
ⓒ2019 Information Processing Society of Japan

SAT Based Formulation of Automatic Generation of Parallel

Computing from Specification

Gao Ruitao†1 Amir Masoud Gharehbaghi†1

 Tomohiro Maruoka†1 Masahiro Fujita†1

In recent years, methods using deep learning have been widely used in various fields. And It is known that a large portion of

computation time in deep neural network is taken by matrix multiplication. There is close connection between neural network and

matrix multiplication. In this paper, parallel computing solution for matrix-vector multiplication on certain ring-connected cores is

automatically generated. The basic method is to formulate matrix-vector multiplication on ring-connected architecture as a SAT

problem and use SAT solver to get the mapping solution. According to the experiment results, parallel computing solution of 16x16

matrix can be generated in short time. Moreover, solutions for sparse matrix multiplication can be generated.

1. Introduction

In recent years, methods using deep learning have been widely

used in various fields. For example, in the field of image

recognition, the methods using deep learning outperform other

methods. numerous deep neural networks such as VGG net,

GoogLeNet, and ResNet have shown excellent performance. [1] [2]

It is known that about 90% of the computation time in the deep

neural network is taken in the convolution layer. Thus,

accelerating and optimizing the matrix multipliers used in

convolution can be benefitial.

Parallel computing is an effective approach to reduce

computing time. And in recent years, more and more

computations have been performed with multicore CPU, GPU,

and FPGA. There is diversity in the communication structure

among nodes (cores or chips), such as ring [3][4], mesh [5], and

others.

In this paper, we have proposed a method to automatically map

matrix-vector multiplication on certain ring-connected

architecture to realize parallel computing. A ring-connected

architecture with special structure is defined for matrix-vector

multiplication, and formulation of matrix-vector multiplication

on ring-connected architecture are introduced. For sparse

matrices which are common in real neural network, we modify

the formulation to fit matrix-vector multiplication with sparse

matrix. Then, we transform formulation into a SAT problem in

form of a BLIF (Berkeley Logic Interchange Format) file [6] and

input it into ABC [7] to get the mapping solution. ABC is a public-

domain system for logic synthesis and formal verification of

binary logic circuits appearing in synchronous hardware designs.

It can transform BLIF file into CNF (Conjunctive Normal form)

and internally solve it with a SAT solver. From the SAT solver,

we can get the arrangement of variables to generate mapping

solution. A program is written to realize automatic generation of

mapping solution. Several experiments for dense matrix and

sparse matrix are conducted respectively. Times to generate

mapping solution under different circumstances with different

parameters and examples of mapping solutions are presented.

 †1 University of Tokyo

figure 1 matrix-vector multiplication on ring-connected architecture

The paper is organized as follows. In section 2, related works

of matrix-vector multiplication and features of this research are

introduced. In section 3, approach of the research is introduced.

Section3.1 is about features of ring-connected architecture and

structure inside each core. Section 3.2 explains the formulation.

Section 3.3 introduces method of transformation. Section 4

presents the experimental results. Section 5 concludes the paper.

2. Related works

 Several studies have been conducted about matrix-vector

multiplication. Nathan Bell and Michael Garland discussed data

structures and algorithms for sparse matrix-vector multiplication

implemented on the CUDA platform and research for method to

implement matrix-vector multiplication on throughput-oriented

Processors [8][9]. Xia, Lixue, et al explored hardware realization of

the analog matrix-vector multiplication with ultra-high energy

efficiency on RRAM Crossbar Array. [10] Liu, Weifeng, and Brian

Vinter proposed a sparse matrix-vector multiplication algorithm

utilizing both types of cores in a CPU–GPU heterogeneous

processor. [11] All these researches focus on matrix-vector

multiplication on existing architectures, but in this paper, we

proposed a ring-connected architecture specially defined for

matrix-vector multiplication and try to generate matrix-vector

multiplication on it.

There has also been a research of matrix-vector multiplication

on specially designed architectures. [12] In the research, matrix-

vector multiplication on a new reconfigurable architecture based

on ILP formulation has been realized. Mapping for 4 × 4 matrix

is first generated, then mapping for arbitrary size matrices similar

to the case 4 × 4 can be generated with more constraints.

