Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

EasyTrack: Zero-Calibration Smart-Home
Tracking System

1,a) 1,b) 1,0)

NataavuTH KITBUTRAWAT Hirozumr YAMAGUCHI Teruo HicasHINO

Received: September 21, 2018, Accepted: April 9, 2019

Abstract: Location-based services in household enable not only estimating activities but also detecting the accident
location of residents including children, parents and elderly people. Furthermore, home management systems make use
of location information of residents for encouraging residents to live comfortably in their own homes. Passive infrared
binary motion sensors are widely used in home tracking systems because of low energy consumption and flexibility
on deployment. However, it’s hard for non-specialists like residents to manage such location information of sensors
which are very important for tracking systems. To mitigate human efforts and errors, we propose a sensor localization
method to automatically identify the location of multiple binary motion sensors in a house from the observed motion
detection event sequences by binary sensors. The method finds the movement patterns and characteristics of sojourn
time of residents to identify the rooms where those sensors are located as well as the proximity relations among sensors
assisted by prior knowledge such as from floorplan. The experimental results in actual houses show that our method
can estimate the location of sensors placed close to the anchor locations within a one-day observation, and the accuracy
of our approach is above 80% after three-day observation.
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1. Introduction

The drastic increase in the elderly population around the
world [1] affect a rise in the number of elderly in houses. The
main challenge is to support the elderly when they live alone dur-
ing other people go outside on workday. The activity recognition
and localization are the key technologies to monitor the activities
and location of elderly in houses for their safer life.

There are several sensors such as cameras and passive sen-
sors, which are used to estimate the activities and location of hu-
man in buildings. Basically, indoor human tracking should not
require users to wear devices such as smartwatches, since they
are too invasive for their daily living. Therefore, passive sen-
sors, such as motion sensors for detecting movement of human
and contact switches for detecting events when residents open
doors [2], [3], [4], [5], are more reasonable solutions to measure
the presence and direct motion of those people. The locations of
non-embedded sensors are the important information for predict-
ing the activities of residents by analyzing the sequence of events
with probabilistic methods.

According to our past research [2], the location of such pas-
sive motion sensors is useful information for estimating activities.
However, obtaining such information requires technical labor to
configure. This is in general because every resident is not able to
understand how to place the sensors. Some residents will make
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some mistakes if they misunderstand the manual. Moreover the
configuration process makes more burdens on residents if they
need to place plenty of sensors in their houses as instructed. For
example, when elderly who will be unfamiliar with technology
would like to deploy the system by themselves from cost per-
spective. We cannot assume that those people will use the GUI
tools correctly. In order to deploy sensors in this situation, the
technical employee needs to be sent to configure the system in
each customer’s house.

There are several drawbacks to sending technicians to config-
ure sensors at home. Firstly, the company selling the system will
need a larger budget for training and sending the technicians as
well as their salary. Secondly, there is always privacy and secu-
rity concern. Many residents do not want somebody to come into
their houses and survey their private rooms. Even worse, the loca-
tion of sensors may change after configuration by misplacement
after room cleaning etc. It is desirable that the tracking systems
have a self-configuring function to allow residents to easily install
the system by themselves.

In this paper, we propose a method to localize the binary mo-
tion sensors by room level at home to provide a self-calibration
function to tracking systems, because the room-level location
of sensor is enough for such location services in smart home
environment. In particular, there are some services in smart-
home systems which require the location-service. Firstly, the en-
ergy management system manages the electric devices/appliances
(e.g., turn on/off light and air condition) depending on human
presence. Secondly, the fall detection which observes the loca-
tion of elderly people. Starting this in more detail, we may regard
that the elderly is falling if that person has not moved on the cor-
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ridor for long time. Unlike the localization in a large building,
the location services for household do not require the precise lo-
cation of presence sensors. Therefore, the system which detect
the resident perform activity by room level is acceptable. The ob-
jective is to reduce the configuration and verification efforts for
the tracking system, and our method only requests the resident to
give some information (e.g., floorplan) about their house to the
system. Then it analyzes human detection events from those mo-
tion sensors to find the locations of sensors. The method does not
require any supervised training procedure before the operation.
Instead, it finds the sensor location only by monitoring the events
from the sensors for a couple of days. This approach leverages a
few sensors placed in some specific locations and the prior knowl-
edge gained from floorplan analysis to generate an indoor digital
map from a floorplan image submitted offline to the service or
some other ways. Then the method calculates location similarity
between every pair of sensors, and maps those sensors onto the
installation places in the indoor map.

