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Abstract: We propose a system of detecting objects from on-vehicle camera, calculating their depth, and then showing them on 

map. Traditional detection requires huge amount of CPU, GPU, and memory resources on server. It is difficult to execute it on 

the edge embedded CPU with applicable precision and performance. So we implement with an accelerated deep learning model, 

which runs 3 times faster than the state-of-the-art models on an embedded CPU by design of networks and memory usage. Our 

distributed architecture with edge and server can provide real time information on street for various applications, including map, 

traffic management, autonomous driving, and logistics, etc.  
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1. Introduction     

  Real-time object perception with edge devices, such as 

on-vehicle CPU or mobile CPU, is a challenging task in 

computer vision. The real-time perception is important for 

practical applications such as Advanced Driving Assistant 

System (ADAS), autonomous driving, logistics, and robot 

navigation, etc. In the past, the mainstream methods for 

real-time object detection based on the algorithms designed with 

handcrafted features, such as shape, texture, color, HOG, and 

DPM [1, 2]. These methods have sophisticated feature 

representations and stronger pertinence but lack of robustness. 

With the upgrading of hardware and development of software 

framework in recent years, deep Convolutional Neural Network 

(CNN) based detection methods have been applied to object 

detection for edge devices, which can get robust and high-level 

feature representations by learning.  

  Deep CNN based object detection methods can be grouped 

into two genes: “two-stage detectors”, such as R-CNN, Fast 

R-CNN, Faster R-CNN, and FPN [3-6], and “one-stage 

detectors”, such as YOLO series, SSD, and RetinaNet [7-11]. In 

the former, the detection part usually consists of Region 

Proposal Network (RPN) [5] and detection head. These 

detectors tend to utilize a heavy detection calculation (e.g., over 

25G Floating-point Operations Per Second, FLOPS [12, 13, 14, 

6, 5]) for good accuracy which is too expensive for edge devices. 

Most researchers have adopted the later because it has traded off 

the accuracy and speed for detection target. Currently, one-stage 

detectors such as SSD [10] and YOLO [7, 8, 9] achieve 

real-time inference on GPU with competitive accuracy, but still 

run slowly on devices with embedded CPUs. 

  Modern state-of-the-art networks require high computational 

resources, beyond the capabilities of many mobile and 

embedded processors. Many researchers have designed new 

network architectures which are specifically tailored for edge 

devices and resource constrained environments. Mark Sandler et 

al. [15] introduce a novel layer module named as inverted 

residual with linear bottleneck to significantly reduce the 

memory footprint needed during inference. Zhang et al. [16] 

introduce group pointwise convolution to reduce the amount of 
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computation significantly by restricting the input convolution 

operation to each group. Ma et al. [17] derive four guidelines for 

efficient network design and present a lightweight architecture 

called ShufflenetNet V2. 

  In this paper, we propose an end-to-end lightweight CNN 

architecture which can be used for real-time object detection on 

edge devices. Our network run 3 times faster than the 

state-of-the-art on the embedded CPU with competitive 

accuracy.   

As most detection tasks base on monocular cameras, it is hard 

to obtain object depth information. The depth is important for 

recognizing the location of the object in on-vehicle applications 

without expensive radar sensors. Such applications include 

Autonomous Emergency Braking (AEB), Forward Collision 

Waring (FCW), Danger Forecast System (DFS) [36], dynamic 

mapping, and so on. Fortunately, some specifically designed 

CNNs enable depth estimation from a single input image, 

avoiding from multiple viewpoints [18, 19, 20, 21]. They 

directly obtain estimated disparity for each pixel, then calculate 

the depth information by providing the camera parameters [22]. 

However, if we only estimate depth in this way, it lacks of 

corresponding object attribute information. In this paper, we 

propose a method for acquiring depth information [22] for 

objects detected with our lightweight CNN. If additional GPS 

module on the edge device is available, we can further calculate 

the location information of the objects and draw it on the map.  

 

 

Figure 1. Range of real-time computation for ADAS application. 
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Fig.1. shows a real-time performance requirement in each 

allocation. In this paper, it is considered a possible application 

of Danger Forecast System (DFS) and Dynamic Mapping (DM) 

on the practical embedded platform.  