Matrices here are dense matrices where most of the elements are

nonzero. However, as we know, in deep neural network, most of

matrices in matrix-vector multiplication are sparse matrices in

which a large proportion of the elements are zero

In this paper, we can realize automatic generation of matrix-

DAシンポジウム
Design Automation Symposium

119

DAS2019
2019/8/29

ⓒ2019 Information Processing Society of Japan

vector multiplication with arbitrary matrix size from 2 × 2 to

16 × 16 without generation of smaller matrix mapping result or

additional constraints. Also, we take not only dense matrix but

also sparse matrix into consideration. Matrix-vector

multiplication with sparse matrix can be mapped on ring-

connected architecture in fewer time cycles.

3. Approach

In this paper, we first define a special ring-connected

architecture and then come up with formulation of mapping

matrix-vector multiplication with dense matrix and with sparse

matrix on the ring-connected architecture, transform it into a SAT

problem. Finally, SAT solver in ABC is used to determine

satisfiability of mapping. If the result is SAT, we get the mapping

solution.

3.1 Ring-Connected Architecture

In this research, the architecture to be mapped on is a ring-

connected architecture with certain number of cores. In the

schematic diagram in figure 1, a ring-connected with 4 cores is

presented. In this architecture, in every time cycle, cores work in

parallel to realized distributed computing [13]. Data transfer here

has directionality. Data can be transferred from one core to the

next one but the transmission to the last core is prohibited. For

example, we can transfer data from core1 to core2 and core4 to

core 1, but we can’t get data from core2 to core1 or from core1 to

core4. Also, at the end of every time cycle for each core, no more

than one data can be transferred to the next core.

Figure 2 explains the structure inside each core. In each core,

there are several registers and an ALU (Arithmetic Logical Unit).

One multiplication and one addition can be performed in ALU in

every time cycle. And the sum of products from ALU is stored

into the register.

Is represents element in vector of multiplication and Istim

represents element in result vector. 𝑤[𝑦][𝑥] from the input

matrix and 𝐼𝑠[𝑥] from the vector are mapped on the cores

before first time cycle. Before the last time cycle, 𝐼𝑠𝑡𝑖𝑚[𝑦]

represents the sum of product up to now for each 𝐼𝑠𝑡𝑖𝑚[𝑦], and

in the last time cycle, that is the result of the multiplication. For

example, for the matrix-vector multiplication [11] in figure 1. The

𝐼𝑠𝑡𝑖𝑚[1] should be:

𝐼𝑠𝑡𝑖𝑚[1] = 𝑤11𝐼𝑠[1] + 𝑤12𝐼𝑠[2] + 𝑤13𝐼𝑠[3] + 𝑤14𝐼𝑠[4]

 Assume that at time cycle 2, w11 is multiplied by 𝐼𝑠[1] and

then added by 𝑤13𝐼𝑠[3] , the result w11𝐼𝑠[1] + 𝑤13𝐼𝑠[3] is

stored in a register, and that w11𝐼𝑠[1] + 𝑤13𝐼𝑠[3] is our 𝐼𝑠[1]

at time cycle 2. In every time cycle, there’s no more than one

data of 𝐼𝑠[𝑥]or 𝐼𝑠𝑡𝑖𝑚[𝑦] comes from the last core. The received

data is stored into one of the registers. After that, certain 𝐼𝑠[𝑥1]

and 𝑤[𝑦][𝑥1] from registers are input into the multiplier of ALU.

and the product 𝑤[𝑦][𝑥1] is added by the third input, 𝐼𝑠𝑡𝑖𝑚[𝑦]

of last time cycle. The output of ALU, the new 𝐼𝑠𝑡𝑖𝑚[𝑦] , is

stored into the register. At the end of each time cycle, there can

be no more than one data of 𝐼𝑠[𝑥] or 𝐼𝑠𝑡𝑖𝑚[𝑦] from register

transferred to the next core. At the last time cycle, the vector

which is consist of 𝐼𝑠𝑡𝑖𝑚[𝑦] s is the result of matrix-vector

multiplication.

figure 2 ring-connected architecture and structure inside each core

3.2 Formulation

To correctly perform the matrix-vector multiplication on the

aforementioned ring-connected architecture, several kinds of

variables representing the mapping status of data and several

kinds of constraints describing manner of data and cores are

necessary.

Formulation of matrix-vector multiplication with dense matrix

will be introduced first.

