
IPSJ SIG Technical Report

Branching Deep Q-Network Agent
for Joint Replenishment Policy

Hiroshi Suetsugu1,a) Yoshiaki Narusue1 Hiroyuki Morikawa1

Abstract: This study proposes a reinforcement learning approach to find the near-optimal dynamic ordering
policy for a multi-product inventory system with non-stationary demands. The distinguishing feature of
multi-product inventory systems is the need to take into account the coordination among products with the
aim of total cost reduction. The Markov decision process formulation has been used to obtain an optimal
policy. However, the curse of dimensionality has made it intractable for a large number of products. For more
products, heuristic algorithms have been proposed on the assumption of a stationary demand in literature. In
this study, we propose an extended Q-learning agent with function approximation, called the branching deep
Q-network (DQN) with reward allocation based on the branching double DQN. Our numerical experiments
show that the proposed agent learns the coordinated order policy without any knowledge of other products’
decisions and outperforms non-coordinated forecast-based economic order policy.

1. Introduction

Own-brand goods play an important role for retailers in

terms of their profits. At their own risk, many retail compa-

nies have tried to purchase their goods in the production

country and deliver these goods directly to selling coun-

tries. In this case, the joint replenishment policy (JRP),

which takes multi-product situations into account, is re-

quired to achieve the minimum total cost. In a supply chain

where multiple products need to be delivered via a container

ship, the maritime transportation cost depends on the re-

quired number of containers. Thus, the transportation cost

per product would decrease when several products are or-

dered simultaneously. However, JRP is considered to be

non-deterministic polynomial-time (NP)-hard because of its

combinatorial nature. There has been much research on

JRP. According to [2], JRP research can be divided into

three categories depending on the demand assumptions: de-

terministic, dynamic or stochastic. In the real-world busi-

ness setting, almost all the businesses fall into the stochas-

tic demand setting. Some studies use the Markov decision

process to solve the JRP with the stochastic demand. The

problem is complex in the stochastic demand setting; there-

fore, a number of studies were conducted on the assumption

of the stationary demand which follows a Poisson or normal

distribution.

On the other hand, many researchers have started using

reinforcement learning (RL) for the supply chain manage-

1 Graduate School of Engineering
University of Tokyo, Tokyo, Japan

a) hsuetsugu@sglab.co.jp

ment setting because of recent advances in RL. A typical

problem setting is the Beer Game ([5], [1]), where a multi-

echelon supply chain problem is considered under uncertain

future demand and supply. Although the existing literature

showed positive results in multi-echelon supply chains, only

one product has been considered so far. This is because of

the problem of large discrete action spaces, which appear in

the general RL approach. To take full advantage of RL in

the supply chain management, these exponentially increas-

ing action space problems with multiple products need to

be resolved.

[6] proposed the branching DQN (BDQN), in which func-

tion approximated Q-values are represented with individual

network branches followed by a shared decision module that

encodes a latent representation of the input and helps with

the coordination of the branches. This architecture enables

the linear growth of the total number of network outputs

with increasing action dimensionality.

In this paper, we propose the RL agent with function

approximation to find the near-optimal dynamic multi-

product ordering policy under non-stationary demand based

on BDQN combined with credit assignment. The proposed

agent is based on the idea of treating a single agent as a

multi-agent learner with a credit assignment policy that is

a hybrid of the global and the local rewards with the aim of

coping with the combinatorial increase in the action space.

2. Method

2.1 Problem setting

We consider a multi-product inventory system between

one supplier and one retailer. Our objective is to minimize

1ⓒ 2019 Information Processing Society of Japan

Vol.2019-MPS-124 No.2
2019/7/29

IPSJ SIG Technical Report

the total retailer cost, which includes the holding, penalty,

and transportation costs. We assumed a non-stationary de-

mand and a demand forecast conditioned by the forecast er-

ror parameter, which means the agent knows the expected

demand forecast accuracy as prior knowledge. We have used

the following notations:

i : Item number, i = 1, ..., N ,

t : Period, t = 1,, T ,

LTi : Lead time of item i from supplier to retailer,

li : Lot size of item i, (in palette),

di,t : Demand for item i during period t, (in palette),

fi,t : Forecast of the demand for item i during period t,(in

palette),

xi,t : Order quantity for item i made at time t, (in palette),

ri,t : Replenishment for item i from supplier during period

t, (in palette),

r̂i,t : Replenishment forecast for item i from supplier during

period t, (in palette),

Ii,t : Inventory position of item i at the start of time t, (in

palette),

Îi,t,t̂ : Inventory position forecast for item i at time t̂ fore-

casted at time t (in palette),

ui,t : Unsatisfied demand of item i during period t, (in

palette),

si,t : Shipment of item i from retailer during period t, (in

palette),

Ei : Forecast error parameter of item i.