The rest of this paper is organized as follows. Section 2 

describes the related work on lightweight CNN architectures, 

monocular depth estimation, and object location. The details of 

them are presented in Section 3. In Section 4, we will show the 

experimental results with accuracy and speed performance. 

Conclusion and future directions are summarized in final 

section.  

2. Related Work 

2.1 Lightweight CNN architectures 

The one-stage detectors are regarded as the first choice for 

real-time detection on edge devices. For instance, the YOLO 

family [7, 8, 9] and SSD [10] can run on GPU in real-time. 

From YOLO v2 to YOLO v3, taking the input image 608x608 

for consideration, the mAP on COCO test-dev dataset is boosted 

from 48.1% to 57.9%. With the gain of accuracy, YOLO v3 has 

an increment of computation with 141 GFLOPS compared with 

63 GFLOPS from YOLO v2. Tiny version of YOLO has been 

designed to simplify network architecture and reduce 

computation, which may lead to decreasing of detection 

accuracy. The mAP of YOLOv3 tiny on COCO test-dev is 

33.1% with 5.56 GFLOPS.  

Tuning deep CNN architectures to strike an optimal balance 

between speed and accuracy has been a hot area of research for 

the last several years. Andrew G et al. come up with depthwise 

convolution and pointwise convolution to extract features, 

which reduced time complexity significantly [23]. Furthermore, 

based on their work, Mark Sandler et al. [15] introduce two 

structures: linear bottleneck and inverted residual blocks, which 

can not only remove the redundant information from high-level, 

but also avoid the information collapsing from low-level. These 

structures can extract features more fully and efficiently. Zhang 

et al. introduce pointwise group convolution and channel shuffle 

to greatly reduce computation cost [16]. Ma et al. propose that 

the direct metric of speed depends on other factors such as 

Memory Access Cost (MAC) but not only considering FLOPS, 

and present an architecture named ShuffleNet V2 based on the 

work from Zhang et al. Our lightweight network for object 

detection is called ShuffleNet-YOLOv3, which combines small 

backbone network and lightweight one-stage detector. 

2.2 Monocular depth estimation 

There is large number of work focusing on depth estimation 

from images, such as using pairs [24], several overlapping 

images captured from multiple viewpoints [25]. These 

approaches are only applicable when there are more than one 

input image available. In our task, we focus on the work related 

to monocular depth estimation with only single input image.              

Learning-based stereo estimation algorithms compute the 

similarity between each pixel in one image and every other pixel 

in another image. These methods rely on large amounts of 

ground truth data of disparity and stereo image pairs at training 

time. This type of data is hard to obtain from real world. For the 

supervised method of depth estimation from single image, Liu et 

al. [26] use CNN to learn depth. Ladicky et al. [18] incorporate 

semantics into their model to improve their per-pixel depth 

estimation. Eigen et al. [19, 27] show that it is possible to 

produce dense pixel depth estimation by using a two-scale deep 

network trained on images and their corresponding depth values. 

Unlike most other previous work in depth estimation from 

single image, they do not rely on hand-crafted features or an 

initial over-segmentation, and instead learn a representation 

directly from the raw pixel values. Like the stereo methods, 

these approaches rely on high quality, pixel aligned ground truth 

depth at training time.  

Godard et al. [22] pose monocular depth estimation as an 

image reconstruction problem, solving for the disparity field 

without requiring ground truth depth. They also incorporate the 

left-right consistency check directly into the network to improve 

the quality of synthesized depth image. At training time, the 

model learns to predict the depth information for both images of 

a stereo pair by processing reference image only. This work 

represents state-of-the-art for monocular depth estimation 

currently. Based on their work, we estimate the depth 

information for specific target combined with our lightweight 

CNN detection network. 

2.3 Object location 

Location of object in the real world is important for 

applications such as autonomous driving, obstacle avoidance, 

and robot operation, etc. Many works related to object location 

are based on radar-ranging method [28, 29]. Kishigami T. et al. 