We have conducted two experiments using 20 sensors installed
in (i) a 2-story house with three family members and (ii) an apart-
ment with a single elderly. As a result, it could estimate the sensor
locations in the neighbor location of the sensor in specific loca-
tions within a one day operation, and more than 80% of sensors
can be mapped to their locations correctly after 3 days operation.

2. Related Work

The location information of sensors is significant to both hu-
man activity recognition and human localization. We survey
those technologies and then address our motivation to solve the
problem of identifying the location of sensors within the house
automatically.

2.1 Activity Recognition

There are several ways for performing human activity recog-
nition. A typical one is to use computer vision techniques for
analyzing images from cameras [6], [7], [8]. However, the major
problem of the methods which use RGB camera is privacy con-
cern. Hence some researchers use depth cameras [6], [7] instead
of RGB cameras. Nevertheless, many people have strong feel-
ing of resistance to deploying cameras in the home especially in
private living spaces.

Research on wearable device-based activity recognition [9],
[10] leverage motion captured from embedded sensors on the de-
vices such as accelerometers and gyroscope to estimate the activ-
ity of wearing persons. Atallah et al. [10] propose the relationship
between location of a sensor on a person’s body and the activity
to increase accuracy in activity recognition. Nevertheless, this
method requires residents to wear devices and some residents
such as elderly and children may forget to wear them in their
houses. Hence such approaches that use low-cost infrastructure-
based activity recognition [3], [4], [11] are more reasonable in the
home.

In the infrastructure-based activity recognition, the researchers
deploy binary sensors to analyze the stream of events from sen-
sors when residents walk past passive infrared sensors and inter-
act with sensors to predict the location of humans and their ac-
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tivities [3], [4], [12]. A typical research effort by Hoque et al. [4]
proposes a method to detect activities performed during another
activity. For example, it may happen that residents take a break
from watching television to walk to the toilet and come back to
the living room to resume watching television. Thus, they di-
vide activities into short period activities by grouping the sensor
events by the time and location of firing sensors, and cluster the
set of sensor events which frequently occur together. After that
Emi and Stankovic extended the Hoque’s work to deal with the
multi-resident environment [3]. The idea is to regard the activities
occurring in different rooms at the same time as those performed
by different users. Moreover the work by Krishnan et al. [5] in-
creases the accuracy of activity recognition by predicting events
coming from a single activity by using a hybrid technique be-
tween the time window and mutual information.

2.2 Indoor Localization

To realize indoor human tracking systems, plenty of methods
leveraging Wi-Fi signals in indoor environment have been pro-
posed so far to tackle the indoor human tracking problem [13].
The basic method to estimate the location of human relies on the
distance from that person’s Wi-Fi device to at least 3 surrounding
APs estimated by RSSI[14] or fingerprint databases. However,
for accurate RSSI-based indoor localization, a number of APs
should ubiquitously be installed around the building, and the cal-
ibration and configuration for all of these APs requires numerous
effort. To mitigate the cost of calibration and configuration pro-
cess, some methods configure the location of anchors by request-
ing a user to carry a Wi-Fi device for collecting the RSSI signals
involved in the building. For example, the methods by Chinta-
lapudi et al. [15] and Makki et al.[16] request people to carry
Wi-Fi devices for surveying the signal propagation. It measures
the distance between those devices and Wi-Fi APs by using the
signal propagation model. Chintalapudi et al. leverage the GPS-
fixed locations acquired when tester walk near window to calcu-
late the actual location of Wi-Fi APs, while Makki et al. leverage
the time differences of arrival to calculate the location of Wi-Fi
transmitters. The other method is proposed by Jun et al., which
generates the RSSI propagation model acquired by smartphones
when phone holders walk in the building. Their technique is able
to build an RSSI propagation model in the building without any
annotation [17].

