
IPSJ SIG Technical Report

1

Real-time Object Perception with Accelerated On-vehicle Edge AI

SHAOQI CHEN†1 ZHIMING TAN†1

KOICHIRO YAMASHITA†1 LU SHI†1

Abstract: We propose a system of detecting objects from on-vehicle camera, calculating their depth, and then showing them on

map. Traditional detection requires huge amount of CPU, GPU, and memory resources on server. It is difficult to execute it on

the edge embedded CPU with applicable precision and performance. So we implement with an accelerated deep learning model,

which runs 3 times faster than the state-of-the-art models on an embedded CPU by design of networks and memory usage. Our

distributed architecture with edge and server can provide real time information on street for various applications, including map,

traffic management, autonomous driving, and logistics, etc.

Keywords: Object detection, Edge AI, Deep Learning, Lightweight Convolutional Neural Network

1. Introduction

 Real-time object perception with edge devices, such as

on-vehicle CPU or mobile CPU, is a challenging task in

computer vision. The real-time perception is important for

practical applications such as Advanced Driving Assistant

System (ADAS), autonomous driving, logistics, and robot

navigation, etc. In the past, the mainstream methods for

real-time object detection based on the algorithms designed with

handcrafted features, such as shape, texture, color, HOG, and

DPM [1, 2]. These methods have sophisticated feature

representations and stronger pertinence but lack of robustness.

With the upgrading of hardware and development of software

framework in recent years, deep Convolutional Neural Network

(CNN) based detection methods have been applied to object

detection for edge devices, which can get robust and high-level

feature representations by learning.

 Deep CNN based object detection methods can be grouped

into two genes: “two-stage detectors”, such as R-CNN, Fast

R-CNN, Faster R-CNN, and FPN [3-6], and “one-stage

detectors”, such as YOLO series, SSD, and RetinaNet [7-11]. In

the former, the detection part usually consists of Region

Proposal Network (RPN) [5] and detection head. These

detectors tend to utilize a heavy detection calculation (e.g., over

25G Floating-point Operations Per Second, FLOPS [12, 13, 14,

6, 5]) for good accuracy which is too expensive for edge devices.

Most researchers have adopted the later because it has traded off

the accuracy and speed for detection target. Currently, one-stage

detectors such as SSD [10] and YOLO [7, 8, 9] achieve

real-time inference on GPU with competitive accuracy, but still

run slowly on devices with embedded CPUs.

 Modern state-of-the-art networks require high computational

resources, beyond the capabilities of many mobile and

embedded processors. Many researchers have designed new

network architectures which are specifically tailored for edge

devices and resource constrained environments. Mark Sandler et

al. [15] introduce a novel layer module named as inverted

residual with linear bottleneck to significantly reduce the

memory footprint needed during inference. Zhang et al. [16]

introduce group pointwise convolution to reduce the amount of

 †1 Fujitsu R&D Center Co., Ltd.

computation significantly by restricting the input convolution

operation to each group. Ma et al. [17] derive four guidelines for

efficient network design and present a lightweight architecture

called ShufflenetNet V2.

 In this paper, we propose an end-to-end lightweight CNN

architecture which can be used for real-time object detection on

edge devices. Our network run 3 times faster than the

state-of-the-art on the embedded CPU with competitive

accuracy.

As most detection tasks base on monocular cameras, it is hard

to obtain object depth information. The depth is important for

recognizing the location of the object in on-vehicle applications

without expensive radar sensors. Such applications include

Autonomous Emergency Braking (AEB), Forward Collision

Waring (FCW), Danger Forecast System (DFS) [36], dynamic

mapping, and so on. Fortunately, some specifically designed

CNNs enable depth estimation from a single input image,

avoiding from multiple viewpoints [18, 19, 20, 21]. They

directly obtain estimated disparity for each pixel, then calculate

the depth information by providing the camera parameters [22].

However, if we only estimate depth in this way, it lacks of

corresponding object attribute information. In this paper, we

propose a method for acquiring depth information [22] for

objects detected with our lightweight CNN. If additional GPS

module on the edge device is available, we can further calculate

the location information of the objects and draw it on the map.

Figure 1. Range of real-time computation for ADAS application.

ⓒ 2019 Information Processing Society of Japan

Vol.2019-ARC-237 No.33
2019/7/26

IPSJ SIG Technical Report

2

Fig.1. shows a real-time performance requirement in each

allocation. In this paper, it is considered a possible application

of Danger Forecast System (DFS) and Dynamic Mapping (DM)

on the practical embedded platform.