3.2.1 For Dense Matrix

There are 6 kinds of binary variables. w[𝑦][𝑥](𝑡, 𝑐) decides

whether w[𝑦][𝑥] is used on core c at time cycle t; 𝐼𝑠[𝑥](𝑡, 𝑐)

decides whether 𝐼𝑠[𝑥] is mapped on core c at time cycle t;

𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡, 𝑐) decides whether 𝐼𝑠𝑡𝑖𝑚[𝑦] is mapped on core c

at time cycle t; 𝐼𝑠_𝑛𝑒𝑥𝑡[𝑥](𝑡, 𝑐) decides whether 𝐼𝑠[𝑥] moves

from core c to core c+1 at time cycle t; 𝐼𝑠𝑡𝑖𝑚_𝑛𝑒𝑥𝑡[𝑦](𝑡, 𝑐)

decides whether 𝐼𝑠𝑡𝑖𝑚[𝑦] moves from core c to core c+1 at

time cycle t and w[𝑦][𝑥]𝐼𝑠[𝑥](𝑡, 𝑐) decides whether

multiplication w[𝑦][𝑥] × 𝐼𝑠[𝑥] is executed on core c at time

cycle t. For all these binary variables, when the value is 1 it means

that the behavior defined by the variables happens and when the

value is 0 it means that the behavior defined by the variables

doesn’t happen. 𝐼𝑠_𝑛𝑒𝑥𝑡[𝑥](𝑡, 𝑐) and 𝐼𝑠𝑡𝑖𝑚_𝑛𝑒𝑥𝑡[𝑦](𝑡, 𝑐)

represent whether there are transmissions, and the other variables

represent behaviors of registers.

 Here’s an example of definition of variables in figure 3. This

is the arrangement of variables to map the following matrix-

vector multiplication on 2 interconnected cores.

figure 3 Example of Definition of Variables

Here, 𝑤[1][1] is used on core 1 at time cycle 1, so 𝑤[1][1](1,1)

is 1; 𝐼𝑠[1] is mapped on core 1 at time cycle 1, so 𝐼𝑠[1](1,1) is

1; multiplication 𝑤[1][1] × 𝐼𝑠[1] is executed on core 1 at time

cycle 1, and 𝑤[1][1]𝐼𝑠[1](1,1); 𝐼𝑠𝑡𝑖𝑚[2] is mapped on core 1

at cycle 2, so 𝐼𝑠𝑡𝑖𝑚[2](2,1) is 1; 𝐼𝑠[1] moves from core 1 to

core 2 after time cycle 1, so 𝐼𝑠_𝑛𝑒𝑥𝑡[1](1,1) is 1 and 𝐼𝑠𝑡𝑖𝑚[2]

doesn’t move after time cycle 1, so 𝐼𝑠𝑡𝑖𝑚_next[2](1,2) is 0.

 For these binary variables, to correctly perform matrix-vector

multiplication on ring-connected architecture, there are several

constraints. According to their functions, constraints can be

divided into 4 groups.

 Mapping constraints are in the first group and describe

mapping behaviors of 𝑤[𝑦][𝑥], Is[x] and 𝐼𝑠𝑡𝑖𝑚[𝑦]. w mapping

DAシンポジウム
Design Automation Symposium

120

DAS2019
2019/8/29

ⓒ2019 Information Processing Society of Japan

constraints set that 𝑤[𝑦][𝑥] must be used once on somewhere

through all cycles and is (1).

∀𝑥, 𝑦 ∑ ∑ 𝑤[𝑦][𝑥](𝑡, 𝑐)𝑐 = 1𝑡 (1)

 Is mapping constraints ensure 𝐼𝑠[𝑥] to exist once on

somewhere every cycle and is shown in (2).

∀𝑥, 𝑡 ∑ 𝐼𝑠[𝑥](𝑡, 𝑐) = 1𝑐 (2)

 With Istim mapping constraints 𝐼𝑠𝑡𝑖𝑚[𝑦] must be mapped

once on somewhere every cycle and the constraints are (3).

∀𝑦, 𝑡 ∑ 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡, 𝑐) = 1𝑐 (3)

 wIs mapping constraints ensure multiplication w[y][x] ×

𝐼𝑠[s] must be executed once on somewhere through all cycles,

and is (4).