Although the Wi-Fi based localization is cost effective, it may
not fit in a small area such as household, which requires finer-
grained localization. RFID-based localization [18], [19] is con-
sidered useful in house, e.g., Ref. [18] localizes elderly residents
who carry RF-ID tags. However, this forces elderly to wear tags,
which is also invasive. Therefore, the device-free localization
which leverages the signal reflection on the human body to es-
timate the location of human [20], [21] is more desirable. Specif-
ically, some research place Wi-Fi transmitters and receivers in a
house, and estimate the location of a resident by considering the
change in RSSI values. To overcome the shadowing problem in
device-free localization, [21] applies the signal multi-path profile
known as “radio tomographic imaging (RTI) [22]”, where several
Wi-Fi receivers are deployed in one room. However, the major
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problem for device-free localization technique is the human ef-
fort to obtain the “passive radio map” [20]. Although experts can
make precise 3D models for houses or buildings to generate the
passive radio map by simulation [23], the 3D model building task
is difficult for general users. Recently CSI-based human track-
ing [24] attracts more attention, but they basically require config-
uration and calibration to fit for indivisual environment.

Passive sensor-based localization [12], [25] is able to detect the
location of resident and estimate trajectories without wearing de-
vices. Those techniques also require the location of sensors for
estimating the location of human. Nevertheless, they cannot use
the existing calibration methods such as RSSI-based sensor lo-
calization because the sensors are not able to play the role of APs
due to functions and battery limitation.

2.3 Easy-to-deploy Smart Home

Some research studies provide easy-to-deploy mechanisms to
ubiquitous systems which encourage the end users to deploy
those systems by themselves. Specifically, Ref. [26] provides a
sensor module attached with RFID to enable a way to install the
general function and also provide a method to allow user to make
the custom function for the sensor. Reference [27] proposed the
sensor and gateway (coordinator) should already be paired before
being sent to an end user, thus the end user does not have a task
for adding the sensor to the system, and provide the easy-to-used
software to encourage the end user to deploy the system easily.
However, those methods do not mention how the end users con-
figure the location of sensors. In our experience, there are many
people who can use technology such as smartphones but they
do not understand the configuration method. The closely related
work is Ref. [28] which proposes the room-level accuracy for lo-
calization of Bluetooth anchors. They provide a method which is
easy for a non-technical user to configure the room-level local-
ization of anchor nodes by carrying a smartphone to collect RSSI
in every room and label the RSSI data with their location (which
room they collect data). Nevertheless, their target system requires
users to carry some devices to estimate the locations, which can-
not be applied in our assumed situation where no device and no
resident is available for calibration.

2.4 Our Contributions

In summary, all the indoor localization techniques leverage the
location of sensors to predict the location of residents. Therefore,
each system has been configured with the location of sensors be-
fore it is operated. In this viewpoint, our main contributions can
be summarized into a 3-fold approach. Firstly, this is the first ap-
proach to localize binary sensors without RF signal manner and
human effort. We use only the sensor events (presence of human)
with timestamps to estimate the location of each sensor. Sec-
ondly, our approach can find the sensor locations without need
of labeled data and supervised techniques. Nevertheless, it can
deal with multi-resident environment. Finally, the accuracy has
been validated by actual in-home experiments. To the best of our
knowledge, the technique for predicting binary sensor locations
in home environment has never been proposed.
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Fig. 1 PIR Sensor (Binary Sensor).