The rest of this paper is organized as follows. Section 2

describes the related work on lightweight CNN architectures,

monocular depth estimation, and object location. The details of

them are presented in Section 3. In Section 4, we will show the

experimental results with accuracy and speed performance.

Conclusion and future directions are summarized in final

section.

2. Related Work

2.1 Lightweight CNN architectures

The one-stage detectors are regarded as the first choice for

real-time detection on edge devices. For instance, the YOLO

family [7, 8, 9] and SSD [10] can run on GPU in real-time.

From YOLO v2 to YOLO v3, taking the input image 608x608

for consideration, the mAP on COCO test-dev dataset is boosted

from 48.1% to 57.9%. With the gain of accuracy, YOLO v3 has

an increment of computation with 141 GFLOPS compared with

63 GFLOPS from YOLO v2. Tiny version of YOLO has been

designed to simplify network architecture and reduce

computation, which may lead to decreasing of detection

accuracy. The mAP of YOLOv3 tiny on COCO test-dev is

33.1% with 5.56 GFLOPS.

Tuning deep CNN architectures to strike an optimal balance

between speed and accuracy has been a hot area of research for

the last several years. Andrew G et al. come up with depthwise

convolution and pointwise convolution to extract features,

which reduced time complexity significantly [23]. Furthermore,

based on their work, Mark Sandler et al. [15] introduce two

structures: linear bottleneck and inverted residual blocks, which

can not only remove the redundant information from high-level,

but also avoid the information collapsing from low-level. These

structures can extract features more fully and efficiently. Zhang

et al. introduce pointwise group convolution and channel shuffle

to greatly reduce computation cost [16]. Ma et al. propose that

the direct metric of speed depends on other factors such as

Memory Access Cost (MAC) but not only considering FLOPS,

and present an architecture named ShuffleNet V2 based on the

work from Zhang et al. Our lightweight network for object

detection is called ShuffleNet-YOLOv3, which combines small

backbone network and lightweight one-stage detector.

2.2 Monocular depth estimation

There is large number of work focusing on depth estimation

from images, such as using pairs [24], several overlapping

images captured from multiple viewpoints [25]. These

approaches are only applicable when there are more than one

input image available. In our task, we focus on the work related

to monocular depth estimation with only single input image.

Learning-based stereo estimation algorithms compute the

similarity between each pixel in one image and every other pixel

in another image. These methods rely on large amounts of

ground truth data of disparity and stereo image pairs at training

time. This type of data is hard to obtain from real world. For the

supervised method of depth estimation from single image, Liu et

al. [26] use CNN to learn depth. Ladicky et al. [18] incorporate

semantics into their model to improve their per-pixel depth

estimation. Eigen et al. [19, 27] show that it is possible to

produce dense pixel depth estimation by using a two-scale deep

network trained on images and their corresponding depth values.

Unlike most other previous work in depth estimation from

single image, they do not rely on hand-crafted features or an

initial over-segmentation, and instead learn a representation

directly from the raw pixel values. Like the stereo methods,

these approaches rely on high quality, pixel aligned ground truth

depth at training time.

Godard et al. [22] pose monocular depth estimation as an

image reconstruction problem, solving for the disparity field

without requiring ground truth depth. They also incorporate the

left-right consistency check directly into the network to improve

the quality of synthesized depth image. At training time, the

model learns to predict the depth information for both images of

a stereo pair by processing reference image only. This work

represents state-of-the-art for monocular depth estimation

currently. Based on their work, we estimate the depth

information for specific target combined with our lightweight

CNN detection network.

2.3 Object location

Location of object in the real world is important for

applications such as autonomous driving, obstacle avoidance,

and robot operation, etc. Many works related to object location

are based on radar-ranging method [28, 29]. Kishigami T. et al.

[30] use millimeter-wave radar to perceive the direction and

distance of vehicles and pedestrians in wide areas, while

Douillard et al. implement Light Detection and Ranging

(LiDAR) to do detection and location work [31]. It is hard to get

the object category information from these kinds of sensors. To

overcome this problem, De Silva et al. propose fusion of

information from LiDAR and camera [32]. However, data

streams from these sensors are different in many aspects, such

as data format, resolution, and geometric alignment. More

importantly, the cost and power consumption of radar and

LiDAR are high. In this paper, we propose to use vision-based

method to realize target location in the real world with our

real-time object detection and monocular depth estimation

model.

