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Molecular activity prediction using graph
convolutional deep neural network considering

distance on a molecular graph

Masahito Ohue1,a) Ryota Ii1 Keisuke Yanagisawa1 Yutaka Akiyama1,b)

Abstract: Machine learning is often used in virtual screening to find compounds that are pharmacologically
active on a target protein. The weave module is a type of graph convolutional deep neural network that uses
not only features focusing on atoms alone (atom features) but also features focusing on atom pairs (pair fea-
tures); thus, it can consider information of nonadjacent atoms. However, the correlation between the distance
on the graph and the 3-D coordinate distance is uncertain. In this paper, we propose three improvements for
modifying the weave module. First, the distances between ring atoms on the graph were modified to bring
the distances on the graph closer to the coordinate distance. Second, different weight matrices were used
depending on the distance on the graph in the convolution layers of the pair features. Finally, a weighted
sum, by distance, was used when converting pair features to atom features. The experimental results show
that the performance of the proposed method is slightly better than that of the weave module, and the
improvement in the distance representation might be useful for compound activity prediction.

Keywords: graph convolutional neural network，ligand-based virtual screening, machine learning, deep learn-
ing

1. Introduction

In drug research and development, it takes at least ten

years to produce a drug, and development costs are esti-

mated to be several billion US dollars or more [1]. High-

throughput screening methods for screening compounds that

show activity against proteins targeted by drug discovery

from large-scale compound libraries are popular [2]; how-

ever, screening vast numbers of compounds is expensive. In

contrast, virtual screening is expected to be able to predict

active compounds efficiently using a computer [3].

One of the frameworks of virtual screening is a ligand-

based method that uses machine learning to predict activity

using known activity information as a teacher label [4, 5].

In particular, in recent years, each atom of a compound is

regarded as a node, and a bond is considered as an edge

graph. Based on this, feature extraction can be performed

using neural networks [6–8]. The graph convolutional neural

network (GCN), which realizes the convolutional deep neu-

ral network by using a convolution operation on the graph

structure, is used for such applications.

For graph feature extraction using GCN, neural graph fin-

gerprints (NGF) [6], the GCN by Han et al. [7] and the weave

module [8] are often used. These methods do not generate
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compound descriptors (feature vectors) based on a specific

rule like ordinary fingerprints and have the advantage of be-

ing able to represent feature vectors by learning molecular

structures flexibly. NGF and Han’s GCN do not consider

edge features in the molecular graph but focus on learning

the relationship with the nearest neighbor node. On the

other hand, the weave module of Kearnes et al. transforms

feature vectors using pair features with distant atoms in ad-

dition to atom features focused only on atoms. Thus, the

Weave module can consider features between distant atoms.

However, the number of atoms forming a pair is different for

each distance. Furthermore, the pair features of the Weave

module cannot be considered in that respect.

In this paper, we propose a new improved GCN that can

consider features between distant atoms by modifying the

Weave module. In order to make effective use of the dis-

tance features on the molecular graph in the Weave module,

we considered three improvements: correction of the dis-

tance on the molecular graph with respect to atoms in the

ring structure, convolution method of pair features, and as-

sembling of the pair features.

2. Weave Module [8]

The network architecture of the Weave module [8] is

shown in Fig. 1. The Weave module consists of the seven

transformations shown in 1⃝– 7⃝ in Fig. 1. This study was

targeted at improving the method of generating the initial

feature and transformation operation 3⃝ (transforming from
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Fig. 1 Weave module [8]

the pair feature to the intermediate atom feature). These

operations are described as follows, and their further details

can be found in [8].

2.1 Initial features

Initial atom feature A0 ∈ Rnmax×d0
a and pair feature

P 0 ∈ Rn2
max×d0

p , which are inputs to the network, use simple

descriptors such as atom and bond types. nmax is the max-

imum number of atoms in the molecule. A0 is a matrix in

which nmax number of d0a-dimensional feature vectors (row

vectors) corresponding to one atom are vertically arranged.

P 0 is a matrix in which n2
max number of d0p-dimensional fea-

ture vectors (row vectors) corresponding to one atom pair

are vertically arranged.

2.2 Transformation operation 3⃝: transform in-

termediate atom feature from pair feature

In Weave module layer k, the following operation, as

shown in Fig. 2 is performed on all the atom pairs com-

prising atom i. The intermediate atom feature for atom i is

calculated by adding them.

ak′′

i =
∑
j

f
(
W k

PAp
k
(i,j) + bkPA

)
(1)

where pk
(i,j) ∈ Rdk

p is an input pair feature vector of atom

pair (i, j) in the k-th layer, ak′′

i ∈ RdPA is an output atom

feature vector of atom i, W k
PA ∈ RdPA×dk

p is a weight matrix,

and bkPA ∈ RdPA is a bias vector. f(·) is an activation func-

tion that applies ReLU to all elements of a vector. Atom

feature Ak′′
∈ Rnmax×dPA is vertically arranged as ak′′

i for

all atoms i = 1, ..., nmax .

