be smaller than 0 or bigger than 1. 

  The next part is about sum of products constraints. As we know, 

the final result of matrix-vector multiplication, 𝐼𝑠𝑡𝑖𝑚[y] at the 

last time cycle, are all sum of products. To ensure operations in 

all cores at every time cycle have necessary data, we have sum of 

products constraints, which means 𝐼𝑠[x](𝑡, 𝑐) , 𝐼𝑠𝑡𝑖𝑚[y](𝑡, 𝑐) 

and 𝑤[𝑦][𝑥](𝑡, 𝑐) must be 1 when 𝑤[𝑦][𝑥]𝐼𝑠[x](𝑡, 𝑐) is 1. Sum 

of products constraints are (12) 

∀𝑥, 𝑦, 𝑡, 𝑐  0 ≤ −3 × 𝑤[𝑦][𝑥](𝑡, 𝑐) + 𝑤[𝑦][𝑥](𝑡, 𝑐) +

𝐼𝑠[𝑥](𝑡, 𝑐) + 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡, 𝑐) ≤ 3                      (12)                                                  

  The last part of constraints are resource constraints. Resource 

constraints come from the ring-connected architecture and 

restrict hardware resources can be used for mapping and data 

transfer.  

  ALU resource constraints specify that no more than one 
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multiplication 𝑤[𝑦][𝑥] × 𝐼𝑠[𝑥] can be executed on each core at 

every time cycle, and are (13) 

∀𝑡, 𝑐 0 ≤ ∑ ∑ 𝑤[𝑦][𝑥]𝐼𝑠(𝑡, 𝑐)𝑦 ≤ 1𝑥                    (13)                                             

  Register resource constraints ensure that no more than ⌈(𝑋 + 𝑌) 

÷ 𝐶⌉ 𝐼𝑠[𝑥] and 𝐼𝑠𝑡𝑖𝑚[𝑦] can be mapped on each core at every 

cycle(C is number of cores). With register resource constraints, 

we can avoid wasting registers, only necessary number of 

registers are used. Register resource constraints are (14) 

∀𝑡, 𝑐 0 ≤ ∑ 𝐼𝑠[𝑥](𝑡, 𝑐) + ∑ 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡, 𝑐)𝑦 ≤  ⌈(X +  Y) ÷ C⌉𝑥     (14)     

  From introduction of ring-connected architecture, we know 

that no more than one data can be transferred to the next core for 

each core every cycle. Thus, no more than one 𝐼𝑠[x](𝑡, 𝑐) and 

𝐼𝑠𝑡𝑖𝑚[y](𝑡, 𝑐) can be mapped on each core at every cycle. Edge 

resource constraints ensure this, and are shown in (15) 

∀𝑡, 𝑐 0 ≤ ∑ 𝐼𝑠_𝑛𝑒𝑥𝑡[𝑥](𝑡, 𝑐) + ∑ 𝐼𝑠𝑡𝑖𝑚_𝑛𝑒𝑥𝑡[𝑦](𝑡, 𝑐)𝑦 ≤ 1 𝑥        (15) 

For a correct mapping of multiplication on ring-connected 

architecture, all the constraints from (1) to (15) are necessary.  

3.2.2 For Sparse Matrix 

In real deep neural network, usually, a large proportion of 

elements are zero and results of multiplication with these 

elements are bound to be zero. Thus, we don’t need to conduct 

these multiplications and add them to sum of products. 

Formulation for matrix-vector multiplication with sparse matrix 

can be obtained by modification of formulation for dense matrix. 

 
figure 7 example of sparse matrix-vector multiplication 

Compared with matrix-vector multiplication with dense matrix, 

in case of matrix-vector multiplication with sparse matrix, 𝐼𝑠[𝑥]s 

and 𝐼𝑠𝑡𝑖𝑚[𝑦]s are the same, and the only difference is that some 

of w[y][x]s are bound to be 0. Thus, we just remove some of 

variable w[𝑦][𝑥](𝑡, 𝑐)s  and w[𝑦][𝑥]𝐼𝑠[𝑥](𝑡, 𝑐)s  whose 

corresponding w[y][x]s are bound to be 0, and modify w mapping 

constraints, wIs mapping constraints, Sum of product constraints 

and ALU resource constraints where w[y][x]s exist. For w 

mapping constraints, wIs mapping constraints and Sum of 

product constraints, we directly remove the all the constraints 

where aforementioned w[𝑦][𝑥](𝑡, 𝑐)  or w[𝑦][𝑥]𝐼𝑠[𝑥](𝑡, 𝑐) 

exists. For ALU resource constraints, the aforementioned 

w[𝑦][𝑥]𝐼𝑠[𝑥](𝑡, 𝑐) s are removed from the constraints. The 

modified formulation is a correct description of behavior of 

matrix-vector multiplication on the ring-connected architecture. 

