
IPSJ SIG Technical Report

Performance evaluation of MEGADOCK protein–protein
interaction prediction system implemented with

distributed containers on a cloud computing environment

Kento Aoyama1,2,a) Yuki Yamamoto1,b) Masahito Ohue1,c) Yutaka Akiyama1,d)

Abstract: Container-based virtualization has begun to be introduced into large-scale parallel computing environ-
ments. In the bioinformatics field, where various dependent libraries and software tools need to be combined, the
container technology that isolates the software environment and enables rapid distribution as in an immediate exe-
cutable format, is expected to have many benefits. In this study, we employed Docker, which is an implementation
of Linux containers, and implemented a distributed computing environment of our original protein–protein interaction
prediction system, MEGADOCK, with virtual machine instances on Microsoft Azure cloud computing environment,
and evaluated its parallel performance. Both when MEGADOCK was directly performed on the virtual machine
and also when it is performed with Docker containers of MEGADOCK on the virtual machine, the execution speed
achieved was almost equal even if the number of worker cores was increased up to approx. 500 cores.

Keywords: container-based virtualization, cloud computing, MPI, Docker, MEGADOCK, protein–protein interaction

1. Introduction
In the field of bioinformatics and computational biology, var-

ious software are utilized for research activities. Management
of software environments such as dependent software libraries
is one of the most challenging issues in computational research.
Recently, as a solution to complication of the software environ-
ment, introduction of the container-based virtualization technol-
ogy, which is an approach using virtualization technologies with
lightweight and excellent performance, is advancing [1], [2]. Par-
ticularly in the field of genome research, pipeline software sys-
tems consisting of multiple pieces of software are commonly
used, which tend to complicate the environment. For this reason,
case studies have been reported, including those on environmen-
tal management and distributed processing using the container-
based virtualization technology [3], [4].

In the container-based virtualization, a software execution en-
vironment, including dependent software libraries and execution
binaries, is isolated as a container, and immediate software distri-
bution as an executable format can be realized [5], [6]. This fea-
ture facilitates the management of the software environment and
distribution, thus introducing new software. It has also been re-
ported that the container-based virtualization performs better than

1 Department of Computer Science, School of Computing, Tokyo Institute
of Technology, Tokyo, Japan

2 AIST-Tokyo Tech Real World Big-Data Computation Open Innovation
Laboratory (RWBC-OIL), National Institute of Advanced Industrial Sci-
ence and Technology, Ibaraki, Japan

a) aoyama@bi.c.titech.ac.jp
b) y yamamoto@bi.c.titech.ac.jp
c) ohue@c.titech.ac.jp
d) akiyama@c.titech.ac.jp

the hypervisor-based virtualization, which is used to implement
common virtual machines (VMs), and when properly configured,
performs almost as well as running on a physical machine [7].

Container-based virtualization has grown in areas such as par-
allel distributed platforms on cloud environments because it en-
ables rapid application deployment [8]. Although the introduc-
tion has not advanced in the computer environments at research
institutes and universities due to the concern regarding perfor-
mance degradation by virtualization, there is a tailwind through
excellent benchmark results on parallel computing environments
and application research case reports. Recently, the container-
based virtualization technology has begun to be adopted in su-
percomputing environments. For the instance, the Singularity[9],
a container implementation for HPC environments, is available
on the TSUBAME 3.0 supercomputer of Tokyo Institute of Tech-
nology and AI Bridging Cloud Infrastructure (ABCI) of National
Institute of Advanced Industrial Science and Technology (AIST),
both of which are world’s first-tier supercomputing environments
in Japan [10]. From the above, correspondence to the container-
based virtualization is urgent even in the bioinformatics and com-
putational biology fields.