3. System Architecture

3.1 Human Presence Sensors

According to our past experience [2], we use portable passive
infrared (PIR) binary motion sensors (simply called binary sen-
sors) which have a detection range 7 meters and the detect angle
110 degrees to recognize the activities. For example, the events
from binary sensors in the kitchen represent the cooking activity
and the events from those sensors in the living room represent
that the residents relax in the living room. As we discussed in
Section 1, the main problem is a method to assign the location of
binary sensors without configuration and calibration. We focus
on finding the location of binary motion sensors as they are pene-
trating to many households and many products have already been
in market because of cost-effective. Another benefit is that the
presence of residents can be detected without a need of human-
object interaction. Since power line supply will be an obstacle for
their location-free installation, sensors are built in wireless nodes
with low-power communication technology such as ZigBee and
are operated by small batteries or energy harvesting as seen in
Fig.1(a). Those sensor nodes form a wireless sensor network
and send events to the gateway, shown in Fig. 1 (b). The sensor
events are triggered when they detect the presence of the human,
but they are not triggered when the presence of resident disap-
pears because of energy saving.

We attempt to find the location of binary sensors in multi-
resident environment in a general house. The number of sensors
which we assume is normally between 10 to 20 depending on the
size of house, but it is not limited to this range. Basically, more
sensors will provide finer-grained mobility information, and we
will later discuss the impact of the number of sensors to the accu-
racy. The typical scenario is that firstly a resident obtains (buys
or rents) a set of sensors. After the resident deploys those sen-
sors on their own, we request that resident to give some informa-
tion to our system discussed in Section 3.2. Then we leverage
those information to find the location of sensors by analyzing the
sequence of sensor events collected through the gateway to the
cloud server, without requiring the labeled data discussed in Sec-
tion 4.4.

3.2 Indoor Floorplan

The indoor map is important to provide the information about
rooms, hallways, entrance etc. in which residents may place mo-
tion sensors. We note that, some research studies provide a solu-
tion for large buildings such as office buildings and commercial
complex to generate floorplan images by using crowdsourcing
techniques. Although the SLAM techniques [29], [30], [31] or
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PDR techniques [32], [33] to trace human walking paths can be
used to construct the floorplan images, the drawback is inaccu-
racy caused by accumulated distance and direction errors caused
by orientation change of smartphones while they are walking, in-
accuracy of stride length estimation and some other unexpected
noise.

We assume the scenario to receive the floorplan image. When
they buy or rent the set of sensors, they can see the instruction for
the residents to send a floorplan. The residents can request a phys-
ical copy of floorplan of their houses from the housing manager
or they can draw it by themselves. After that they are requested
to send it to the service provider. There are two options to send
the floorplan. Firstly, they can send the digital versions of given
indoor map information which are generated by taking a photo
of a floorplan image using a smartphone camera, and upload the
photo to the service provider through e-mail service or mobile
application service. Secondly, they can send the physical copy of
their floorplan to the service company via mail service.

The given picture of floorplan should be drawn by using well-
known symbols such as walls, doors and stairs (such simple illus-
trations can even be hand-drawn). We are able to analyze this pic-
ture manually or by some existing floorplan analysis technique.
For example, the work by Heras et al. [34] provides a technique to
generate the classification model to identify walls, doors and win-
dows in images, and to recognize the rooms and space from those
identified components. This indicates that the floorplan contains
complete room layout with room types as well as room entrance
(doors). In addition, if the scale information (size) is available,
it helps for more accurate estimation, but the rough scale can be
estimated by size of typical things like entrance door or some
others. For example, we can estimate the scale information by
calculating a ratio between the size of the front door in the image
and the average size of front door and windows such as the front
door in Japan (80-90 centimeters).