[30] use millimeter-wave radar to perceive the direction and 

distance of vehicles and pedestrians in wide areas, while 

Douillard et al. implement Light Detection and Ranging 

(LiDAR) to do detection and location work [31]. It is hard to get 

the object category information from these kinds of sensors. To 

overcome this problem, De Silva et al. propose fusion of 

information from LiDAR and camera [32]. However, data 

streams from these sensors are different in many aspects, such 

as data format, resolution, and geometric alignment. More 

importantly, the cost and power consumption of radar and 

LiDAR are high. In this paper, we propose to use vision-based 

method to realize target location in the real world with our 

real-time object detection and monocular depth estimation 

model.   

3. Proposed System 

  The object detection based on deep CNN has shown great 

advantages. In this paper, we propose a system that can achieve 

real-time object detection on edge device, depth estimation of 

target objects, and locating them on the map. The overall 

architecture of our system is shown in Fig. 2. 

Edge device, such as driving video recorder, with a camera is 

mounted on the front windscreen of a vehicle. We get our deep 

CNN-based object detection module packaged as an application 

on the edge device. Image captured from the camera will be sent 

to the module of Object Detection. Then the inferenced results 
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Figure 2. Diagram of system for object detection, monocular depth estimation, location, and mapping with edge AI.

 

including categories, bounding box of object, and the confidence 

for each object will be sent to the module of Depth Estimation. 

In this module, we will obtain 3-dimension information for each 

object in front of the camera, including the 2D position on the 

image plane and the depth information. At the same time, the 

edge device equipped with GPS positioning module will provide 

location information of ego vehicle. With the 3D information of 

target and GPS information of ego vehicle, then GPS position of 

each target object can be calculated. Furthermore, we can locate 

these target objects on the map. Following we will describe each 

module in detail. 

3.1 Object detection 

Recently, there are growing number of researches on 

deployment of deep learning based task on the edge device, such 

as object detection, classification, speech recognition, etc. Since 

the main concern is in constrained computing resources and 

stricter requirement for power consumption, we should follow 

the principle of lightweight when designing the network. Here 

lightweight means smaller calculation load and lower power 

consumption. Take a panoramic view of the object detection 

field, YOLO v3 network can get good balance of speed and 

performance. Although it is one of the one-stage object 

detection methods, it still needs huge amount of computing 

resource. YOLO v3 with backbone of DarkNet53 will cost 60+ 

GFLOPS resource for input image size of 416x416 during one 

inference. Such huge amount of computation is a burden for 

edge device with limited computing power, making it more 

difficult to achieve real-time performance. For instance, 

PyTorch version YOLO v3 can only run at average 0.3 fps on i5 

6200u CPU platform. Looking into the structure of YOLOv3, 

we can find that the backbone named as DarkNet is composed of 

conventional residual block like ResNet [14]. Comparing the 

current mainstream lightweight networks, the residual block is a 

basic structure of residual network without any optimization for 

simplifying. In aspects of number and width of structural stacks, 

quantity and width of blocks are also too complicated. So our 

design of lightweight network can follow: reducing network 

width, reducing the number of network layers, and changing 

residual block to shuffle block (Shuffle Net v2). 

Table 1 shows the modification for our lightweight network 

Shuffle-YOLOv3. Initially, we use shuffle block to replace 

residual block not only in backbone but also in the yolo 

detection layers. This modification can lightweight backbone 

and regression network at the same time. After slimming the 

network, overall computational operation is reduced by more 

than half. With the existence of separable convolution and 

shuffle structure, improvement on speed for deep learning 

model running on edge device will be even higher. 

Table 1: The structure of original version of YOLOv3, ShuffleNet v2 

and our redesigned network: Shuffle-YOLO v3. 

 

Detailed structure of our network is shown in Fig. 3. As 

mentioned above, we appropriately modify structure of 

ShuffleNet v2 and delete some layers. Conversely, due to three 

YOLO detection layers extracting features from three layers of 

backbone, we should retain basic structure like 

Darknet53-YOLOv3 in order to keep enough scale difference in 

different YOLO layers. So we only reduce four layers. In 

addition, we make small change inside the Shuffle block, by 

extending the deep layers’ convolution kernel size to 5x5 and 

changing activation function. 

