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Abstract: In general, the main purpose of Genetic Algorithm (GA) is to acquire a solution with the highest evaluation value in a 

single-objective problem or Pareto solutions with various evaluation values in a multi-objective problem. However, in engineering 

problems, the acquisition of multiple satisfied solutions satisfying certain conditions is often more strongly desired than acquiring 

a single best solution. In addition, to help set design choices, satisfied solutions should satisfy different design variable patterns 

from one another. There are multiple objective functions and rather than being maximized/minimized these are intended to 

approximate certain target values. These multiple objective functions can be unified into a single-objective function by summing 

up the errors from the target values. Through this unification of objective functions, computing resources for searching can be 

assigned in terms of the diversity in the design variable space rather than the objective space. In this paper, a method for acquiring 

multiple satisfied solutions by GA in many constrained multi-objective optimization problems is proposed. The proposed method 

is applied to a real-world problem and compared with Island model to investigate its performance. 
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1. Introduction     

  In addition to improving the performance of computers, 

Genetic Algorithm (GA) is actively applied to engineering 

problems. GA is an optimization method that imitates the 

evolution of creatures. In general, the main purpose of GA is to 

acquire a solution with the highest evaluation value in a single-

objective problem or Pareto solutions with various evaluation 

values in a multi-objective problem. In both cases, evaluation 

values are the highest priority, and the variety of individuals is 

considered in the objective space. However, in engineering 

problems, the acquisition of multiple satisfied solutions 

satisfying certain conditions is often more strongly desired than 

acquiring a single best solution [1]. In addition, to help set design 

choices, satisfied solutions should satisfy different design 

variable patterns from one another.  

Because of the characteristics of GA, when applying it to the 

acquisition of satisfied solutions and after a satisfied solution is 

acquired, searches of the population are intensively performed 

very close to the acquired solution because individuals with slight 

differences from the satisfied solution could also be satisfied 

solutions. As a result, many satisfied solutions in the design 

variable space that are very similar to the first one are often 

acquired. These similar solutions usually have no practical 

meaning. Many methods that can maintain the diversity of design 

variables have been proposed [2-4]. However, these methods aim 

to prevent solutions from converging to local solutions by 

maintaining the diversity of design variables, rather than 

acquiring various types of satisfied solutions. 

In the case of applying GA to multi-objective optimization 

problems, searches are performed to acquire various and uniform 

solutions in the objective space [5]. In this case, the diversity of 

design variables is generally not considered. Thus, various 

solutions are acquired in the objective space rather than in the 

design variable space. In general, different solutions in the 

objective space have different design variables. However, there is 
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no guarantee that solutions have different design variables. 

In contrast, there are multiple objective functions, which 

approximate certain target values rather than being 

maximized/minimized. These multiple objective functions can be 

unified into a single-objective function by summing up the errors 

from the target values. Through this unification of objective 

functions, computing resources for searching can be assigned in 

terms of the diversity in the design variable space rather than the 

objective space. 

In this study, a method for acquiring multiple satisfied 

solutions in unified single-objective optimization problems using 

GA is proposed. To investigate the effectiveness of the proposed 

method, an experiment is conducted. In the experiment, the 

proposed method is applied to a two-objective optimization 

problem with many constraints [6] and compared with Island 

model [4] which is one of the most representative methods to 

maintain the diversity of design variables. 

2. Unification of Objectives 

2.1 Multi-objectives optimization problems 

  There are multiple objective functions. When these functions 

are not to be maximized/minimized but rather approximated to 

certain target values, they can be unified into a single objective 

function by summing up the errors from the target values in each 

objective function. The formulas for calculating this unification 

of objectives are shown in eqs. (1), (2), and (3). 

min 𝐹 = ∑ |𝑓�̂�|
𝑚

𝑖=1
 (1) 

 𝑓�̂� =
𝑓�̅�

𝑓�̅�
𝑚𝑎𝑥  

    (𝑖 = 1,2, … , 𝑚) (2) 

𝑓�̅� = {

max(|𝑓𝑡𝑖 − 𝑓𝑖| − 𝑡ℎ𝑖 , 0) (𝑎)
max(𝑓𝑡𝑖 − 𝑓𝑖 , 0) (𝑏)
max(𝑓𝑖 − 𝑓𝑡𝑖 , 0) (𝑐)