2.3 Point of issue

The following issues are present in the Weave module.

( 1 ) Distance on the graph for atoms in a ring struc-

ture

An uncertainty exists as to whether the distance on the

graph and the real three-dimensional distance are cor-

i

i

Fig. 2 Converting pair features to atom features

Fig. 3 Examples of ring structure

Fig. 4 Examples of redefined ring structure (Prop. A)

related between atom pairs in the ring structure.

( 2 ) Convolution of pair features

Uniform weights are used for all pair features regardless

of the distance length on the graph.

( 3 ) Assembling of pair features

All atoms in the pair are uniformly added to the convo-

luted pair feature, and the difference due to the distance

between the pairs is not reflected.

3. Proposed Method

Here, we introduce three improvements to solve the above-

mentioned issues of the Weave module.

3.1 Correction of distances related to atoms in

ring structures (Prop. A)

The pair feature of the Weave module defines the distance

between atom pairs as the length of the shortest path on the

graph. The ring structure is relatively rigid in terms of the

actual molecular conformation compared to the chain struc-

ture. Moreover, the distance on the conformation is shorter

than the distance on the graph, considering two atoms in the

molecule. Therefore, with respect to the atom of interest,

the atom pair at the orthoposition and metaposition is dis-

tance 1, and the atom pair at the para position is distance

2 (Fig. 3 and Fig. 4).

3.2 Convolution of pair features with different

weights (Prop. B)

We improved the weights for pair features to be deter-

mined by learning the use of neural networks. In the Weave

module, pair features were convoluted using the same weight

c⃝ 2019 Information Processing Society of Japan 2

Vol.2019-MPS-124 No.3
2019/7/29



IPSJ SIG Technical Report

i

i

Fig. 5 Convolution using different weights (Prop. B)

matrix, regardless of the distance length. Therefore, we la-

beled distances dist0, dist1, ..., distn , ..., distmax , dist∞ from

the focus atom to distinguish each pair feature. Here, dist∞

represents all distances greater than the maximum atomic

pair distance distmax . We used different weight matrices

WPAdist0
,WPAdist1

, ...,WPAdistn
, ...,WPAdistmax

,WPAdist∞
cor-

responding to these distances in the convolution of pair fea-

tures.

In Prop. B, weight matrices according to the distance

were used for atom pairs and convolution was performed.

The intermediate atom feature of atom i was calculated by

taking the sum of atom pairs of atom i. This operation is

shown in Fig. 5.

3.3 Assembling pair features based on distance

(Prop. C)

If the interatomic distance on the graph is large, the inter-

atomic distance on conformation does not become constant.

Atom pairs with large interatomic distances appear to be

less important than those with small interatomic distances.

Therefore, when finding the intermediate atom feature ak′′

i

of atom i, the closer the distance dij is, the larger is the

weighting performed by the three kinds of coefficients g(dij):

g(d) = 0 if d > distmax else 1 (step) (2)

g(d) = −0.1d+ 1 (linear) (3)

g(d) = 1/d2 (quadratic) (4)

This modifies Eq. (1) as follows:

ak′′

i =
∑
j

g(dij)f
(
W k

PAp
k
(i,j) + bkPA

)
(5)

4. Experiments

4.1 Dataset

We used the Biophysics datasets HIV, MUV, and PCBA

from MoleculeNet [9]. Molecular data are provided in

SMILES format and converted to 2-D molecular graphs us-

ing RDKit [10]. Hydrogen atoms were omitted, and com-

pounds with the huge number of heavy atoms exceeding

maximum number of atoms, nmax , were excluded from the

Table 1 Details of datasets
dataset #tasks #pos*1 #neg*1 #cmpds #excluded

HIV 1 1,319 39,065 40,384 743
MUV 17 489 249,397 93,087 0
PCBA 128 471,273 33,509,569 437,035 894

*1Given that the same compound is registered with different labels between
each task, the number counted in duplicate as described.

Table 2 Model hyperparameters

hyperparameter value
maximum number of atoms in molecule nmax 60
maximum atomic pair distance distmax 1–5
Weave modulek 2
dAA, dPP , dPA, dAP , dA, dP 50
dAfinal

128
#fully connected layers 2000, 100

training

batch size 96
optimizer Adam
learning rate 0.001
epoch 100

train:valid:test
HIV 8 : 1 : 1
PCBA, MUV 6 : 2 : 2

trial m
HIV 10
PCBA, MUV 5

dataset. The number of tasks in each dataset, number of ac-

tive compounds, number of inactive compounds, number of

compounds, and number of excluded compounds are shown

in Table 1. Given that the same compound is registered

with different labels between each task, the numbers of ac-

tive and inactive compounds were counted in duplicate.

4.2 Training and evaluation

The GCN model was implemented using the deep learning

library, Chainer Chemistry (version 0.4.0) [11]. The hyper-

parameters of GCN are listed in Table 2. These were the

same as those used by Kearnes et al. [8]. We attempted to

set maximum atom pair distance, distmax , to 1–5.