∀𝑥, 𝑦 ∑ ∑ 𝑤[𝑦][𝑥]𝐼𝑠[𝑥](𝑡, 𝑐)𝑐 = 1𝑡 (4)

 The last kind of mapping constraints are IsIstim mapping

constraints. It defines that on each core, 𝐼𝑠[𝑥](1, 𝑐) is equal to

𝐼𝑠𝑡𝑖𝑚[𝑦](𝑇, 𝑐) (T is the last time cycle). And that means x must

be equal to y. The constraints are (5).

∀𝑥, 𝑦, 𝑐 𝐼𝑠[𝑥](1, 𝑐) − 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑇, 𝑐) = 0 (5)

 Data transfer constraints describe data transfer of 𝐼𝑠[𝑥] and

𝐼𝑠𝑡𝑖𝑚[y] from core c to core c+1. when 𝐼𝑠[𝑥](𝑡, 𝑐) exists, Is

transfer constraints must be satisfied. They are shown in (6)(7).

∀𝑥, 𝑡, 𝑐 0 ≤ −𝐼𝑠[𝑥](𝑡, 𝑐) + 𝐼𝑠[𝑥](𝑡 + 1, 𝑐) + 𝐼𝑠[𝑥](𝑡 + 1, 𝑐 + 1) ≤ 2

(6)

∀𝑥, 𝑡, 𝑐 0 ≤ −𝐼𝑠[𝑥](𝑡, 𝑐) + 𝐼𝑠[𝑥](𝑡 − 1, 𝑐) + 𝐼𝑠[𝑥](𝑡 − 1, 𝑐 − 1) ≤ 2

(7)

 Figure 4 gives explanation of Is transfer constraints. Because

in every time cycle, no more than one of 𝐼𝑠[𝑥] and 𝐼𝑠𝑡𝑖𝑚[𝑦]

can be transferred from core c-1 to core c and from core c to core

c+1. If 𝐼𝑠[𝑥](𝑡, 𝑐) = 1 , which means that 𝐼𝑠[𝑥] is mapped on

core c at time cycle t, at time cycle t+1 𝐼𝑠[𝑥] must be mapped at

core c or core c+1, 𝐼𝑠[𝑥](𝑡 + 1, 𝑐) or 𝐼𝑠[𝑥](𝑡 + 1, 𝑐 + 1)

must be 1. Also, if 𝐼𝑠[𝑥](𝑡, 𝑐) = 1 , 𝐼𝑠[𝑥] must be mapped on

core c at time cycle t-1 or mapped on core c-1 at cycle t-1,

𝐼𝑠[𝑥](𝑡 − 1, 𝑐) or 𝐼𝑠[𝑥](𝑡 − 1, 𝑐 − 1) must be 1. In the above

two situations, left part of (6) and (7) is 0. If 𝐼𝑠[𝑥](𝑡, 𝑐) = 0,

which means that 𝐼𝑠[𝑥] is not mapped on core c at time cycle t

If 𝐼𝑠[𝑥](𝑡 + 1, 𝑐 + 1) can be 1 because 𝐼𝑠[𝑥](𝑡, 𝑐 + 1) could

be 1, and 𝐼𝑠[𝑥](𝑡 − 1, 𝑐 − 1) can be 1 because 𝐼𝑠[𝑥](𝑡, 𝑐 − 1)

could be 1. When 𝐼𝑠[𝑥](𝑡+, 𝑐 + 1) and 𝐼𝑠[𝑥](𝑡 − 1, 𝑐 − 1) is

one, left part of (6) and (7) is 1.

figure 4 Explanation of Is Transfer Constraints

 Istim transfer constraints can be inferred from Is transfer constraints

and the explanation is also similar. Istim transfer constraints are (8) and

(9).

∀𝑦, 𝑡, 𝑐 0 ≤ −𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡, 𝑐) + 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡 + 1, 𝑐) + 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡 + 1, 𝑐 +

1) ≤ 2 (8)

∀𝑦, 𝑡, 𝑐 0 ≤ −𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡, 𝑐) + 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡 − 1, 𝑐) + 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡 − 1, 𝑐 −

1) ≤ 2 (9)

 Is_next constraints and Istim_next constraints describe the

relationships which must be met when and 𝐼𝑠_𝑛𝑒𝑥𝑡[x](𝑡, 𝑐) and

𝐼𝑠𝑡𝑖𝑚_𝑛𝑒𝑥𝑡[y](𝑡, 𝑐) exist. Is_next constraints are (10) and Istim_next

constraints are (11)