3.3 Transformation into BLIF file 

With given number of cores in the ring-connected architecture 

c, number of time cycle t and size of matrix x, y, mapping matrix-

vector multiplication on the ring-connected architecture can be 

regarded as a SAT problem. SAT problem can be solved by a SAT 

solver, and the satisfiability of can be determined. In order to use 

the SAT solver in ABC, we translate the formulation into BLIF 

file and use the BLIF file as the input of SAT solver. 

BLIF file describes behavior of circuit. For (2), Is mapping 

constraints. From the view of Boolean function, is means that 

only and must one of the variables in left part is 1. Here is an 

example of translation when x = y = t = c = 4 in Figure 8. 

 

figure 8 example of translation of Is mapping constraints 

The exception is IsIstim constraint, (5). To translate this kind 

of constraint is to write XNOR gate. You can see in figure 9, only 

when Is[1](1,1) and Is[1](4,1) are equal, output is 1, which means 

the constraint is satisfied. 

 
figure 9 example of translation of IsIstim mapping constraints 

For Is transfer constraints and Istim transfer constraints, we 

have introduced in detail in figure 4. We record all the possible 

situations to be 1 and ignore others. An example in presented in 

figure 10. (“-” means don’t care) 

 
figure 10 example of translation of Is transfer constraints 

For Is_next constraints and Is_next constraints, we have 

similar operations, just write down all arrangements of variables 

which satisfy the constraints. An example is shown in figure 11. 

 
figure 11 example of translation of Is_next constraints 

Sum of product constraints can be translated according to its 

meaning. This kind of constraints ensure operations in all cores 

at every time cycle have necessary data. Thus, to satisfy the 

constraints, when w[y][x](t,c)=1, other variables should be 1; if 

w[y][x](t,c)=0, we don’t care about other variables. Figure 12 is 

an example. 

 

figure 12 example of sum of product constraints 

Resource constraints restrict the sum of value of variables in 

left part. Thus, to satisfy the constraints, no more than the value 

of right part can be 1, and Figure 13 is an example of register 

resource constraints.(x=y=t=c=2) 

 

figure 13 example of register resource constraints 

SAT means that the mapping problem is feasible, vice versa. 

When the result is SAT, the SAT solver can output the certain 

combination of values of BLIF file’s input parameters. With these 

values of BLIF file’s input parameters, mapping solution can be 

generated. 

4. Experiments 

Figure 14 explains experiment process in the research. First, 

corresponding formulation of input parameters (size of matrix x, 

y, time cycle t and number of cores c) is generated. For sparse 

matrix, positions of 0 elements are also collected. Then, the 
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formulation is transformed into a BLIF file. After that, the BLIF 

file is put into SAT solver in ABC to determine satisfiability. 

Finally, mapping solution is generated when the result is SAT. 

 

figure 14 Experimental flow chart 

We write a program to perform these steps automatically. With 

proper input parameters, satisfiability of mapping corresponding 

matrix-vector multiplication on ring-connected architecture can 

be determined, and mapping solution can be generated when the 

result is SAT. 

4.1 For Dense Matrix 

The purpose is to generate mapping solution. Thus, the first 

thing is to determine the prerequisites that ensure SAT. For a 

matrix-vector multiplication where the size of matrix is x,y, 

x × y  multiplication of 𝑤[𝑦][𝑥]𝐼𝑠[𝑥]  should be executed and 

there are only c × t  times of  operation available because no 

more than 1 operation can be executed for each core in every time 

cycle according to the ring-connected architecture. when  t <

𝑥 × 𝑦 𝑐⁄  some of the multiplication are sure to not be mapped, 

Thus, it is bound to be UNSAT and we can’t get mapping 

solutions. When  t ≥ 𝑥 × 𝑦 𝑐⁄  , there are enough ALU for 

multiplication and operation, but other constraints should also be 

satisfied to ensure SAT. The subsequent experiments are 

conducted in case of t ≥ 𝑥 × 𝑦 𝑐⁄ . 

4.1.1 When Size of Matrix is Divisible by Number of Cores 

When size of matrix(x,y) is divisible by number of cores c, 

theoretically, x/c time cycles is needed and ALUs will be fully 

utilized in every time cycle, the mapping result is expected to be 

regular. Experiment results when x,y is divisible by c is presented 

in table 1. Matrices with size from  2 × 2  to 17 × 17  can be 

mapped on the ring-connected architecture within relatively short 

time, solution for 16 × 16 matrix can be generated in 280s.  