Given the floorplan and its analysis, we create the floorplan
graph, which is a graph representing connections between rooms
as well as room types and estimated Euclidean distance between
the rooms. More specifically, after we analyze the floorplan to
detect the areas from the floorplan, we generate a set Ly, =
{li, 1, ..., 1,} of square partitions called locations, each of which
corresponds to a room or a space like hallway. Then we generate
a floorplan graph G sipor = (Lyioors E fivor fi» fa) Where we create
an edge between two locations if they are adjacent but separated
by a wall with a door or they originally share the same space
(i.e. without walls between them). f; : Lo, — T is a Toom
type assignment where 7 is a set of room types such as T ={ en-
trance, hallway, kitchen, dining_room, living_room, bedroom }.
Finally, we estimate the Euclidean distance between the centers
of /; and ; for each (I;,[;) € E 10/, and build the distance function
fa @ Efioor = R*. Atypical floorplan image, the room dimension,
and the path distance are drawn in Fig. 2.

In summary, we use the given sensor event sequences and floor-
plan graph as inputs. We will explain our localization algorithm
in the following section.
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4. Sensor Localization Method

4.1 Identifying Sensors at Particular Locations

We call such locations where the residents perform activities
with particular time patterns key locations. In this paper, we con-
sider (i) bedroom, (ii) kitchen and (iii) entrance are such key lo-
cations. In our previous work that has been presented in a confer-
ence [35], we have proposed a technique to recognize common
activities on the specific time in the specific location. Assum-
ing the obtained common activity information, the location of the
sensors detecting such common activities can be estimated with
more confidence. For example, most residents may cook in the
morning, (noon) and evening. So the sensor(s) that detects resi-
dents many times in those time zones can be estimated as that in
the kitchen. The sensor at a bedroom can be identified by finding
the sensor detecting events at night with long intervals (caused
by sleeping activity). Similarly, the sensor at an entrance can be
identified by finding the one detecting events in daytime with long
interval (caused by go-out activity). For this purpose, we need to
identify the typical daily pattern of such activities, and such a pat-
tern can be obtained by the crowdsourced survey or some other
techniques. In our previous work, we exploited the result of the
crowdsourced survey which was done by our research group [2].
We note that we may also regard other room types as key loca-
tions if we can identify the typical daily activities that are associ-
ated with those rooms.

4.2 Finding Geographical Relation of Sensors

As the second step, we generate a sensor graph, where each
edge represents the fact that there was a direct trip between the
pair of sensors. We also estimate the physical distance between
them based on the two events from different sensors. Specifically,
if two events from sensors s; and s; occur time-subsequently, we
regard that there was a direct trip by a resident from s; to s;. Then
the physical distance between s; and s; can be estimated by the
time interval of the two events and a presumed walking speed.

However, the sensor graph generated by event sequences may
be inaccurate due to several reasons. The most significant fac-
tor that causes the errors is multi-residents environment, because
multi-residents may generate a disordered sequence of events. If
the time intervals between two events from two sensors, say s;
and s, differ from time to time, we can regard that the two events
are caused by multi-residents and are not used for sensor graph
generation. This is based on the observation that if two events are
caused by walking of a resident, the time intervals are almost the
same.

Even though we eliminate such situations, we may still incor-
rectly estimate the edge presence and physical distance. Espe-
cially, when two residents perform activities in different rooms
and one of them does not move a lot (e.g., listening to music in the
living room) and another does, we may not be able to see such de-
viations of time intervals due to lack of sufficient event samples,
and instead, we may observe the frequent event occurrence of one
sensor and much less event occurrence from another. In order to
overcome this problem, we introduce the concept of similarity of
event sequences of two sensors, based on the observation that two
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Fig. 2 Floorplan and Floorplan Graph Example (Two-story House).

near sensors may generate similar event sequences.