The basic structure of the shuffle block is shown in Fig. 4. It 

is redesigned based on ShuffleNet v2. We can see that different 

strides has different channel structures. We relax the restriction 

of convolution kernel size, so as to adjust shuffle structure  

 Darknet 

53-YOLOv3 

ShuffleNet v2 Shuffle-YOLO

v3 

Repeat 

Layers 

1-2-8-8-4-yolo(3-3

-3) 

1-4-8-4-1-fc 1-2-6-6-4-yolo(

3-3-3) 

Layers 

width 

64-128-256-512-10

24-yolo(1024-512-

256) 

24-116-232-46

4-1024-fc(1000

) 

64-128-192-25

6-384-yolo(384

-256-192) 

Blocks Residual Shuffle Shuffle 

Total 

computat

ion 

60 GFLOPS - 25 GFLOPS 
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Figure 3. Architecture of Shuffle-YOLOv3

freedom. 

Using larger convolution kernels can help network to enhance 

the capability of deep network features. On the other side, we 

use h-swish activation function to replace Relu activation 

function in the deep layers. It is helpful to improve network 

accuracy, too.  

Among all, our optimization points can be concluded as 

follow. First, we modify the number of ShuffleNet layers. By 

referring to DarkNet 53, we reduce four layers in middle part of 

the backbone. Second, we reduce kernel number in each block 

so as to reduce the amount of calculation. Third, compared with 

original ShuffleNet, we introduce 5x5 kernel for deep level 

feature in deep layers. Because 5x5 kernel can remain more 

receptive field information, it is meaningful for detecting small 

objects. So we add it in serial deep blocks. Fourth, we replace 

some Relu activation function by H-swish activation function as 

MobileNet v3 [33]. 

 

Figure 4. Analysis of Shuffle structure 

3.2 Depth estimation 

Depth estimation from only one input image is mainly based 

on the monocular depth estimation network from Godard et al. 

They pose the depth estimation as an image reconstruction 

problem during training. The network learns a function that is 

able to reconstruct one image from the other, then learns about 

the 3D shape of the scene. The prediction is given in terms of 

image disparity – a scalar value for each pixel. 

According to the results of object detection module, we can 

locate the targets in the image plane with a bounding box (bbox) 

closely around them. As shown in Fig.5, the center point “p” of 

bbox for “person” is used as reference point to calculate the 

depth from camera to this “person” with formula (1). 

 

depth =α* b * f / disp                           (1) 

 

where “α” is a coefficient for adjustment, “b” is the baseline 

distance between two cameras, “f” is focal length of the camera, 

and “disp” is disparity value for reference point. 

 

     

Figure 5: Target depth estimation. 

 

According to the principle of imaging, optical axis will have 

an intersection point “O” with the image plane, and the ideal 

point “O” will be located in the center of image plane. Actually 

it will be off center, with offset values in two direction, which 

can be calculated after calibration. Assuming that the 

intersection point between optical axis and image plane after 

rectification as point “O”, we can obtain the transverse distance 

“x” between optical axis and target in camera coordinate system 

with formula (2). 

 

x = ( xc / f ) * depth                              (2) 
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Where “xc” is transverse distance between point “O” and 

reference point “p”. By now, we can obtain depth and direction 

information of the target.  

3.3 Target location and mapping 

This module aims to obtain the GPS position information of 

the target objects (e.g. vehicle, pedestrian) detected with 

detection module and draw them on the map. Position module 

on the edge device will update GPS position information, 

namely longitude, latitude, and altitude at a regular intervals. 

The GPS module used in our edge device is updated every 

second. We assume that the motion of the ego vehicle with edge 

device is linear during the interval, so GPS information within 

this interval can be obtained by linear interpolation. Combined 

with transverse distance and longitudinal distance information 

of target object from camera, GPS information of target can be 

estimated. 

 

 

Figure 6: Target location and mapping. Edge device with camera and 

GPS module is mounted on the ego car. “x” is transverse distance. 