 

table 1 results when x,y is divisible by c 

With the automatically generated mapping solution, parallel 

computing of matrix-vector multiplication can be realized on the 

ring-connected architecture. Theoretically, conduct 16 × 16 

matrix-vector multiplication on 16 ring-connected cores can 

accelerate computing speed by 15 times. Figure 15 is a mapping 

solution example when  x = y = t = c = 4 . All ALUs are fully 

utilized and the mapping solution is regular. 

 

figure 15 mapping solution example when x, y is divisible by c 

4.1.2 When Size of Matrix is Indivisible by Number of Cores 

When size of matrix(x,y) is indivisible by number of cores c, 

theoretically, more than x/c time cycles is needed and some of  

ALUs will be idle in certain time cycle, the mapping result is 

expected to be irregular. Experiment results when x,y is divisible 

by c is presented in table 2. 

 

table 2 results when x,y is indivisible by c 

Compared with data in table 1, for matrix with the same size, 

much more time is needed to generate mapping solution when x,y 

is indivisible by c. The mapping solutions tend to be irregular and 

more difficult to generate. Figure 16 is a mapping solution 

example when x=y=3, t=5, c=2. ALU in core is idle in time cycle 

1, ALU utilization is lower when x,y is indivisible by c. 

 
figure 16 mapping solution example when x, y is indivisible by c 

4.2 For Sparse Matrix 

Theoretically, with the same x, y, c, compared to dense matrix, 

fewer multiplications and additions are needed to be conducted 
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for sparse matrix, and fewer time cycles are needed to complete 

the matrix-vector multiplication. However, situations where 

many non-zero elements are in the same column should be taken 

into consideration. According to Is mapping constraints (2), 

certain Is[𝑥0]  exist only once every cycle, but all w[y][𝑥0] s 

must multiply with Is[𝑥0]  once. If there’s m non-zero 

w[y][𝑥0]s in the same column, the mapping is infeasible for t <

m . Assume 𝑡1  is theoretical minimal number of time cycles, 

then𝑡1 = 𝑚𝑎𝑥{𝑚,  ⌈𝑥 × 𝑦 − 𝑛 𝑐⌉ ⁄ }. Here, m is the maximum of 

number of non-zero w[y][𝑥0] s in the same column, and n is 

number of zero elements. 

 

figure 17 mapping solution for sparse matrix 

Figure 17 presents an example of mapping solution for sparse 

matrix. For mapping the matrix-vector multiplication in figure 12 

on 4 ring-connected cores 𝑡1 = 𝑚𝑎𝑥{6,  ⌈8 × 8 − 27 4⌉ ⁄ } = 10. 

If we use the formulation for dense matrix, we can also get a 

feasible mapping solution with 16 time cycles. But with 

formulation modified for sparse matrix, the same matrix-vector 

multiplication can be completed in 10 time cycles. Modified 

formulation for sparse matrix helps improve ALU utilization in 

mapping solution. 

To explore the effect of number of zero elements, the following 

experiment is conducted. A Matrix-vector multiplication with 

8 × 8 sparse matrix is to be mapped on 4 ring-connected cores.    

Number of zero elements in the matrix is changed during 

experiment. Table 3 presents the result. To reduce the error, 

operation time here is average value of 10 times experiments. It 

is obvious that with more zero elements, fewer time cycles is 

needed to complete matrix-vector multiplication. Also, with more 

zero elements, the operation time becomes shorter, this is mainly 

because of reduced size of BILF files. 

 

table 3 zero element rate experiment result 

Experiment of concentration of zero elements is also 

conducted. parameter x, y, t, c and zero element rate are kept 

constant, and concentration of zero elements is changed over the 

experiment. The result indicates that with higher concentration of 

zero elements, the operation time tends to be longer. 

5. Conclusion 

In this research, we have proposed automatic generation 

mapping solution for matrix-vector multiplication on the ring-

connected architecture to realize parallel computing. 

The proposed method is formulation of matrix-vector 

multiplication on defined ring-connected architecture, transform 

it into a SAT problem and use SAT solver to solve it. Details of 

ring-connected architecture and formulation are introduced. 

  In the experiment, times to generate mapping solution under 

different circumstances with different parameters are measured 

and examples of mapping are presented. Mapping solution of 

16x16 matrix can be generated in short time, and with modified 

formulation, sparse matrix can be mapped in fewer time cycles. 
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