Based on the observation, the algorithm for making a sensor
graph consists of the following three steps; (i) we initiate the sen-
sor graph using the correlation of event patterns, (ii) we update
the sensor graph based on the correlation of event sequence as-
sociation, and (iii) we calculate the topology of the sensor graph
with the physical distance between each pair of the sensor. Each
step will be explained below.

4.2.1 Similarity of Event Patterns

In the initial step, we exploit the similarity among event pat-
terns between pairs of sensors. Our hypothesis is that, if two sen-
sors are placed in close proximity, the event patterns of those two
sensors will be similar. Thus the similarity in event patterns rep-
resents how close they are to each other as exemplified in Fig. 3.

This figure shows the patterns of sensor events seen in the real
environment. Such patterns of sensor events from sensor ids 16
and 17 placed in the living room and 18 placed in the kitchen are
similar where the kitchen is close to the living room. Meanwhile,
the pattern from sensor id 8 placed far from the living room has
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less similarity to them. In summary, the sensors installed in the
same room or close location are likely to detect the same move-
ment of residents.

To initiate the sensor topology by using the similarity of
event between sensors, we generate a sensor graph Ggensor =
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(S, Esensor) Where S is a set of sensors and E 50 = S XS. That s,
G gensor 18 a fully connected graph. Then we define the value asso-
ciated with each edge ey, ;; (denoted as ej, 5;.value), which repre-
sents the similarity of event patterns of s; and s; and remove such
an edge ey, ;; that e, ;;.value is below a threshold. To calculate
the similarity of event patterns, we use the method by Twomey
et al. [36]. The method leverages the mutual information in the
event patterns to generate the topology of the sensors without a
given threshold.

We regard that two sensors, which detect events in similar time
patterns, are close to each other as being close to each other since
they are likely to detect the same activity of a resident. We intro-
duce ot as a time difference threshold to regard events from two
sensor as caused by a single activity (¢ is set to 1 minute in this
paper). Based on this hypothesis, we analyze the relationship of
event patterns from the multiple sensors. We introduce a timeslot
of ot period, and the event sequences of sensors during 7' times-
lots can be described as RDT = {rd", rd?, ..., rd"}, which is a time
series of m-dimensional binary vectors rd; (1 <t < T). The i-th
(1 < i < m) element of rd, is denoted as rd} and the value of
rd; is 1 if an event from sensor s; is observed during #-th timeslot
and O otherwise. Then we calculate the ratio of the number of
timeslots where the pair of sensors s; and s; equals a given pair
of binary values, such as (0, 1), over T. Similarly, we calculate
the ratio of the number of 0’s or 1’s from a single sensor over 7.
We denote such a ratio for sensor pair (s;, s;) with a value pair
(a,b) (a,b € 0,1) by jo)(a,b) and that for a sensor s; with a
value a as R! (a). For example, given RD> ={ (0,1), (0,0), (1,1),
(0,1), (0,0)} for sy and s>, R(Slyz)(O, 1) =2/5 as (0,1) appears twice
in 5 timeslots. Finally, we calculate mutual information I(s;; s )
for each pair of sensors s; and s; using equation (1).

T
R )@ b)

R (@R (b) W

IGsissp = > Ry b)log
(ab)el0,1)?

After our system calculated the mutual information for each pair

of sensors, our system calculates the sensor topology by using a

threshold proposed in the paper from Twomey et al. [36]. They

remove the edges between a pair of sensors unless the mutual in-

E[I(Si;*)]‘;E[I(*;Sj)] . and we

formation of that pair of sensors is over
think this is reasonable to be used for initializing the sensor graph
because it is a moderate threshold.

4.2.2 Event Sequence Association

The edges in the sensor graph created by the algorithm in the
previous section mean that there is similarity of event patterns be-
tween the two nodes of the edge. However, we would like to have
correspondence between the physical direct paths and the edges
of the sensor graph for final matching between the floor graph and
the sensor graph.