∀𝑥, 𝑡, 𝑐 0 ≤ −2 × 𝐼𝑠_𝑛𝑒𝑥𝑡[𝑥](𝑡, 𝑐) + 𝐼𝑠[𝑥](𝑡, 𝑐) + 𝐼𝑠[𝑥](𝑡 + 1, 𝑐 + 1) ≤

1 (10)

∀𝑦, 𝑡, 𝑐 0 ≤ −2 × 𝐼𝑠𝑡𝑖𝑚_𝑛𝑒𝑥𝑡[𝑦](𝑡, 𝑐) + 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡, 𝑐) + 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡 +

1, 𝑐 + 1) ≤ 1 (11)

figure 5 Possible Situations in Is_next constraints

Figure 6 Impossible Situations in Is_next constraints

Figure 5 and figure 6 describe the relationship of 𝐼𝑠[x](𝑡, 𝑐)

and 𝐼𝑠_𝑛𝑒𝑥𝑡[x](𝑡, 𝑐) in detail. Figure 5 shows the possible

situations in Is_next constraints according to the definition of

𝐼𝑠_𝑛𝑒𝑥𝑡[x](𝑡, 𝑐) and figure 6 shows the impossible situations.

From figure 5 and figure 6, we can conclude that algebraic part

of (10) can’t be smaller than 0 or bigger than 1. Istim_next

constraints have similar principle. Thus, algebraic part of (10)

can’t be smaller than 0 or bigger than 1.

 The next part is about sum of products constraints. As we know,

the final result of matrix-vector multiplication, 𝐼𝑠𝑡𝑖𝑚[y] at the

last time cycle, are all sum of products. To ensure operations in

all cores at every time cycle have necessary data, we have sum of

products constraints, which means 𝐼𝑠[x](𝑡, 𝑐) , 𝐼𝑠𝑡𝑖𝑚[y](𝑡, 𝑐)

and 𝑤[𝑦][𝑥](𝑡, 𝑐) must be 1 when 𝑤[𝑦][𝑥]𝐼𝑠[x](𝑡, 𝑐) is 1. Sum

of products constraints are (12)

∀𝑥, 𝑦, 𝑡, 𝑐 0 ≤ −3 × 𝑤[𝑦][𝑥](𝑡, 𝑐) + 𝑤[𝑦][𝑥](𝑡, 𝑐) +

𝐼𝑠[𝑥](𝑡, 𝑐) + 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡, 𝑐) ≤ 3 (12)

 The last part of constraints are resource constraints. Resource

constraints come from the ring-connected architecture and

restrict hardware resources can be used for mapping and data

transfer.

 ALU resource constraints specify that no more than one

DAシンポジウム
Design Automation Symposium

121

DAS2019
2019/8/29

ⓒ2019 Information Processing Society of Japan

multiplication 𝑤[𝑦][𝑥] × 𝐼𝑠[𝑥] can be executed on each core at

every time cycle, and are (13)

∀𝑡, 𝑐 0 ≤ ∑ ∑ 𝑤[𝑦][𝑥]𝐼𝑠(𝑡, 𝑐)𝑦 ≤ 1𝑥 (13)

 Register resource constraints ensure that no more than ⌈(𝑋 + 𝑌)

÷ 𝐶⌉ 𝐼𝑠[𝑥] and 𝐼𝑠𝑡𝑖𝑚[𝑦] can be mapped on each core at every

cycle(C is number of cores). With register resource constraints,

we can avoid wasting registers, only necessary number of

registers are used. Register resource constraints are (14)

∀𝑡, 𝑐 0 ≤ ∑ 𝐼𝑠[𝑥](𝑡, 𝑐) + ∑ 𝐼𝑠𝑡𝑖𝑚[𝑦](𝑡, 𝑐)𝑦 ≤ ⌈(X + Y) ÷ C⌉𝑥 (14)

 From introduction of ring-connected architecture, we know

that no more than one data can be transferred to the next core for

each core every cycle. Thus, no more than one 𝐼𝑠[x](𝑡, 𝑐) and

𝐼𝑠𝑡𝑖𝑚[y](𝑡, 𝑐) can be mapped on each core at every cycle. Edge

resource constraints ensure this, and are shown in (15)

∀𝑡, 𝑐 0 ≤ ∑ 𝐼𝑠_𝑛𝑒𝑥𝑡[𝑥](𝑡, 𝑐) + ∑ 𝐼𝑠𝑡𝑖𝑚_𝑛𝑒𝑥𝑡[𝑦](𝑡, 𝑐)𝑦 ≤ 1 𝑥 (15)

For a correct mapping of multiplication on ring-connected

architecture, all the constraints from (1) to (15) are necessary.