3. Proposed System

 The object detection based on deep CNN has shown great

advantages. In this paper, we propose a system that can achieve

real-time object detection on edge device, depth estimation of

target objects, and locating them on the map. The overall

architecture of our system is shown in Fig. 2.

Edge device, such as driving video recorder, with a camera is

mounted on the front windscreen of a vehicle. We get our deep

CNN-based object detection module packaged as an application

on the edge device. Image captured from the camera will be sent

to the module of Object Detection. Then the inferenced results

ⓒ 2019 Information Processing Society of Japan

Vol.2019-ARC-237 No.33
2019/7/26

IPSJ SIG Technical Report

3

Figure 2. Diagram of system for object detection, monocular depth estimation, location, and mapping with edge AI.

including categories, bounding box of object, and the confidence

for each object will be sent to the module of Depth Estimation.

In this module, we will obtain 3-dimension information for each

object in front of the camera, including the 2D position on the

image plane and the depth information. At the same time, the

edge device equipped with GPS positioning module will provide

location information of ego vehicle. With the 3D information of

target and GPS information of ego vehicle, then GPS position of

each target object can be calculated. Furthermore, we can locate

these target objects on the map. Following we will describe each

module in detail.

3.1 Object detection

Recently, there are growing number of researches on

deployment of deep learning based task on the edge device, such

as object detection, classification, speech recognition, etc. Since

the main concern is in constrained computing resources and

stricter requirement for power consumption, we should follow

the principle of lightweight when designing the network. Here

lightweight means smaller calculation load and lower power

consumption. Take a panoramic view of the object detection

field, YOLO v3 network can get good balance of speed and

performance. Although it is one of the one-stage object

detection methods, it still needs huge amount of computing

resource. YOLO v3 with backbone of DarkNet53 will cost 60+

GFLOPS resource for input image size of 416x416 during one

inference. Such huge amount of computation is a burden for

edge device with limited computing power, making it more

difficult to achieve real-time performance. For instance,

PyTorch version YOLO v3 can only run at average 0.3 fps on i5

6200u CPU platform. Looking into the structure of YOLOv3,

we can find that the backbone named as DarkNet is composed of

conventional residual block like ResNet [14]. Comparing the

current mainstream lightweight networks, the residual block is a

basic structure of residual network without any optimization for

simplifying. In aspects of number and width of structural stacks,

quantity and width of blocks are also too complicated. So our

design of lightweight network can follow: reducing network

width, reducing the number of network layers, and changing

residual block to shuffle block (Shuffle Net v2).

Table 1 shows the modification for our lightweight network

Shuffle-YOLOv3. Initially, we use shuffle block to replace

residual block not only in backbone but also in the yolo

detection layers. This modification can lightweight backbone

and regression network at the same time. After slimming the

network, overall computational operation is reduced by more

than half. With the existence of separable convolution and

shuffle structure, improvement on speed for deep learning

model running on edge device will be even higher.

Table 1: The structure of original version of YOLOv3, ShuffleNet v2

and our redesigned network: Shuffle-YOLO v3.

Detailed structure of our network is shown in Fig. 3. As

mentioned above, we appropriately modify structure of

ShuffleNet v2 and delete some layers. Conversely, due to three

YOLO detection layers extracting features from three layers of

backbone, we should retain basic structure like

Darknet53-YOLOv3 in order to keep enough scale difference in

different YOLO layers. So we only reduce four layers. In

addition, we make small change inside the Shuffle block, by

extending the deep layers’ convolution kernel size to 5x5 and

changing activation function.

The basic structure of the shuffle block is shown in Fig. 4. It

is redesigned based on ShuffleNet v2. We can see that different

strides has different channel structures. We relax the restriction

of convolution kernel size, so as to adjust shuffle structure

 Darknet

53-YOLOv3

ShuffleNet v2 Shuffle-YOLO

v3

Repeat

Layers

1-2-8-8-4-yolo(3-3

-3)

1-4-8-4-1-fc 1-2-6-6-4-yolo(

3-3-3)

Layers

width

64-128-256-512-10

24-yolo(1024-512-

256)

24-116-232-46

4-1024-fc(1000

)

64-128-192-25

6-384-yolo(384

-256-192)

Blocks Residual Shuffle Shuffle

Total

computat

ion

60 GFLOPS - 25 GFLOPS

ⓒ 2019 Information Processing Society of Japan

Vol.2019-ARC-237 No.33
2019/7/26

IPSJ SIG Technical Report

4

Figure 3. Architecture of Shuffle-YOLOv3

freedom.