In order to eliminate such links that do not correspond to walk-
ing paths, we make the hypothesis that the events from two sen-
sors placed near to each other are usually along with each other
when a resident walks past those sensors. As a preliminary ex-
periment to estimate the direct walking path between two sensors
s; and s;, we observed two cases of two sensor placements; in
one case, s; and s; are located close to each other and in another
case, they are far away from each other. Then we focused on the
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number of events from the other sensors, which occurred between
two events from s; and s;. The histgram of such number is shown
in Fig. 4.

The results show if two sensors are near to each other, most
events of s; and s; are time-adjacent to each other (i.e., no other
events exist between two) as shown in Fig.4 (a). Meanwhile,
there are many cases that other events are between as shown in
Fig.4 (b). Here we say that two sensors s; and s; are neighbor-
ing if two events of them are time-subsequent (there is no event
between them). For example, if we observe a sequence of four
events in the order of sy, s3, s; and 52, (51, s2) and (sq, s3) are
neighboring pairs, and (s,, s3) is not. We simply assume the direct
walking path between s; and s; exists if s; and s; are neighboring.
Thus, we update G .ps0r by using this neighboring relationship.

However, there may be some links generated wrongly if multi-
residents perform the activities at the same time in different
rooms. Those activities may also create events that correspond
to neighboring relationship for non-neighboring sensor pairs. To
deal with this issue, we assume that the traveling time between the
neighoring sensors, which is seen when a single resident directly
walks passing those two sensors, is relatively constant, while the
time intervals caused by multi-residents are dispersed. We inves-
tigation the subsequence travel time distribution from a neighbor-
ing sensor pair and a non-neighboring sensor pair. Fortunately,
the distribution of time gap in the multi-resident environment vary
and have no pattern seen in Fig. 5.

Figure 5 (a) shows the trip time of events from a pair of sensors
will usually be short if they are placed near to each other. For
example, two sensors placed on the corridor between the bed-
room and the toilet detect the resident who walks passing within
the short time. Meanwhile, Fig.5 (b) shows that the traveling
time has no pattern when the two sensors are placed far from
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each other, because the sensor events from those sensors might
be caused by different residents who did activities in different
rooms. Hence, we introduce the temporal standard deviation of
traveling time temp_travelg,(s,, s,) and temporal minimal travel-
ing time temp_travel,,;(s,, s,) for each pair of sensors s, and s,
in T, minutes. In this paper, we use temp_travelg,(s,, s,) to de-
tect time period during which a single resident is present. If there
is no such temp _travel (s,, s,) that is higher than a threshold g,
that period time is the confidence time seen in Algorithm 1.

We also collect the distribution of traveling time
travel gy (s,, s,) for each pair of sensor s, and s,. This dis-
tribution is used to calculate the physical distance of each edge
described in the below part. The event sequence seen when a
resident performs activity alone is used to update the topology of
sensor graph seen in Algorithm 2.

After Ggensor is updated, we remove those edges that are
marked with removal by Algorithm 3. The distance and topol-
ogy calculation will be explained in the following section.

4.3 Physical Distance Estimation

After the sensor graph is updated, we estimate the physical dis-
tance of each edge of the sensor graph by multiplying the mean
traveling time of the pair of sensors and the average walking
speed (set to 1 m/s in our experiment).

Here the walking speeds of residents may vary depending on
situations. For example, it may be fast when the resident hurries
on, and slow when she/he stays at a place during the walking. To
avoid the unreliable case due to such a stop-and-go case, We clus-
ter the walking time by k-means with & = 3 into 3 classes: fast,
normal and slow speeds. Then we calculate the mean of traveling
time travel i (s,, s,), and update the sensor graph by ignoring the
slow speed class.