The demand forecasts are generated so that the propor-

tion of standard deviation of forecast error to the standard

deviation of demand itself equals Ei. We permit lost sales.

Replenishment at time t can be used from time t+1. In this

study, we do not take supplier stock-out or any supply delay

into consideration. Thus, the relationship between inven-

tory, replenishment, shipment, demand, unsatisfied demand

and inventory position forecast can be formulated as follows.

r̂i,t+LTi
= xi,t, (1)

ri,t = r̂i,t, (2)

si,t = min(di,t, Ii,t), (3)

ui,t = di,t − si,t, (4)

Ii,t+1 = Ii,t − si,t + ri,t, (5)

Îi,t,t̂+1 = Ii,t −
t̂∑

t′=t

fi,t′ +

t̂∑
t′=t

r̂i,t′ . (6)

Cost is defined as follows:

Chold
i,t = Uhold × Ii,t, (7)

Cpel
i,t = Upel × ui,t, (8)

Ctrans
t = U trans × ⌈

∑
i xi,t

CAP
⌉, (9)

where CAP represents container capacity (in palette) and

⌈·⌉ is ceiling function. Chold
i,t , Cpel

i,t , and Ctrans
t represent

the holding, penalty, and transportation costs of item i dur-

ing period t respectively, and Uhold, Upel, and U trans are

the unit holding, shortage, and transportation costs respec-

tively.

2.2 MDP formulation for multi-product inven-

tory system with demand forecasts

2.2.1 Observations and state variables

At every time step, the agent obtains information about

the future inventory positions according to the demand fore-

cast. The on-order quantity OOi,t of item i at time t (i.e.

the items that have been ordered but have yet been received)

can be defined by
∑

t r̂i,t. Let [·]
st:T be the summation of [·]

from st to st+T . In each period, the agent has observations

ot = [(Ii,t, OOi,t, Îi,t,t+LT , f
t:LT
i,t , f t+LT :M

i,t)]Ni=1 and makes

a decision based on ot. Here, M is the parameter which de-

cides how far the future demand needs to be considered and

we let M be four weeks.

True information on Ii,t+LT , dt:LT
i,t , and dt+LT :M

i,t

can be observed afterward by use of the actual de-

mand. Thus, we can define the state by st =

[(Ii,t, OOi,t, Ii,t+LT , d
t:LT
i,t , dt+LT :M

i,t)]Ni=1.

Let us assume that the average demand forecast error does

not change from time to time and the agent knows its degree

of forecast error as prior knowledge. Then, our belief state

b(s) should be conditioned only on ot and can be defined

by P (st|ot) instead of P (st|h) in a general POMDP. Also

assuming that expected forecast error follows normal distri-

bution, we can infer state st from observation ot by using

Ei (see Section 3.4 for further explanation).

Note that our belief state b(s) can be calculated by the

use of only ot and Ei. When selecting action greedily, we

used the following for the greedy policy based on [4]:

at = argmax
a

E[Q(ŝt, a)], (10)

where ŝt are estimated states that use the Monte Carlo sam-

pling. In our experiments, we generated 300 samples at each

step.

2.2.2 Action space

In each period, an agent orders xi,t ∈ Xi, which can be

any multiples of lot sizes li. However, infinite action space is

not practical and also taking a large number of orders com-

pared with the demand is unrealistic from a supply chain

point of view. Therefore, we limited action space Xi to

Xi = {lia | a ∈ {0, 1, 2, 3}}.

2.3 Branching deep Q-network with reward allo-

cation

In [6], they examined the action branching agent for envi-

ronment in which only a global reward was available. In our

case, each branch consisted of one product. Our objective

variable was total cost; the transportation cost was calcu-

lated across multiple products whereas the holding cost and

penalty cost were calculated independently of each product,

2ⓒ 2019 Information Processing Society of Japan

Vol.2019-MPS-124 No.2
2019/7/29

IPSJ SIG Technical Report

which means that the total cost included both global and

local rewards.

After several numerical experiments, our best result came

from the architecture shown in Fig. 1 which had the distin-

guishing feature of allocating rewards to each branch.

!"#$%&'

(%)$%*%+,#,-.+

!!!!"#!

$% &#

!!!!"'!

$% &'

!!!!"(!

$% &(

)#

)'

)(

/0.1#0'

$%2#$&

$%2#$&'

#00.3#,-.+

!,#,%

*#! $

*'! $

*(! $

!!!!+#!

$% &#

!!!!+'!

$% &'

!!!!+(!