Using larger convolution kernels can help network to enhance

the capability of deep network features. On the other side, we

use h-swish activation function to replace Relu activation

function in the deep layers. It is helpful to improve network

accuracy, too.

Among all, our optimization points can be concluded as

follow. First, we modify the number of ShuffleNet layers. By

referring to DarkNet 53, we reduce four layers in middle part of

the backbone. Second, we reduce kernel number in each block

so as to reduce the amount of calculation. Third, compared with

original ShuffleNet, we introduce 5x5 kernel for deep level

feature in deep layers. Because 5x5 kernel can remain more

receptive field information, it is meaningful for detecting small

objects. So we add it in serial deep blocks. Fourth, we replace

some Relu activation function by H-swish activation function as

MobileNet v3 [33].

Figure 4. Analysis of Shuffle structure

3.2 Depth estimation

Depth estimation from only one input image is mainly based

on the monocular depth estimation network from Godard et al.

They pose the depth estimation as an image reconstruction

problem during training. The network learns a function that is

able to reconstruct one image from the other, then learns about

the 3D shape of the scene. The prediction is given in terms of

image disparity – a scalar value for each pixel.

According to the results of object detection module, we can

locate the targets in the image plane with a bounding box (bbox)

closely around them. As shown in Fig.5, the center point “p” of

bbox for “person” is used as reference point to calculate the

depth from camera to this “person” with formula (1).

depth =α* b * f / disp (1)

where “α” is a coefficient for adjustment, “b” is the baseline

distance between two cameras, “f” is focal length of the camera,

and “disp” is disparity value for reference point.

Figure 5: Target depth estimation.

According to the principle of imaging, optical axis will have

an intersection point “O” with the image plane, and the ideal

point “O” will be located in the center of image plane. Actually

it will be off center, with offset values in two direction, which

can be calculated after calibration. Assuming that the

intersection point between optical axis and image plane after

rectification as point “O”, we can obtain the transverse distance

“x” between optical axis and target in camera coordinate system

with formula (2).

x = (xc / f) * depth (2)

ⓒ 2019 Information Processing Society of Japan

Vol.2019-ARC-237 No.33
2019/7/26

IPSJ SIG Technical Report

5

Where “xc” is transverse distance between point “O” and

reference point “p”. By now, we can obtain depth and direction

information of the target.

3.3 Target location and mapping

This module aims to obtain the GPS position information of

the target objects (e.g. vehicle, pedestrian) detected with

detection module and draw them on the map. Position module

on the edge device will update GPS position information,

namely longitude, latitude, and altitude at a regular intervals.

The GPS module used in our edge device is updated every

second. We assume that the motion of the ego vehicle with edge

device is linear during the interval, so GPS information within

this interval can be obtained by linear interpolation. Combined

with transverse distance and longitudinal distance information

of target object from camera, GPS information of target can be

estimated.

Figure 6: Target location and mapping. Edge device with camera and

GPS module is mounted on the ego car. “x” is transverse distance.

“depth” is longitudinal distance.

The processing procedure of this module is shown in Fig. 6.

The ENU coordinate system denotes to the East-North-Up local

coordinate system, where the U axis is outward, and Xcar-Ycar

is the camera coordinate system, assuming that the optical axis

of the camera is along the driving direction of the car. Firstly,

the position (φ, λ, h) of ego car in geodetic coordinate system is

converted to ENU coordinate system, where “φ”, “λ” and “h”

represent longitude, latitude, and altitude in WGS84 (World

Geodetic Coordinate System 1984), respectively. Then we

estimate the positions of targets in ENU coordinate system.

After that, their positions are transferred back to geodetic

coordinate system with form of (φ, λ, h). We can draw out the

targets on some open source maps with their estimated GPS

location.

3.4 Optimal memory usage

In addition to CPU calculation load, it's also necessary to

consider minimization of memory footprint to implement on the

edge devices. If the model runs out of memory, the app would

get terminated by operating system. The memory usage also has

an influence on the computing speed and the power

consumption, and affects how quickly the battery will be

drained or makes the edge device too hot.