In this study, we focused on MEGADOCK [11], [12], a
protein–protein interaction (PPI) prediction software, as an ex-
ample of bioinformatics software, that can predict PPIs between
various proteins by parallel computing. We introduced distributed
processing on MEGADOCK using Docker [1], an implementa-
tion of the container-based virtualization, and then evaluated its
computational performance on the Microsoft Azure public cloud
computing environment [13] by comparing it with a simple par-
allel implementation with message passing interface (MPI) [14].

c© 2019 Information Processing Society of Japan 1

Vol.2019-MPS-124 No.13
2019/7/29

IPSJ SIG Technical Report

Hardware

Linux Kernel

Root File System (‘/’)

A
p

p

A
p

p

Hypervisor/App

Virtual Hardware

Linux Kernel

Root File System (‘/’)

A
p

p

A
p

p

VM

Hardware

Linux Kernel

Root File System (‘/’)

A
p

p

A
p

p

A
p

p

A
p

p

Container Root

Container

Container Runtime

Fig. 1 Overview of virtualization technologies: hypervisor-based (left) and
container-based virtualization (right)

2. Overview of container-based virtualization
There are two major concepts of virtualization approaches

in the context of applications running on a cloud environment:
hypervisor-based and container-based.

2.1 Hypervisor-based virtualization
In hypervisor-based virtualization, the virtual environment is

provided by a higher-level “hypervisor” that further manages the
OS (Supervisor) that manages the application (Fig. 1, left). The
“virtual machine” (VM) widely used in general cloud environ-
ments is provided by the hypervisor-based virtualization that en-
ables users to use various operating systems such as Windows
and Linux OS as Guest OS, which is managed by a hypervisor
running on the Host OS or hardware.

There are various types of implementations for the hypervisor-
based virtualization, such as Kernel Virtual Machine (KVM) [15],
Hyper-V [16] used in Microsoft Azure, XEN [17] used in Ama-
zon Web Service, and VMware [18].

2.2 Container-based virtualization
In container-based virtualization, containers are realized by the

isolation of the namespaces of user processes running on the host
OS (Fig. 1, right). These virtualizations are mainly implemented
by the namespace [5], one of the Linux kernel features. The
namespace can isolate user processes from global namespaces to
individual namespaces, and enable us to use different namespaces
for mounting points, processes, users, networks, hostnames, etc.
Therefore, users can touch an isolated application environment
that is separate from the host environment. The container-based
virtualization is sometimes called as kernels-sharing virtualiza-
tion because the containers running on the same host commonly
use the same kernel.

According to a previous study, performance overheads of a
container in various aspects are smaller than those of the VMs
because the resource management in containers is under the con-
trol of its host kernels [7]. Moreover, the data size of the container
images tends to be smaller than that of the VMs. This offers a sig-
nificant advantage on the application deployment. Docker [1] is
widely used in cloud computing environments.

Docker Hub

Image

App

Bins/Libs

Ubuntu

Docker Engine

Linux Kernel

Container

App

Bins/Libs

Image

App

Bins/Libs

CentOS

Docker Engine

Linux Kernel

Push Pull Run

Dockerfile

apt-get install …

wget …

…

make

Build

Image

App

Bins/Libs

Fig. 2 Sharing a Docker container image via Docker Hub

2.3 Docker
Docker [1] is the most popular set of tools and platform for

managing, deploying, sharing of Linux containers. It is an
open-sourced software on the GitHub repository, operated by
Moby [19] project, written in Golang, contributed by worldwide
developers. There are several related toolsets and services of
Docker ecosystems, such as Docker Hub [6], the largest container
image registry service to exchange user-developed container im-
ages. Docker Machine [20] provides container environments to
Windows and MacOS using a combination of Docker and the
hypervisor-based approach.
2.3.1 Sharing container image via Docker Hub

A container image can include all the dependencies necessary
to execute the target application: code, runtime, system tools,
system libraries, and configurations. Thus, it enables us to re-
produce the same application environment in the container as
we build it, and deploy onto the machine with other specifica-
tions. Users easily share their own application environment with
each other through uploading (push) of container images via the
Docker Hub [6], the largest container image registry service for
Docker containers, and downloading (pull) of the same container
image onto a different machine environment (Fig. 2).

3. MEGADOCK
MEGADOCK is a PPI prediction software for a large-scale

parallel computing environment, which was developed by Ohue
et al. [11], [12]. MEGADOCK supports MPI, OpenMP, and GPU
parallelization, and has achieved massive parallel computing on
TSUBAME 2.5/3.0, K computer, etc. The MPI parallel imple-
mentation on Microsoft Azure [13] public cloud (MEGADOCK-
Azure [14]) as well as the predicted PPI database MEGADOCK-
Web [21] have been developed to promote the use of this software
in more general environments.