$% &(

Fig. 1 illustration of our proposed agent

2.3.1 Reward allocation

Unlike [6], we modified our temporal difference target

equation as follows:

yd = rd + γQ−
d

(
s′, argmax

a′
d∈Ad

Qd

(
s′, a′d

))
, (11)

where rd refers to the reward per product. The trans-

portation costs depend on the number of containers; the

remaining costs can be calculated separately for each prod-

uct. There are several options for allocating the total trans-

portation cost to each product. The best results come from

the following allocation by which the total transportation

cost is allocated equally to all the products even if a specific

product is not ordered:

rd = −(Chold
i,t + Cpel

i,t +
Ctrans

t

N
). (12)

Intuitively, this allocation method would encourage each

branch to put an order simultaneously.

Thus, the loss function should be defined for each branch,

and all the branches backpropagation gradients are rescaled

by 1/N for the shared part of our architecture.

Ld = E(s,ad,rd,s′)∼D [Lδ (yd, Qd (s, ad))] , (13)

where Lδ is the Huber loss function.

2.3.2 State-value estimator

BDQN has a common state-value estimator. It is natu-

ral to set the branch-independent state-value estimator as

an adaptation of dueling network into our proposed agent

with reward allocation. Thus, the branch independent state

value and advantage can be simply defined as follows:

Qd (s, ad) = Vd(s) +Ad(s, ad), (14)

where Vd(s) denotes the branch independent state-value and

Ad (s, ad) denotes the corresponding sub-action advantage.

3. Experiments

3.1 Experimental settings

We conducted numerical experiments to examine the fol-

lowing questions:

1) Can the proposed agent learn the coordinated order pol-

icy across multiple products?

2) Can the proposed agent converge with a large number of

products?

3) Can the proposed agent converge with a non-stationary

demand?

4) Can the proposed agent find an optimal policy as com-

pared with the benchmark policy?

For validation, we used the standard Dueling Double

DQN, which we simply call DQN in this paper, and a

forecast-based economic order policy (F-EOP) as the bench-

mark approach. Each episode consisted of 200 time steps,

and initial 20 steps were ignored from the evaluation so as

to exclude the effect of initial inventory setting.

Regarding the branching architecture, we tried three types

of agents: BDQNs (BDQN with state-value estimator),

BDQN-RA (BDQN with reward allocation), and BDQN-

RAs (BDQN with reward allocation and state-value estima-

tor).

In order to validate above-mentioned questions, we con-

ducted three experiments by varying the number of products

and the demand stationarity.

3.2 Benchmark methodology: Forecast-based

economic order policy

There has been no established JRP under non-stationary

demand and demand forecast; therefore, we selected a non-

coordinated order policy based on [3] as our benchmark

policy, which consisted of forecast-based order-point and an

economic replenishment quantity based on Wagner-Whitin

dynamic lot size model with extension to incorporate de-

mand forecasts.

3.2.1 Forecast-based order-point

When demand forecasts are available, a replenishment or-

der takes place when the forecasted inventory position at

time t + LT drops to order-point or lower. Assuming that

forecast error follows normal distribution, order-point can

be defined as s = k × σ
√
LT where k is the safety factor

and σ is the standard deviation of forecast error. k can be

determined so that sum of the expected penalty cost and

expected holding cost for the safety stock are minimized.

3.2.2 Economic replenishment quantity with de-

mand forecasts

At each time step, we choose the order quantity xi,t ∈ Xi.

When x ∈ Xi is selected at time t, the expected unit time

cost C(x) from t + LT to the next replenishment timing is

calculated by dividing the sum of the expected holding cost

and the transportation cost by T where T is determined by

estimating the timing for which the forecasted inventory po-

sition drops to or lower than the order-point on condition

that x is replenished at time t + LT . Thus, the economic

replenishment quantity with the demand forecasts can be

derived by argminx(C(x)).

3.3 Experiment result

Table.1 summarizes the experiments’ results. Our pro-

3ⓒ 2019 Information Processing Society of Japan

Vol.2019-MPS-124 No.2
2019/7/29

IPSJ SIG Technical Report

Table 1 Summary of experiment settings and results

ID # of Products Demand Stationarity F-EOP DQN BDQNs BDQN-RA BDQN-RAs Improved(%)
1 2 Stationary 133.2 105.3 108.0 (*) 106.7 107.3 19.9%
2 2 Upward Trend 216.5 205.2 266.3 (*) 192.0 195.2 11.3%
3 10 Upward Trend 447.8 - 817.2 346.8 (*) 341.3 23.8%

The final results for DQN and BDQN-family were derived by calculating the averaged total cost with a greedy policy using the trained
model after 10,000 episodes over 6 runs. Improved(%) represents the decrease in total cost compared with F-EOP. (*) denotes the

item used for calculating Improved(%).

posed agent performed better than did the non-coordinated

F-EOP policy. As the number of products increased, DQN

and BDQN (without reward allocation) suffered from con-

vergence whereas our proposed agent, BDQN-RA(s), per-

formed well even with 10 products. DQN suffered from its

combinatorial increasing action space for a large number of

products. When the number of products equaled 10, its ac-

tion space was around 106. As for BDQN, using a single

global reward made the learning convergence unstable be-

cause the feedback signal to each branch was considered to

be too noisy. For the proposed agent, the reward allocation

strategy worked well in stable learning while achieving co-

ordinated orders. The state-value estimator in the proposed

agent did not show a significant impact on the results.