3.2.2 For Sparse Matrix

In real deep neural network, usually, a large proportion of

elements are zero and results of multiplication with these

elements are bound to be zero. Thus, we don’t need to conduct

these multiplications and add them to sum of products.

Formulation for matrix-vector multiplication with sparse matrix

can be obtained by modification of formulation for dense matrix.

figure 7 example of sparse matrix-vector multiplication

Compared with matrix-vector multiplication with dense matrix,

in case of matrix-vector multiplication with sparse matrix, 𝐼𝑠[𝑥]s

and 𝐼𝑠𝑡𝑖𝑚[𝑦]s are the same, and the only difference is that some

of w[y][x]s are bound to be 0. Thus, we just remove some of

variable w[𝑦][𝑥](𝑡, 𝑐)s and w[𝑦][𝑥]𝐼𝑠[𝑥](𝑡, 𝑐)s whose

corresponding w[y][x]s are bound to be 0, and modify w mapping

constraints, wIs mapping constraints, Sum of product constraints

and ALU resource constraints where w[y][x]s exist. For w

mapping constraints, wIs mapping constraints and Sum of

product constraints, we directly remove the all the constraints

where aforementioned w[𝑦][𝑥](𝑡, 𝑐) or w[𝑦][𝑥]𝐼𝑠[𝑥](𝑡, 𝑐)

exists. For ALU resource constraints, the aforementioned

w[𝑦][𝑥]𝐼𝑠[𝑥](𝑡, 𝑐) s are removed from the constraints. The

modified formulation is a correct description of behavior of

matrix-vector multiplication on the ring-connected architecture.

3.3 Transformation into BLIF file

With given number of cores in the ring-connected architecture

c, number of time cycle t and size of matrix x, y, mapping matrix-

vector multiplication on the ring-connected architecture can be

regarded as a SAT problem. SAT problem can be solved by a SAT

solver, and the satisfiability of can be determined. In order to use

the SAT solver in ABC, we translate the formulation into BLIF

file and use the BLIF file as the input of SAT solver.

BLIF file describes behavior of circuit. For (2), Is mapping

constraints. From the view of Boolean function, is means that

only and must one of the variables in left part is 1. Here is an

example of translation when x = y = t = c = 4 in Figure 8.

figure 8 example of translation of Is mapping constraints

The exception is IsIstim constraint, (5). To translate this kind

of constraint is to write XNOR gate. You can see in figure 9, only

when Is[1](1,1) and Is[1](4,1) are equal, output is 1, which means

the constraint is satisfied.

figure 9 example of translation of IsIstim mapping constraints

For Is transfer constraints and Istim transfer constraints, we

have introduced in detail in figure 4. We record all the possible

situations to be 1 and ignore others. An example in presented in

figure 10. (“-” means don’t care)

figure 10 example of translation of Is transfer constraints

For Is_next constraints and Is_next constraints, we have

similar operations, just write down all arrangements of variables

which satisfy the constraints. An example is shown in figure 11.

figure 11 example of translation of Is_next constraints

Sum of product constraints can be translated according to its

meaning. This kind of constraints ensure operations in all cores

at every time cycle have necessary data. Thus, to satisfy the

constraints, when w[y][x](t,c)=1, other variables should be 1; if

w[y][x](t,c)=0, we don’t care about other variables. Figure 12 is

an example.

figure 12 example of sum of product constraints

Resource constraints restrict the sum of value of variables in

left part. Thus, to satisfy the constraints, no more than the value

of right part can be 1, and Figure 13 is an example of register

resource constraints.(x=y=t=c=2)

figure 13 example of register resource constraints

SAT means that the mapping problem is feasible, vice versa.

When the result is SAT, the SAT solver can output the certain

combination of values of BLIF file’s input parameters. With these

values of BLIF file’s input parameters, mapping solution can be

generated.

4. Experiments

Figure 14 explains experiment process in the research. First,

corresponding formulation of input parameters (size of matrix x,

y, time cycle t and number of cores c) is generated. For sparse

matrix, positions of 0 elements are also collected. Then, the

DAシンポジウム
Design Automation Symposium

122

DAS2019
2019/8/29

ⓒ2019 Information Processing Society of Japan

formulation is transformed into a BLIF file. After that, the BLIF

file is put into SAT solver in ABC to determine satisfiability.