Fig. 3 shows a diagram of the system architecture of par-
allel processing infrastructure on Microsoft Azure VMs using
MEGADOCK-Azure.

3.1 MEGADOCK with container-based virtualization
The versatility of a software dependent environment with de-

ployment/management problems and improvement of its execu-
tion performance are still pressing issues. The use of a cloud com-
puting environment, such as the case of MEGADOCK-Azure,

c© 2019 Information Processing Society of Japan 2

Vol.2019-MPS-124 No.13
2019/7/29

IPSJ SIG Technical Report

Azure CLI
Deploy VMs

SSH
Submit job

Resource group

VM

(master)

VM

(worker)

VM

(worker)

Virtual network

Microsoft Azure

Storage

Public interface

Client

Fig. 3 System architecture of MEGADOCK-Azure [14]

which is based on VMs, is one of the solutions, but there are still
concerns about the complexity to reuse the entire existing local
computing resource, vendor lock-in problems, and performance
degradation due to the hypervisor-based virtualization.

In this study, we tried to solve these problems by using Docker
container, which is one of the implementations of the container-
based virtualization. Introduction of container techniques into
MEGADOCK has the following advantages:
• Docker containers are able to run on almost all environments

over various cloud computing infrastructure using the same
container image as well as on our local environments.

• The container-based virtualization approach generally shows
superior performance than the hypervisor-based virtualiza-
tion approach both in running and deploying.

• There are compatible container environments[9] available on
several high-performance computing (HPC) environments
such as TSUBAME 3.0 and ABCI supercomputers, such that
it can even be a model of standard application package in
HPC environments.

To maintain compatibility between different environments, we
implemented the MEGADOCK system using Docker containers
running on VM instances of Microsoft Azure by referring to the
MEGADOCK-Azure architecture. Docker containers over dif-
ferent VM instances are connected on an overlay network using
Docker networking functions and are able to communicate with
each other using the MPI library. Thereby, we can deploy the
Docker containers on VM instances to run the docking calcula-
tion of MEGADOCK, as shown in Fig. 4.

4. Performance evaluation
We measured the execution time and its parallel speed-up ratio

of distributed MEGADOCK system by changing the number of
worker processor cores of the VM instances in Microsoft Azure
under the master-worker model on the MPIDP framework.

4.1 Experimental setup
We selected Standard D14 v2, a high-end VM instance on Mi-

crosoft Azure. It is equpped with an Intel Xeon E5-2673 (16
cores) processor, 112 GB of RAM, and 800 GB of local SSD
storage. The software environment is shown in Table 1.

The measured data were obtained from the result of the time
command, and the median of 3 runs of the calculations was se-
lected. To avoid slower data transfer time between nodes, all out-
put results of docking calculation were generated onto local SSDs
attached on each VM instance. On the Docker container case, to
avoid the unnecessary performance degradation due to the lay-

Table 1 Software environment
Virtual Machine Docker

OS (image) SUSE Linux library/ubuntu
Version (tag) Enterprise Server 12 14.04
Linux Kernel 3.12.43 N/A
GCC 4.8.3 4.8.4
FFTW 3.3.4 3.3.5
OpenMPI 1.10.2 1.6.5
Docker Engine 1.12.6 N/A

MPIDP MasterProcess MPIDP WorkerProcess

Standard_D14_v2

Docker Container

Process

Process

Process

Process

Local SSD

Standard_D14_v2

Standard_D14_v2

Standard_D14_v2

Docker Container

Process

Process

Process

Process

Local SSD

Overlay Network (Swarm mode)

MPI comm.

Fig. 4 Overview of overlay network using Docker Network

ered file system of the container, all output files are stored to a
data volume on local SSD which was mounted on the container.

4.2 Dataset
Protein hetero-dimer complex structure data of the protein–

protein docking benchmark version 1.0 [22] were used for per-
formance evaluation. Whole 59 hetero-dimer protein complexes
were used and all-to-all combinations of each binding partner
(59 × 59 = 3,481 pairs) were calculated to predict their possi-
ble PPIs.