One of the most important validation items regarding the

action branching agent in JRP is whether or not the coor-

dinated order is possible across multiple products. As the

learning process proceeded, our proposed agent learned to

order these two products simultaneously such that the trans-

portation cost was minimized. Even if the inventory position

of one item was relatively high (i.e., immediate order did not

need to take place), the order took place in accordance with

the other order.

In experiment 3, we extended our experiments to a more

complicated setting with 10 products, and an average unit

time demand was still much less than the container capacity.

BDQN failed to converge, whereas our proposed agent ex-

hibited an efficient and stable learning process. BDQN-RAs

agent achieved a 23.8% cost reduction as compared with

F-EOP.

3.4 Experiment detail

We let cost parameters Uhold, Upel, and U trans be 0.02,

1.0, and 1, respectively. The demand and lot size of each

product are provided in Table.2. Stationary demand was

generated following N(µ, σ) and we let σ
µ be 0.4. Non-

stationary data were generated by the simple addition of the

linear upward trends until the demand at the end of the 200

time steps tripled, defined by; di,t = d̂i,t + 2 ∗ µi ∗ (t/200)

where d̂i,t denotes stationary demand. Demand forecasts

were generated so that the proportion of the standard devi-

ation of the forecast error to the standard deviation of the

demand itself equaled 0.5.

4. Conclusion

We introduced extended branching Q-learning agent with

function approximation designed for combinatorial action

dimension with global and local reward based on the cost

Table 2 Demand setting in each experiment

ID µ Lot size
1 [2, 2] [8, 8]
2 [2, 2] [8, 8]

3
[.3, .4, .5, .5, .7,
.9, 1., 1., 1.2, 1.2]

[1, 1, 1, 1, 2,
2, 3, 3, 3, 3]

structure of multi-product inventory system. Our numeri-

cal experiments showed that as the number of products in-

creased, both DQN and BDQN suffered from convergence;

however, our proposed agent performed better when com-

pared with F-EOP. Instability in the latter part of the learn-

ing process caused by the branch-independent action selec-

tion using our proposed agent should be investigated in fu-

ture studies.

Our proposed agent needed only the demand forecast,

which is usual in the real business setting; this expands the

possibility to adapt our approach in real-world situations.

In future studies, we also need to investigate how to extend

this by including multi-layer and multi-retailer supply chains

with realistic constraints.

References

[1] Chaharsooghi, K. S., Heydari, J. and Zegordi, H. S.: A rein-
forcement learning model for supply chain ordering manage-
ment: An application to the beer game, Vol. 45, No. 4, pp.
949–959 (2008).

[2] dos Bastos, L., Mendes, M., de Nunes, D., Melo, A., Carneiro,
M., do de Janeiro, B., Vargas, B. and do do Pará, B.: A
systematic literature review on the joint replenishment prob-
lem solutions: 2006-2015, Prod, Vol. 27, No. 0 (online), DOI:
10.1590/0103-6513.222916 (2017).

[3] Ishigaki, A. and Hirakawa, Y.: Design of a Economic Order-
Point System based on Forecasted Inventory Positions, Jour-
nal of Japan Industrial Management Association, Vol. 59,
No. 4, pp. 290–295 (2008).

[4] Littman, M. L., Cassandra, A. R. and Kaelbling, L.: Learning
policies for partially observable environments: Scaling up, pp.
362–370 (1995).

[5] Oroojlooyjadid, A., Nazari, M., Snyder, L. and Takáč, M.:
A Deep Q-Network for the Beer Game: A Reinforcement
Learning algorithm to Solve Inventory Optimization Problems
(2017).

[6] Tavakoli, A., Pardo, F. and Kormushev, P.: Action
Branching Architectures for Deep Reinforcement Learn-
ing, CoRR, Vol. abs/1711.08946 (online), available from
⟨http://arxiv.org/abs/1711.08946⟩ (2017).

4ⓒ 2019 Information Processing Society of Japan

Vol.2019-MPS-124 No.2
2019/7/29