One way to speed up the model is to simplify the computation

it does. We typically count this with FLOPS or

Multiply-Accumulate Operations (MACCs). The number of

computations, whether count with FLOPS or MACCs, takes

only part of the runtime. The memory usage is another part

which may seem even more important.

We only do inference operation on edge device, commonly

without training operation. In one layer, the device need to read

the input feature map from memory, then compute the dot

products by reading the layer’s parameters from memory, and

finally write the results as new feature map back to memory.

The huge amount of memory reading and writing will have a big

impact on the speed. Memory requirements mainly come from

two aspects. The first is the memory occupied by model

parameters, and the second is the memory used for layer outputs.

For the former, parameters of convolution operation which need

to be trained can be calculated as Cin*Cout*K2+Cout, where Cin

and Cout are the channel numbers of input and output feature

maps respectively, and K is kernel size. For the later, the

memory footprint of each output layer is calculated as Cout*H*W,

where H*W is output shape.

 To reduce the memory used by network parameters, we bring

in bottleneck block to the shuffle module in backbone, using

1x1 convolution to decrease the number of channels from input

feature map. Then followed with NxN (normally set to 3x3)

depthwise convolution and 1x1 pointwise convolution, this

bottleneck block will greatly reduce model parameters and

FLOPS, as shown in Fig. 4. To reduce memory occupied by

intermediate layer output, we appropriately reduce the repeating

layers and layers width as not to affect the feature extraction

effect, as shown in Table 1. For our network with the inference

on one image with input size 416x416, the memory footprint is

around 220MB, taking about 48.8% of the original YOLOv3.

4. Experiment and Result

 In this section, we evaluate the effectiveness of our modified

ShuffleNet-YOLOv3 on PASCAL VOC [34, 35] benchmarks.

Then we show some comparison results with several lightweight

objection networks currently used on mobile edge devices.

 Our detectors are trained end-to-end on one 1080Ti GPU. The

input resolution is 416x416. Multi-scale training with pixels in

the range {320-608} is adopted. We use heavy data

augmentation for training.We report our detection results on two

datasets. The first one is traffic dataset made by ourselves, with

samples from autopilot and traffic surveillance. It mingles BDD

dataset, cityscape dataset, and our own images. The second

dataset is the open dataset: VOC. The results are given in Table

2 and Table 3.

Model Backbone Input Model

Size(MB)

mAP FPS

(CPU)

YOLOv3[9] Darknet-53 416x416 243 71.8 1.25

Shuffle-YO

LOv3

Modified

shuffle

416x416 45.5 70.8 4

Table 2. Evaluation results on our traffic dataset (6 classes).

ⓒ 2019 Information Processing Society of Japan

Vol.2019-ARC-237 No.33
2019/7/26

IPSJ SIG Technical Report

6

Model Backbone Input

VOC2012

IOU=0.5

VOC2007

IOU=0.5

COCO

IOU=0.5

YOLOv

3[9]

Darknet-53 416x4

16

- 85.5(07+12+c

oco)*

55.3

Shuffle-

YOLOv

3

Modified

shuffle

416x4

16

81.8(07+12) 82.6(07+12) 52.0

SSD VGG19 321x3

21

74.9(07+12) 76.8(07+12) 45.4

Table 3. Evaluation results (mAP) on VOC and COCO (YOLOv3 VOC

testing result comes from third-party)

Our modified ShuffleNet-YOLOv3 surpasses prior

state-of-the-art one-stage detectors. ShuffleNet-YOLOv3 with

416x416 is only 18.7% of the model size of YOLOv3, while the

mean Average Precision (mAP) is just reduced about 1% (71.8%

-> 70.8%). Moreover, our model performs faster than YOLOv3

by nearly 4x.

 Furthermore, ShuffleNet-YOLOv3 achieves superior results

to state-of-the-art large object detectors such as SSD300*[10],

which has 31.75 GFLOPS. We reduce the computational cost by

orders of magnitude. The backbone of our model is significantly

smaller than the large detectors.

Fig. 7 visualizes several examples on VOC test-dev.

ShuffleNet-YOLOv3 achieves a much better trade-off between

accuracy and efficiency, which is not only efficient but highly

accurate.

Figure 7. Examples visualization on traffic dataset and VOC test-dev.

At last, we evaluate the inference speed of

ShuffleNet-YOLOv3 on Cortex A72 1.8GHz, Intel I7 3.0 GHz,

and GeForce 1080Ti (GPU). On A72 and I7, the inference is

executed with a single thread. The results are shown in Table 4.