4.3 Experiment result

145,534

25,515
13,132

6,006 4,098

117,219

25,145

12,331
6,344 3,971

0

25,000

50,000

75,000

100,000

125,000

150,000

1 5 10 20 30

Ti
m

e
[s

ec
]

of VMs (16 cores in 1 VM)

VM Docker on VM

Fig. 5 Execution time comparison between MEGADOCK directly running
on VMs and with Docker container

1.0
5.7

11.1

24.2

35.5

1.2
5.8

11.8

22.9

36.6

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450 500

Sp
ee

d-
up

of worker cores

 Ideal
 VM
 Docker on VM

Fig. 6 Strong-scaling performance of MEGADOCK (based on VM=1) on
the benchmark dataset

The execution time of MEGADOCK running with the Docker
containers on the VM instances and MEGADOCK directly run-
ning on the VM instances (MEGADOCK-Azure) is shown in
Fig. 5. Each bar shows the execution time on the number of VM

c© 2019 Information Processing Society of Japan 3

Vol.2019-MPS-124 No.13
2019/7/29

IPSJ SIG Technical Report

instances, and the error-bars show the standard deviation in the
measurements. Fig. 6 shows the scalability in strong-scaling for
the same results. The label “ideal” indicates the ideal linear scal-
ing to the number of worker cores.

According to the result of scalability, both of them achieved a
good speed-up of up to 476 worker cores. It was ×35.5 speed-
up in the case of directly running on the VMs, and ×29.5 in the
case of the Docker containers on the VMs. The speed-ups were
almost equivalent in this experiment and they indicate that the
performance overhead on the Docker containers is small when
running on the VM instance of the cloud environment.

The MEGADOCK execution load is mainly composed of in-
dependent 3D-fast Fourier transform (FFT) convolutions on each
single node even in the MPI version such that it tends to be a
compute-intensive workload, not a data I/O or network-intensive;
therefore, similar to the situation mentioned in the Linux con-
tainer performance profile reports [7], MEGADOCK calculation
on the distributed containers environment also performs well.

5. Discussion
In the experiment, the execution on a single VM instance with

the MEGADOCK-Azure (VM) particularly consumed time but
the reason was unknown, and that affected the result of scalabil-
ity. This irregularity increases the scalability more than expected.
The reason should be investigated; however, it is difficult because
it is time-consuming calculation.

We did not achieve multiple GPU nodes parallelization using
the MPI library in this study; however, now the VM instances
attached to NVIDIA GPU devices are generally available. More-
over, there are more sophisticated VM instances for the HPC ap-
plications on Microsoft Azure that is connected by the InfiniBand
each other and supports low-latency communication using remote
direct memory access (RDMA). We have already performed ex-
periments over multiple VM instances with GPUs [14] or HPC
instances; therefore, further experiments with the Docker con-
tainers is our future challenge.

6. Conclusion
We implemented a protein–protein interaction prediction sys-

tem, MEGADOCK, using Docker containers and its networking
functions on the VM instances of Microsoft Azure. We confirmed
that the performance is almost equivalent to the same calcula-
tion directly performed on the VM instances through the bench-
mark experiment of protein docking calculations. Both when
MEGADOCK directly runs on the VM and when it runs with
the Docker containers of MEGADOCK on the VM, the execu-
tion speed achieved was almost equal even when the number of
worker cores increased up to approximately 500 cores.

The containers enable us to isolate software dependencies and
the system software stacks, which offer a great advantage to the
users in sharing software packages through platforms, thereby
making it easy to distribute the latest research achievement. Vir-
tualization technologies have been evolved in the context of the
cloud computing; however, in the current era, many research
institutions have introduced several container environments into
their HPC infrastructures. To improve productivity and retain sci-

entific reproducibility, it is necessary to introduce such software
engineering techniques into research activities.

Acknowledgment
This work was partially supported by KAKENHI (Grant No.

17H01814 and 18K18149) from the Japan Society for the Promo-
tion of Science (JSPS), the Program for Building Regional Inno-
vation Ecosystems “Program to Industrialize an Innovative Mid-
dle Molecule Drug Discovery Flow through Fusion of Compu-
tational Drug Design and Chemical Synthesis Technology” from
the Japanese Ministry of Education, Culture, Sports, Science and
Technology (MEXT), the Research Complex Program “Wellbe-
ing Research Campus: Creating new values through technologi-
cal and social innovation” from JST, Microsoft Business Invest-
ment Funding from Microsoft Corp., and Leave a Nest Co., Ltd.