In this study, the prediction performance of the model

was evaluated using the ROC curve [12] and area under the

curve (AUC), as shown in Eq. (6).

AUC = 1− 1

NPos

NPos∑
i=1

N i
Neg

NNeg
, (6)

where NPos is the number of active compounds, NNeg is

the number of inactive compounds, N i
Neg is the number of

inactive compounds ranked higher than the i-th active com-

pound, N is the number of compounds.

Each dataset was divided into the training data (train),

validation data (valid), and test data (test) according to the

ratio shown in Table 2. For each task in the dataset, we

selected an epoch (learning checkpoint) that gives the best

AUC for the validation data and applied it to the test data

to calculate the averaged AUC value for each task. The

AUC used in evaluation (AUC eval) is calculated as follows.

nbest,T = argmax
n

mean
i

(
AUCvalid

T ,n,i

)
(7)

AUC eval = median
T

mean
i

(
AUCtest

T ,nbest,T ,i

)
, (8)

where T represents each task, n is the epoch, and i(=

1, ...,m) is the trial. AUCvalid
T ,n,i is an AUC value of task

T of validation data using trained GCN with epoch n in

trial i. AUCtest
T ,nbest,T ,i is the AUC value of task T of test
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Table 3 AUC of each dataset using Props. A and B. The value
in bold-font is the best value for each model.

dataset model
distance

1 2 3 4 5

HIV

Weave 0.796 0.798 0.795 0.793 0.801
Prop. A 0.796 0.803 0.799 0.794 0.798
Prop. B 0.794 0.797 0.797 0.799 0.806
Prop. A&B 0.806 0.798 0.801 0.800 0.800

MUV

Weave 0.680 0.720 0.739 0.689 0.743
Prop. A 0.706 0.783 0.735 0.741 0.754
Prop. B 0.723 0.738 0.714 0.671 0.736
Prop. A&B 0.757 0.760 0.704 0.737 0.693

PCBA

Weave 0.822 0.824 0.821 0.821 0.823
Prop. A 0.821 0.825 0.823 0.823 0.824
Prop. B 0.822 0.821 0.820 0.822 0.823
Prop. A&B 0.819 0.821 0.823 0.822 0.821

Table 4 AUC of each dataset using Prop. C. The value in bold-
font represents the best value for each model.

dataset model
distance

1 2 3 4 5

HIV

Weave 0.796 0.798 0.795 0.793 0.801
step 0.766 0.767 0.765 0.769 0.772
linear 0.799 0.798 0.803 0.799 0.807
quadratic 0.796 0.791 0.803 0.798 0.803

MUV

Weave 0.680 0.720 0.739 0.689 0.743
step 0.629 0.721 0.692 0.677 0.690
linear 0.731 0.749 0.687 0.713 0.729
quadratic 0.752 0.742 0.713 0.722 0.702

data using a trained GCN with epoch nbest,T in trial i. The

division of the dataset at each trial i is randomly performed

each time.

5. Results and Discussion

5.1 Performance of Props. A and B

The results of comparing the AUC of each dataset is

shown in Table 3 for the models of the Weave module,

Prop. A, Prop. B, and Prop. A&B. Prop. A provided

higher prediction performance than the Weave module in

the MUV dataset but remained as accurate as the Weave

module in HIV and PCBA. The accuracy of the Prop. B

alone is almost the same as that of the Weave module, while

the combination of the Prop. A and B yields a slightly higher

accuracy.

5.2 Results of Prop. C

The prediction results for the HIV and MUV datasets are

listed in Table 4 with respect to Prop. C, three functions,

and the Weave module for assembling pair features. The

models of the linear and quadratic functions of Prop. C

have a higher AUC value. The improvement by the model

of the step function was not significant.

5.3 Conclusion

Three types of improvements were made to the opera-

tion of converting a pair feature to an atom feature in the

Weave module; (A) By changing distance d of the atom

pair contained in the ring structure to ⌈d/2⌉, the distance

on the graph was corrected to correlate with the distance

on conformation. As a result of the evaluation experiment,

the prediction accuracy is improved compared to the Weave

module, and features between distant atoms were also suc-

cessfully used. (B) We attempted to generalize the model by

using different weights for each distance in the convolution

process combined with the proposed correction of the dis-

tance on the graph in the ring structure in the compound.

The prediction accuracy was higher when performing convo-

lution with different weights for each distance compared to

the Weave module. According to the analysis of the weight

matrix dynamics, the proposed method was found to be use-

ful, especially in the 0th layer of the Weave module. (C) We

proposed a method of incorporating pair features that em-

phasize the atoms in the vicinity of the atom of interest

by using coefficients according to the distance. We achieved

some improvement in the prediction accuracy by assembling

paired features by using linear and quadratic weights.

It is worthwhile to verify that this improvement is also ef-

fective for other tasks of compound supervised learning, e.g.,

drug-like compound filter [13], side-effect prediction [14],

toxicity prediction [15], and stability prediction [16,17].
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