Finally, mapping solution is generated when the result is SAT.

figure 14 Experimental flow chart

We write a program to perform these steps automatically. With

proper input parameters, satisfiability of mapping corresponding

matrix-vector multiplication on ring-connected architecture can

be determined, and mapping solution can be generated when the

result is SAT.

4.1 For Dense Matrix

The purpose is to generate mapping solution. Thus, the first

thing is to determine the prerequisites that ensure SAT. For a

matrix-vector multiplication where the size of matrix is x,y,

x × y multiplication of 𝑤[𝑦][𝑥]𝐼𝑠[𝑥] should be executed and

there are only c × t times of operation available because no

more than 1 operation can be executed for each core in every time

cycle according to the ring-connected architecture. when t <

𝑥 × 𝑦 𝑐⁄ some of the multiplication are sure to not be mapped,

Thus, it is bound to be UNSAT and we can’t get mapping

solutions. When t ≥ 𝑥 × 𝑦 𝑐⁄ , there are enough ALU for

multiplication and operation, but other constraints should also be

satisfied to ensure SAT. The subsequent experiments are

conducted in case of t ≥ 𝑥 × 𝑦 𝑐⁄ .

4.1.1 When Size of Matrix is Divisible by Number of Cores

When size of matrix(x,y) is divisible by number of cores c,

theoretically, x/c time cycles is needed and ALUs will be fully

utilized in every time cycle, the mapping result is expected to be

regular. Experiment results when x,y is divisible by c is presented

in table 1. Matrices with size from 2 × 2 to 17 × 17 can be

mapped on the ring-connected architecture within relatively short

time, solution for 16 × 16 matrix can be generated in 280s.

table 1 results when x,y is divisible by c

With the automatically generated mapping solution, parallel

computing of matrix-vector multiplication can be realized on the

ring-connected architecture. Theoretically, conduct 16 × 16

matrix-vector multiplication on 16 ring-connected cores can

accelerate computing speed by 15 times. Figure 15 is a mapping

solution example when x = y = t = c = 4 . All ALUs are fully

utilized and the mapping solution is regular.

figure 15 mapping solution example when x, y is divisible by c

4.1.2 When Size of Matrix is Indivisible by Number of Cores

When size of matrix(x,y) is indivisible by number of cores c,

theoretically, more than x/c time cycles is needed and some of

ALUs will be idle in certain time cycle, the mapping result is

expected to be irregular. Experiment results when x,y is divisible

by c is presented in table 2.

table 2 results when x,y is indivisible by c

Compared with data in table 1, for matrix with the same size,

much more time is needed to generate mapping solution when x,y

is indivisible by c. The mapping solutions tend to be irregular and

more difficult to generate. Figure 16 is a mapping solution

example when x=y=3, t=5, c=2. ALU in core is idle in time cycle

1, ALU utilization is lower when x,y is indivisible by c.

figure 16 mapping solution example when x, y is indivisible by c

4.2 For Sparse Matrix

Theoretically, with the same x, y, c, compared to dense matrix,

fewer multiplications and additions are needed to be conducted

DAシンポジウム
Design Automation Symposium

123

DAS2019
2019/8/29

ⓒ2019 Information Processing Society of Japan

for sparse matrix, and fewer time cycles are needed to complete

the matrix-vector multiplication. However, situations where

many non-zero elements are in the same column should be taken

into consideration. According to Is mapping constraints (2),

certain Is[𝑥0] exist only once every cycle, but all w[y][𝑥0] s

must multiply with Is[𝑥0] once. If there’s m non-zero

w[y][𝑥0]s in the same column, the mapping is infeasible for t <

m . Assume 𝑡1 is theoretical minimal number of time cycles,

then𝑡1 = 𝑚𝑎𝑥{𝑚, ⌈𝑥 × 𝑦 − 𝑛 𝑐⌉ ⁄ }. Here, m is the maximum of

number of non-zero w[y][𝑥0] s in the same column, and n is

number of zero elements.

figure 17 mapping solution for sparse matrix

Figure 17 presents an example of mapping solution for sparse

matrix. For mapping the matrix-vector multiplication in figure 12

on 4 ring-connected cores 𝑡1 = 𝑚𝑎𝑥{6, ⌈8 × 8 − 27 4⌉ ⁄ } = 10.