“depth” is longitudinal distance. 

 

The processing procedure of this module is shown in Fig. 6. 

The ENU coordinate system denotes to the East-North-Up local 

coordinate system, where the U axis is outward, and Xcar-Ycar 

is the camera coordinate system, assuming that the optical axis 

of the camera is along the driving direction of the car. Firstly, 

the position (φ, λ, h) of ego car in geodetic coordinate system is 

converted to ENU coordinate system, where “φ”, “λ” and “h” 

represent longitude, latitude, and altitude in WGS84 (World 

Geodetic Coordinate System 1984), respectively. Then we 

estimate the positions of targets in ENU coordinate system. 

After that, their positions are transferred back to geodetic 

coordinate system with form of (φ, λ, h). We can draw out the 

targets on some open source maps with their estimated GPS 

location. 

3.4   Optimal memory usage 

In addition to CPU calculation load, it's also necessary to 

consider minimization of memory footprint to implement on the 

edge devices. If the model runs out of memory, the app would 

get terminated by operating system. The memory usage also has 

an influence on the computing speed and the power 

consumption, and affects how quickly the battery will be 

drained or makes the edge device too hot. 

One way to speed up the model is to simplify the computation 

it does. We typically count this with FLOPS or 

Multiply-Accumulate Operations (MACCs). The number of 

computations, whether count with FLOPS or MACCs, takes 

only part of the runtime. The memory usage is another part 

which may seem even more important.  

We only do inference operation on edge device, commonly 

without training operation. In one layer, the device need to read 

the input feature map from memory, then compute the dot 

products by reading the layer’s parameters from memory, and 

finally write the results as new feature map back to memory. 

The huge amount of memory reading and writing will have a big 

impact on the speed. Memory requirements mainly come from 

two aspects. The first is the memory occupied by model 

parameters, and the second is the memory used for layer outputs. 

For the former, parameters of convolution operation which need 

to be trained can be calculated as Cin*Cout*K2+Cout, where Cin 

and Cout are the channel numbers of input and output feature 

maps respectively, and K is kernel size. For the later, the 

memory footprint of each output layer is calculated as Cout*H*W, 

where H*W is output shape.  

  To reduce the memory used by network parameters, we bring 

in bottleneck block to the shuffle module in backbone, using 

1x1 convolution to decrease the number of channels from input 

feature map. Then followed with NxN (normally set to 3x3) 

depthwise convolution and 1x1 pointwise convolution, this 

bottleneck block will greatly reduce model parameters and 

FLOPS, as shown in Fig. 4. To reduce memory occupied by 

intermediate layer output, we appropriately reduce the repeating 

layers and layers width as not to affect the feature extraction 

effect, as shown in Table 1. For our network with the inference 

on one image with input size 416x416, the memory footprint is 

around 220MB, taking about 48.8% of the original YOLOv3. 

4. Experiment and Result 

  In this section, we evaluate the effectiveness of our modified 

ShuffleNet-YOLOv3 on PASCAL VOC [34, 35] benchmarks. 

Then we show some comparison results with several lightweight 

objection networks currently used on mobile edge devices. 

  Our detectors are trained end-to-end on one 1080Ti GPU. The 

input resolution is 416x416. Multi-scale training with pixels in 

the range {320-608} is adopted. We use heavy data 

augmentation for training.We report our detection results on two 

datasets. The first one is traffic dataset made by ourselves, with 

samples from autopilot and traffic surveillance. It mingles BDD 

dataset, cityscape dataset, and our own images. The second 

dataset is the open dataset: VOC. The results are given in Table 

2 and Table 3.  