 (3) 

𝑓�̅�
𝑚𝑎𝑥is the maximum value of 𝑓�̅� in all 𝑓�̅�. When a function aims 

to keep the error from the target value 𝑓𝑡𝑖, within an allowable 
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value 𝑡ℎ𝑖, (a) is selected as 𝑓�̅�. When a function aims to obtain a 

larger value than the target 𝑓𝑡𝑖 , (b) is selected as 𝑓�̅� . When a 

function aims to obtain smaller value than the target 𝑓𝑡𝑖, (c) is 

selected as 𝑓�̅� . An individual for which F is equal to 0 is a 

satisfied solution, which indicates that all functions satisfy the 

given conditions. 

2.2 Many-constrained 

  In optimization problems with many constraints, the 

unification below can be applied [7, 8]. 

min 𝐹 = ∑ |𝑓�̂�|
𝑚

𝑖=1
+ ∑ |𝑔�̂�|

𝑙

𝑖=1
 (4) 

 𝑔�̂� =
𝑔�̅�

�̅�𝑖
𝑚𝑎𝑥 

    (𝑖 = 1,2, … , 𝑙) (5) 

Here, 𝑓�̂� is same as in eq. (2) in 2.A, 𝑔�̅� is the amount by which 

the i-th constraint is violated, and �̅�𝑖
𝑚𝑎𝑥 is the maximum value 

of all 𝑔�̅�. In this case, an individual for which F is equal to 0 is a 

feasible and satisfied solution, as in constrained multi-objective 

optimization problems. 

3. Proposed Method 

3.1 Flow of proposed methods 

  First, initial individuals are generated randomly, then 

“neighbors” are defined. When 𝑟_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 > 𝑑𝑥𝑦 is true, x and 

y are defined as mutual neighbors, where x and y are individuals, 

𝑟_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is the neighbor range, which is input in advance, and 

𝑑𝑥𝑦 is the distance between x and y in the design variable space. 

After defining neighbors, one child (C) is generated. Then, the 

child’s neighbors (𝑪𝑛) are defined. When 𝑪𝑛 contains at least 

one satisfied solution, the child is not evaluated, and the 

generation of a child is repeated. When 𝑪𝑛  does not contain 

satisfied solutions, the child is evaluated. After the evaluation, the 

population is selected according to the flow. In the flow, |𝑨| is 

the number of individuals in 𝑨 , where 𝑨  is a set of some 

individuals. Furthermore, 𝑓(𝑥) > 𝑓(𝑦) denotes that y’s 

evaluation value is better than that of x, and 𝑥 ← 𝑦  indicates 

that the information of x is updated, including y. After the 

selection, the generation of a child is repeated. This process is 

repeated until the end condition is satisfied. 

3.2 Feature of proposed method 

   Distributing computing resources dynamically 

— When a satisfied solution exists among the neighbors 

for a new child, the child is deleted without evaluation 

to assign computing resources to search other areas 

(see Fig. 1(a)). 

 Sequential update 

— Like MOEA/D [9], a good child with a high fitness 

value can become a parent immediately. Thus, high 

convergence can be expected. 

 Defining neighbors in the design variable space 

— Defining neighbors using the neighbor radius in the 

design variable space can enact a group search. The 

use of group search leads to diversity being 

maintained, and sometimes results in high 

convergence [10] in each group search. 

— We can adjust the granularity of the distance between 

acquired satisfied solutions in the design variable 

space. When the neighbor range is large, the distance 

between satisfied solutions is expected to be large, 

and vice versa.  

 Neighborhood crossover 

— High convergence can be expected because of 

neighborhood crossovers [11, 12].  

 Mechanism for maintaining diversity in the design 

variable space   

  When the number of neighbors (|𝑪𝑛|) for a new child (C) is 

greater than the maximum neighbor population (𝑛𝑚𝑎𝑥) and 𝑓(𝐶) 

is better than 𝑓(𝐶𝑛
𝑛𝑎𝑑) , the child replaces 𝐶𝑛

𝑛𝑎𝑑 , and the 

information on the worst individual is updated (𝐶𝑛
𝑛𝑎𝑑: the worst 

individual among the child’s neighbors, see Fig. 1(b)). When the 

number of neighbors (|𝑪𝑛|) for a new child (C) is less than 𝑛𝑚𝑎𝑥 

and the number of neighbors |𝑰𝑛
𝑚𝑎𝑥| is greater than 𝑛𝑚𝑎𝑥, the 

child replaces 𝑰𝑛𝑛𝑎𝑑

𝑚𝑎𝑥 , and the information on the worst individual 

is updated (see Fig. 1(c)). 