If we use the formulation for dense matrix, we can also get a

feasible mapping solution with 16 time cycles. But with

formulation modified for sparse matrix, the same matrix-vector

multiplication can be completed in 10 time cycles. Modified

formulation for sparse matrix helps improve ALU utilization in

mapping solution.

To explore the effect of number of zero elements, the following

experiment is conducted. A Matrix-vector multiplication with

8 × 8 sparse matrix is to be mapped on 4 ring-connected cores.

Number of zero elements in the matrix is changed during

experiment. Table 3 presents the result. To reduce the error,

operation time here is average value of 10 times experiments. It

is obvious that with more zero elements, fewer time cycles is

needed to complete matrix-vector multiplication. Also, with more

zero elements, the operation time becomes shorter, this is mainly

because of reduced size of BILF files.

table 3 zero element rate experiment result

Experiment of concentration of zero elements is also

conducted. parameter x, y, t, c and zero element rate are kept

constant, and concentration of zero elements is changed over the

experiment. The result indicates that with higher concentration of

zero elements, the operation time tends to be longer.

5. Conclusion

In this research, we have proposed automatic generation

mapping solution for matrix-vector multiplication on the ring-

connected architecture to realize parallel computing.

The proposed method is formulation of matrix-vector

multiplication on defined ring-connected architecture, transform

it into a SAT problem and use SAT solver to solve it. Details of

ring-connected architecture and formulation are introduced.

 In the experiment, times to generate mapping solution under

different circumstances with different parameters are measured

and examples of mapping are presented. Mapping solution of

16x16 matrix can be generated in short time, and with modified

formulation, sparse matrix can be mapped in fewer time cycles.

Reference
1) Osawa, K., Sekiya, A., Naganuma, H., & Yokota, R. (2017, July).

Accelerating matrix multiplication in deep learning by using low-rank

approximation. In 2017 International Conference on High Performance

Computing & Simulation (HPCS) (pp. 186-192). IEEE.

2) Qiao, Y., Shen, J., Xiao, T., Yang, Q., Wen, M., & Zhang, C. (2017).

FPGA‐accelerated deep convolutional neural networks for high

throughput and energy efficiency. Concurrency and Computation:

Practice and Experience, 29(20), e3850.

3) https://www.maxeler.com/products/mpc-cseries/

4) https://software.intel.com/en-us/articles/intel-xeon-phicoprocessor-

codename-knights-corner

5) https://software.intel.com/en-us/articles/quick-startguide-for-the-

intel-xeon-phi-processor-x200-product-family

6) Berkeley Logic Synthesis and Verification Group, ABC: A System for

Verification, Sequential Synthesis Release 80911.

http://www.eecs.berkeley.edu/~alanmi/abc/

7) University of California, Brekeley, “Berkeley logic interchange

format (BLIF),” 2005

8) Bell, N., & Garland, M. (2008). Efficient sparse matrix-vector

multiplication on CUDA (Vol. 2, No. 5). Nvidia Technical Report NVR-

2008-004, Nvidia Corporation.

9) Bell, N., & Garland, M. (2009, November). Implementing sparse

matrix-vector multiplication on throughput-oriented processors. In

Proceedings of the conference on high performance computing

networking, storage and analysis (p. 18). ACM.

10) Xia, L., Gu, P., Li, B., Tang, T., Yin, X., Huangfu, W., ... & Yang,

H. (2016). Technological exploration of RRAM crossbar array for

matrix-vector multiplication. Journal of Computer Science and

Technology, 31(1), 3-19.

11) Liu, W., & Vinter, B. (2015). Speculative segmented sum for

sparse matrix-vector multiplication on heterogeneous processors.

Parallel Computing, 49, 179-193.

12) Gharehbaghi, A. M., Maruoka, T., & Fujita, M. (2018, September).

A New Reconfigurable Architecture with Applications to IoT and

Mobile Computing. In IFIP International Internet of Things Conference

(pp. 133-146). Springer, Cham.

13) Mathews, M., & Abraham, J. P. (2016, August). Automatic code

parallelization with openmp task constructs. In 2016 International

Conference on Information Science (ICIS) (pp. 233-238). IEEE.

DAシンポジウム
Design Automation Symposium

124

DAS2019
2019/8/29