We achieve faster detection on both A72 and I7 at 2 fps and 4

fps respectively, compared with Darknet-YOLOv3. On GPU,

our model can run at over 60 fps.

Fig. 8(b) shows the disparity image obtained by the depth

estimation module. This module runs at 28 fps on Titan X with

input resolution of 512x256. The error of estimated depth is

around 5%. We follow Godard’s training work on KITTI

training datasets, where the baseline b is 0.54m, and the focal

length f is 1012. There are some difference between our camera

parameters and camera parameters for KITTI. As inference with

model trained with KITTI dataset may exist bias for our camera,

so coefficient “α” is used for adjustment. In our experiments,

“α” is set to 1367, which may differ from different cameras.

The camera used in our experiment has a configuration of

resolution 1980x1080, CMOS sensor, horizon FOV 120°.

Model ARM

(Cortex A72

1.8GHz)

CPU

(Intel I7

3.0GHz)

GPU

(NVIDIA

1080Ti)

Darknet-YOLOv3 1500ms 800ms 33ms

Shuffle-YOLOv3 500ms 250ms 16.7ms

Table 4. Inference on ARM, CPU, GPU.

Fig.8(d) shows two top-view maps drawn with detected targets

(vehicles and pedestrians) after location estimation.

Figure 8. Results on images captured from the driving video recorder.

(a) Original input image. (b) Disparity image. (c) Object detection

results. (d) Detected targets (e.g. pedestrian and vehicle) are painted as

blue icon on the map with estimated location, pink point on (d) refer to

the ego car with edge device.

5. Conclusion

In this work, we propose a system of detecting objects from

on-vehicle camera, estimating their depth, and drawing them on

the map. For the object detection part, we design a lightweight

network architecture, and achieve faster object detection on

edge device with balance between the operation speed and

detection accuracy. It runs in 3 times faster than the state-of-art

on embedded CPU by arranging networks and memory. For our

depth estimation module, we further get the location information

for each object from object detection module. It runs with 28

FPS on GPU, the distance error within 40 meters does not

exceed 5%. The distributed architecture, which is implemented

by edge and server, can provide real-time information on street

for various potential application, including map, V2X,

autonomous driving, and logistics, etc.

Reference
[1] N. Dalal and B. Triggs, “Histograms of oriented gradients for

human detection,” in Computer Vision and Pattern Recognition,

2005. CVPR 2005. IEEE Computer Society Conference on, vol. 1.

IEEE, 2005, pp. 886-893.

[2] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A

discriminatively trained, multiscale, deformable part model,” in

ⓒ 2019 Information Processing Society of Japan

Vol.2019-ARC-237 No.33
2019/7/26

IPSJ SIG Technical Report

7

Computer Vision and Pattern Recognition, 2008. CVPR 2008.

IEEE Conference on. IEEE, 2008, pp. 1-8.

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature

hierarchies for object detection and semantic segmentation," in

Proceedings of the IEEE conference on computer vision and

pattern recognition, 2014, pp. 580-587.

[4] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international

conference on computer vision, 2015, pp. 1440-1448.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards

real-time object detection with region proposal networks,” in

Advances in neural information processing system, 2015, pp.

91-99.

[6] Lin, Tsung Yi , et al. "Feature Pyramid Networks for Object

Detection." 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) IEEE Computer Society, 2017.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only

look once: Unified, real-time object detection,” in Proceedings of

the IEEE conference on computer vision and pattern recognition,

2016, pp. 779-788.

[8] J. Redmon, A. Farhadi, YOLO9000: Better, Faster, Stronger.

arXiv:1612.08242.

[9] J. Redmon, A. Farhadi, “Yolov3: An incremental improvement,”

arxiv preprint arXiv:1804.02767, 2018.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and

A. C. Berg, “Ssd: Single shot multibox detector,” in European

conference on computer vision. Springer, 2016, pp. 21-37.

[11] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss

for dense object detection,” IEEE transactions on pattern analysis

and machine intelligence, 2018.

[12] Z. Cai and N. Vasconcelos. Cascade r-cnn: Delving into high

quality object detection. arXiv preprint arXiv: 1712.00726, 2017.

[13] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via

region-based fully convolutional networks. In Advances in neural

information processing systems, pages 379-387.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770-778, 2016.

[15] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. –C. Chen.

Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4510-4520, 2018.