4. Experiment 

  In this study, an experiment was conducted. In the experiment, 

an engineering problem in the real world [6] was considered. This 

is a constrained two-objective optimization problem. The 

problem comprises 222 design variables, 54 constraints, and two-

objective functions (𝑓1 is minimized, and 𝑓2 is maximized). In 

constrained optimization problems, feasible solutions are defined 

as those that satisfy all constraints [13]. In this problem, satisfied 

solutions are also defined as those that satisfy certain conditions 

(evaluation values are less than target values or greater than target 

values) among feasible solutions. In the experiment, the 

conditions were set to 𝑓1 ≤ 3.0 and 𝑓2 ≥ 34. These values are 

those introduced as the evaluation values of the solution designed 

by a human in the benchmark problem [6]. 

4.1 Problem settings 

  In the experiment, the searches using Island model and the 

proposed method with the unification of the objective functions 

and constraints described in Section II were compared. In the 

proposed method, plural groups are generated by defining 

neighbors based on neighbor range, which gives similar feature 

for maintaining diversity in the design variable space. Thus Island 

model was compared with the proposed method. 

4.2 Experimental conditions 

  In the searches using Island model and the proposed method, 

the numbers of individuals, evaluations, and trials were 100, 

30,000, 21, respectively. The initial population for both methods 

was the same in every trial. In the search using the proposed 

method, the maximum neighbor population 𝑛𝑚𝑎𝑥  was 15, the 

neighbor range 𝑟_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 was 22.2 using the Manhattan 

distance, and the crossover rate with neighbors 𝑃𝑟 was 0.7. In 

the search using Island model, the number of islands was 5, 10, 

15. From the result of the pre-experiment, there was no migration. 

4.3 Results 

  The results for Island model are shown in Tables 2 to 4. Table 

2 shows the number of islands which succeeded in acquiring 
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satisfied solutions and the number of satisfied solutions. The 

number of satisfied solutions decreased as the number of islands 

increased (see Table 2). It is thought that the number of 

individuals for one island decreased as the number of islands 

increased. Thus the number of islands which could acquire 

satisfied solutions decreased because of low convergence by 

small number of individuals. Table 3 shows the distance between 

satisfied solutions in each island in a trial whose number of 

acquired satisfied solutions was the median in 21 trials in the case 

that the number of islands was 5. In this trial, 4 islands could 

acquire satisfied solutions, and each island was named “island 1” 

to “island 4.” The distances between satisfied solutions in each 

island were very small, which shows that very similar satisfied 

solutions were acquired (see Table 3). It is thought that when a 

satisfied solution was acquired on a certain island, very similar 

solutions also became satisfied solutions and were acquired by 

intensively searching around the satisfied solution. In practice, 

these similar satisfied solutions are regarded to be only one 

satisfied solution. Thus, in this trial, the substantial number of 

acquired satisfied solutions were 4, which was the number of 

islands which succeed in acquiring satisfied solutions. In Island 

model, because there is no mechanism for controlling the distance 

between islands, it is possible that the distance between islands 

become small and the diversity of the design variable space 

cannot be maintained. This tendency has seen by migration in 

Experiment 1. The distance between islands which could acquire 

satisfied solutions (one island is regarded as one satisfied 

solution) is shown in Table 4. The distance between islands was 

calculated as the distance between their center of gravity of 

satisfied solutions in each island. The distance between islands 

was sufficiently large (see Table 4). The influence of the number 

of islands to the distance between satisfied solutions was very 

small. In other words, regardless of the number of islands, it is 

considered that the distance between islands would be around 50 

in Manhattan distance in Island model without migration. 

Although it is possible to acquire satisfied solutions in Island 

model, it is difficult to adjust the distance between islands, that 

is, satisfied solutions expressly. 