Model Backbone Input Model 

Size(MB) 

mAP FPS 

(CPU) 

YOLOv3[9] Darknet-53 416x416 243 71.8 1.25 

Shuffle-YO

LOv3 

Modified 

shuffle 

416x416 45.5 70.8 4 

Table 2. Evaluation results on our traffic dataset (6 classes). 
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Model Backbone Input 

 

VOC2012 

IOU=0.5 

VOC2007 

IOU=0.5 

COCO 

IOU=0.5 

YOLOv

3[9] 

Darknet-53 416x4

16 

- 85.5(07+12+c

oco)* 

55.3 

Shuffle-

YOLOv

3 

Modified 

shuffle 

416x4

16 

81.8(07+12) 82.6(07+12) 52.0 

SSD VGG19 321x3

21 

74.9(07+12) 76.8(07+12) 45.4 

Table 3. Evaluation results (mAP) on VOC and COCO (YOLOv3 VOC 

testing result comes from third-party) 

 

Our modified ShuffleNet-YOLOv3 surpasses prior 

state-of-the-art one-stage detectors. ShuffleNet-YOLOv3 with 

416x416 is only 18.7% of the model size of YOLOv3, while the 

mean Average Precision (mAP) is just reduced about 1% (71.8% 

-> 70.8%). Moreover, our model performs faster than YOLOv3 

by nearly 4x. 

  Furthermore, ShuffleNet-YOLOv3 achieves superior results 

to state-of-the-art large object detectors such as SSD300*[10], 

which has 31.75 GFLOPS. We reduce the computational cost by 

orders of magnitude. The backbone of our model is significantly 

smaller than the large detectors.  

Fig. 7 visualizes several examples on VOC test-dev. 

ShuffleNet-YOLOv3 achieves a much better trade-off between 

accuracy and efficiency, which is not only efficient but highly 

accurate. 

 

 

 

Figure 7. Examples visualization on traffic dataset and VOC test-dev. 

 

At last, we evaluate the inference speed of 

ShuffleNet-YOLOv3 on Cortex A72 1.8GHz, Intel I7 3.0 GHz, 

and GeForce 1080Ti (GPU). On A72 and I7, the inference is 

executed with a single thread. The results are shown in Table 4. 

We achieve faster detection on both A72 and I7 at 2 fps and 4 

fps respectively, compared with Darknet-YOLOv3. On GPU, 

our model can run at over 60 fps.  

Fig. 8(b) shows the disparity image obtained by the depth 

estimation module. This module runs at 28 fps on Titan X with 

input resolution of 512x256. The error of estimated depth is 

around 5%. We follow Godard’s training work on KITTI 

training datasets, where the baseline b is 0.54m, and the focal 

length f is 1012. There are some difference between our camera 

parameters and camera parameters for KITTI. As inference with 

model trained with KITTI dataset may exist bias for our camera, 

so coefficient “α” is used for adjustment. In our experiments, 

“α” is set to 1367, which may differ from different cameras. 

The camera used in our experiment has a configuration of 

resolution 1980x1080, CMOS sensor, horizon FOV 120°.  

 

Model ARM 

(Cortex A72 

1.8GHz) 

CPU 

(Intel I7 

3.0GHz) 

GPU 

(NVIDIA 

1080Ti) 

Darknet-YOLOv3 1500ms 800ms 33ms 

Shuffle-YOLOv3 500ms 250ms 16.7ms 

Table 4. Inference on ARM, CPU, GPU. 

 

Fig.8(d) shows two top-view maps drawn with detected targets 

(vehicles and pedestrians) after location estimation. 

 

Figure 8. Results on images captured from the driving video recorder. 

(a) Original input image. (b) Disparity image. (c) Object detection 

results. (d) Detected targets (e.g. pedestrian and vehicle) are painted as 

blue icon on the map with estimated location, pink point on (d) refer to 

the ego car with edge device.  

 

5. Conclusion 

In this work, we propose a system of detecting objects from 

on-vehicle camera, estimating their depth, and drawing them on 

the map. For the object detection part, we design a lightweight 

network architecture, and achieve faster object detection on 

edge device with balance between the operation speed and 

detection accuracy. It runs in 3 times faster than the state-of-art 

on embedded CPU by arranging networks and memory. For our 

depth estimation module, we further get the location information 

for each object from object detection module. It runs with 28 

FPS on GPU, the distance error within 40 meters does not 

exceed 5%. The distributed architecture, which is implemented 

by edge and server, can provide real-time information on street 

for various potential application, including map, V2X, 

autonomous driving, and logistics, etc. 
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