[16] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely

efficient convolutional neural network for mobile devices. In

Proceeding of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 6848-6856, 2018.

[17] N. Ma, X. Zhang, H.-T. Zhang, and J. Sun. Shufflenet v2: Practical

guidelines for efficient cnn architecture design. In Proceedings of

the European Conference on Computer Vision (ECCV), pages

116-131, 2018.

[18] L. Ladicky, J. Shi, and M. Pollefeys, “Pulling things out of

perspective,” in CVPR, 2014, pp. 89–96.

[19] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from

a single image using a multi-scale deep network,” in Advances in

neural information processing systems, 2014, pp. 2366–2374.

[20] F. Liu, C. Shen, G. Lin, and I. Reid, “Learning depth from single

monocular images using deep convolutional neural fields,” IEEE

Trans. on Pattern Analysis and Machine Intelligence, vol. 38, no.

10, pp. 2024–2039, 2016.

[21] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised

learning of depth and ego-motion from video,” in CVPR, vol. 2, no.

6, 2017, p. 7.

[22] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised

monocular depth estimation with left-right consistency,” in CVPR,

vol. 2, no. 6, 2017, p. 7.

[23] Howard, A. G. , Zhu, M. , Chen, B. , Kalenichenko, D. , Wang,

W. , & Weyand, T. , et al. (2017). Mobilenets: efficient

convolutional neural networks for mobile vision applications.

[24] D. Scharstein and R. Szeliski. A taxonomy and evalution of dense

two-frame stereo correspondence algorithms. IJCV, 2002. 2

[25] Furukawa Y , Hernández, Carlos. Multi-View Stereo: A Tutorial[J].

Foundations and Trends? in Computer Graphics and Vision, 2015,

9(1-2):1-148.

[26] Liu F , Shen C , Lin G , et al. Learning Depth from Single

Monocular Images Using Deep Convolutional Neural Fields[J].

IEEE Transactions on Pattern Analysis & Machine Intelligence,

2015, 38(10):2024-2039.

[27] D. Eigen and R. Fergus. Predicting depth, surface normals

and semantic labels with a common multi-scale convolutional

architecture. In ICCV, 2015. 2

[28] Pohl N , Gerding M , Will B , et al. High Precision Radar Distance

Measurements in Overmoded Circular Waveguides[J]. IEEE

Transactions on Microwave Theory and Techniques, 2007,

55(6):1374-1381.

[29] Denicke E , Armbrecht G , Rolfes I . Radar distance measurements

in circular waveguides involving intermodal dispersion effects[J].

International Journal of Microwave and Wireless Technologies,

2010, 2(3-4):409-417.

[30] Kishigami T , Morita T , Mukai H , et al. Advanced

Millimeter-Wave Radar System to Detect Pedestrians and Vehicles

by Using Coded Pulse Compression and Adaptive Array[J]. IEICE

Transactions on Communications, 2013, E96.B(9):2313-2322.

[31] Douillard, Bertrand, et al. "On the segmentation of 3D LIDAR

point clouds." Robotics and Automation (ICRA), 2011 IEEE

International Conference on. IEEE, 2011.

[32] De Silva V , Roche J , Kondoz A . Fusion of LiDAR and Camera

Sensor Data for Environment Sensing in Driverless Vehicles[J].

2017.

[33] Howard, A., Sandler, M., Chu, et al. Searching for MobileNetV3,

arXiv:1905.02244. 2019.

[34] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A.

Zisserman, “The pascal visual object classes (voc) challenge,”

International journal of computer vision, vol. 88, no. 2, pp.

303-338, 2010.

[35] M. Everingham, S.A. Eslami, L. Van Gool, C. K. Williams, J.

Winn, and A. Zisserman, “The pascal visual object classes

challenge: A retrospective,” International journal of computer

vision, vol. 111, no. 1, pp. 98-136, 2015.

[36] Kouhei Hashitmo, Yutaro Ishida, Ryutaro Ichise, Hiroaki

Wagatsuma and Hakaru Tamukoh, “On-Vehicle Danger Forecast

System based on Knowledge-based Artifical Intelligence”, SCI’17,

Vol.32, No.5, pp.191-201, 2018

 Acknowledgments Thanks for the members effort to our

system, also the authors mentioned in the cited paper who

shared their results.

ⓒ 2019 Information Processing Society of Japan

Vol.2019-ARC-237 No.33
2019/7/26