The results for the proposed method are shown in Table 5 and 

6. Table 5 shows the number of satisfied solutions acquired by the 

proposed method. The smaller the neighbor range was, the more 

satisfied solution were acquired (see Table 5). Table 6 shows the 

distance between satisfied solutions. It was confirmed that the 

granularity of the distance between satisfied solutions was 

adjustable by changing the neighbor range 𝑟_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟.  

It was confirmed that in Island model without migration, 

diverse satisfied solutions were also acquired. However, because 

Island model does not explicitly give the distance between islands, 

it is difficult to adjust the granularity of the satisfied solutions, 

while the granularity of the satisfied solutions can be adjusted in 

the proposed method by changing the neighbor range. The 

evaluation value of satisfied solutions in island model is shown 

in Table 7 and in the proposed method is shown in Table 8. There 

was no big difference in both methods (see Table7 and 8). 

 

 

(a) Case (A)  

 

(b) Case (B) 

 

(c) Case (C) 

Figure 1: Mechanism for maintaining diversity 

 

Table 2: Number of islands which succeeded in acquiring 

satisfied solutions and number of satisfied solutions using Island 

model (no migration) 

 Number of islands 

5 10 15 

Number of islands which 

succeed in acquiring 

satisfied solutions 

4 2.6 1.3 

Number of satisfied 

solutions 
80 25.7 8.4 

 

Table 3: Distance between satisfied solutions  

in each island (Manhattan distance)  
island 1 island 2 island 3 island 4 

Min. 0.05 0.05 0.05 0.05 

Max. 1.70 1.45 2.35 1.50 

Ave. 0.61 0.41 0.75 0.71 

 

 

ⓒ 2019 Information Processing Society of Japan 3

IPSJ SIG Technical Report Vol.2019-MPS-124 No.12
2019/7/29



 

 

Table 4: Distance between islands (Manhattan distance) 

  Number of islands 

5 10 15 

Min. 42.42 47.27 45.53 

Max. 52.18 50.69 48.26 

Ave. 48.15 49.04 47.05 

 

Table 5: Number of satisfied solutions  

in the proposed method 

  Neighbor range 

4.4 8.8 22.2 

Number of satisfied 

solutions 
14.24 4.95 3.9 

 

Table 6: Distance between satisfied solutions 

in the proposed method (Manhattan distance) 

  Neighbor range 

4.4 8.8 22.2 

Min. 5.03 16.66 43.69 

Max. 25.05 38.69 50.6 

Ave. 14.78 31.14 47.54 

 

Table 7: Evaluation values of satisfied solutions  

in Island model 

  Number of islands 

5 10 15 

f1 Ave. 2.993 2.993 2.994 

Std. 0.004 0.004 0.002 

f2 Ave. 34.03 34.04 34.08 

Std. 0.12 0.12 0.14 

 

Table 8: Evaluation values of satisfied solutions  

in the proposed method  

  Neighbor range 

4.4 8.8 22.2 

f1 Ave. 2.994 2.993 2.993 

Std. 0.005 0.005 0.004 

f2 Ave. 34.08 34.01 34.01 

Std. 0.20 0.02 0.02 

 

5. Conclusion 

  In this study, the unification of objective functions in multi-

objective optimization problems and many-constraint 

optimization problems was introduced. This paper proposed a 

method for acquiring multiple satisfied solutions in unified 

single-objective optimization problems. To investigate the 

effectiveness of the proposed method, an experiment was 

conducted. In the experiment, a 54 constraint two-objective 

optimization problem was considered, and the proposed method 

and Island model were compared. The results showed that both 

Island model and the proposed method could acquire diverse 

satisfied solutions in the design variable space. The results also 

showed that the proposed method could adjust the granularity of 

the distance between acquired satisfied solutions in the design 

variable space while Island model could not. In the experiment, 

although satisfied solutions could be acquired in all trials, there 

was one trial in which only one satisfied solution could be 

acquired. Because the purpose of this study was to acquire 

various satisfied solutions in engineering problems, multiple 

satisfied solutions should be acquired in all trials. A study of the 

appropriate neighbor range is necessary. Further studies are also 

needed in order to make the proposed method more suitable for 

engineering problems. 
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