References
[1] “Docker.” https://www.docker.com/, [Accessed May 8, 2019].
[2] G. Stphane, “LXC - Linux containers.”

https://linuxcontainers.org/, [Accessed May 8, 2019].
[3] P. Di Tommaso, E. Palumbo, M. Chatzou, et al. “The impact of Docker

containers on the performance of genomic pipelines,” PeerJ, vol. 3, no.
e1273, 2015.

[4] A. Paolo, D. Tommaso, A. B. Ramirez, et al. “Benchmark Report:
Univa Grid Engine, Nextflow, and Docker for running Genomic Anal-
ysis Workflows,” Univa White Paper, 2016.

[5] E. W. Biederman, “Multiple Instances of the Global Linux Names-
paces,” In Proc. the 2006 Ottawa Linux Symp., vol. 1, pp. 101–112,
2006.

[6] “Docker Hub.” https://hub.docker.com/, [Accessed May 8, 2019].
[7] W. Felter, A. Ferreira, R. Rajamony, J. Rubio, “An updated perfor-

mance comparison of virtual machines and Linux containers,” In Proc.
IEEE ISPASS 2015, pp. 171–172, 2015.

[8] L. M. Vaquero, L. Rodero-Merino, R. Buyya, “Dynamically scaling
applications in the cloud,” ACM SIGCOMM Computer Communica-
tion Review, vol. 41(1), pp. 45–52, 2011.

[9] G. M. Kurtzer, V. Sochat, M. W. Bauer, “Singularity: Scientific con-
tainers for mobility of compute,” PLoS One, vol. 12(5), pp. 1–20,
2017.

[10] “TOP500 Lists,” https://www.top500.org/, [Accessed May 8, 2019].
[11] M. Ohue, T. Shimoda, S. Suzuki, et al. “MEGADOCK 4.0: An ultra-

high-performance protein-protein docking software for heterogeneous
supercomputers,” Bioinformatics, vol. 30(22), pp. 3281–3283, 2014.

[12] M. Ohue, Y. Matsuzaki, N. Uchikoga, et al. “MEGADOCK: An all-to-
all protein-protein interaction prediction system using tertiary struc-
ture data,” Protein Pept. Lett., vol. 21(8), pp. 766–778, 2014.

[13] “Microsoft Azure.”
https://azure.microsoft.com/, [Accessed May 8, 2019].

[14] M. Ohue, Y. Yamamoto, Y. Akiyama. “Parallel computing of protein-
protein interaction prediction system MEGADOCK on Microsoft
Azure,” IPSJ Tech. Rep., vol. 2017-BIO-49, no. 4, 2017.

[15] A. Kivity, U. Lublin, A. Liguori, et al. “kvm: the Linux virtual ma-
chine monitor,” Proc. the Linux Symp., vol. 1, pp. 225–230, 2007.

[16] A. Velte, T. Velte, “Microsoft Virtualization with Hyper-V,” 2010.
[17] “Xen Project.” https://www.xen.org, [Accessed May 8, 2019].
[18] “VMware - Virtualization Overview.”

https://www.vmware.com/pdf/virtualization.pdf,
[Accessed May 8, 2019].

[19] “Moby project.” https://mobyproject.org, [Accessed May 8, 2019].
[20] “Docker Machine.”

https://docs.docker.com/machine/, [Accessed May 8, 2019].
[21] T. Hayashi, Y. Matsuzaki, K. Yanagisawa, et al. “MEGADOCK-Web:

an integrated database of high-throughput structure-based protein-
protein interaction predictions,” BMC Bioinform., vol. 19(Suppl 4),
no. 62, 2018.

[22] R. Chen, J. Mintseris, J. Janin, Z. Weng, “A protein-protein docking
benchmark,” Proteins, vol. 52(1), pp. 88–91, 2003.

[23] E. V. Wasmuth, C. D. Lima, “KEGG: new perspectives on genomes,
pathways, diseases and drugs,” Nucl. Acids Res., vol. 45, pp. 1–15,
2016.

c© 2019 Information Processing Society of Japan 4

Vol.2019-MPS-124 No.13
2019/7/29