4.4 Indentifying Sensor Locations

In this section, we create the mapping function A : S — Lyipor
where Ly, is a set of room locations from the floor plan graph,
and S is a set of sensors in the sensor graph. We try to map the
sensors into the floor plan graph by leveraging the room dimen-
sion and the walking distance between the center of two rooms.
For this purpose, we introduce a sensor-room association score
assocg; which represents the number of times where sensor s is
expected to be placed in that location /. The process to increase
the assoc,,; and select the sensor location is shown in the follow-
ing three steps.

For the algorithm, we use the notation of the mapping func-
tion A : Sapped = Limappea Where S appeq is a set of sensors
which have already been mapped onto a set Lqppeq Of locations
(Smappea S S and Lyappea S L. We start with S upped = S key
where Sy, is the set of sensors estimated to be in the key lo-
cations. Then we pick up one sensor r € Sy, for each location
l € Lyyappea and call it reference sensor of location I. We assume r;
is located at the center of location / and classify the rest of sensors
in the sensor graph which have a relation with r; into 3 groups;
same location, neighbor location and unknown. More specifi-
cally, we classify the relationship of sensors with the reference
sensor by using the walking distance attribute in the floor plan
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Algorithm 1 isConfidence_Time(O)

Require: O = (0,01, ...,0,) is an observation of events in the past 7, min-

utes.
Ensure: isSingle which represents the confidence time when it is TRUE.
Ensure: time_diff is a set of minimum traveling time between sensors
1: tyar < 0o.time
2: for Vie(1,2,...,1)do
3:  if 0;.5id # 0;_;.sid then

4: if 0;.sid > 0;_;.sid then

5: Sy < 0;_1.5id and s, < 0;.sid
6: else

7: Sy < 0;_1.5id and s, < o0;.sid
8: end if

9: tdifs, s, [i] < o;.time — 0;_; .time
10:  endif

11: end for

12: update temp_travel (s, s,) by tdif;, ,

13: update the distribution travelyis(s,, s,) by tdif;, s,
14: for Ve, € E, = (s,,5,) Au #vdo

15:  if temp_travelg,(s,, s,) > 51 then

16: isSingle = FALSE
17:  endif
18: end for

19: return isSingle, temp_travel,,

Algorithm 2 update_sensor_graph(O)

Require: O = (0,01, ..., 0,) is an observation in the past 7, minutes.

Require: G50 = (S, Egensor) is the previous sensor graph.
Ensure: Ggnsor = (S, Esensor) is the updated sensor graph.
1: isSingle, time_dif = isConfidence_Time(O)
2: if isSingle =TRUE then
3. forVs,, Vs, €8 (s, # s5,) do

4 if de = (s, $,) € Egensor then
5: e.remove = (0

6: else

7: e.remove = 1

8 end if

9:  end for

10: end if

Algorithm 3 finalize_sensor_graph(O)

Require: G, is the updated sensor graph.

Ensure: G0,

1: for e € E,,5 do

2: if eremove == 1 then
3 remove e
4. endif
5 calculate e.distance and e.sameroom
6: end for

graph and the distance between sensors in the sensor graph. We
regard the distance between sensors s; and s; on the sensor graph
as the summation of the distances in its shortest path between the
two sensors and denote it as d(s;, s;). Sensor s; is supposed to
be placed in the same location with reference r; of location / if
d(s;, r7) is shorter than the dimension of location (room) /, in lo-
cation Lyeignpor close to I if d(s;, ;) is longer than the dimension
of Lyeighpor but shorter than the summation of the dimension of
Ineighvor and the walking distance from [ to Leignpor, as shown in
Algorithm 4.
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Algorithm 4 feasible_location

Require: S is a set of sensors

Require: S,,qppea C S is a set of sensors having been already mapped.

Require: A is a current mapping function.

Require: G- and G0 are the sensor graph and the floor plan graph,
respectively.

1: for Vsuapped € Smapped: VS € S (Smapped # S N €sensor = (8, Smapped) €
EJL’VLYO") dO

2 [mapped = ﬂ(smﬂpped)

3. calculate d(s,r,,,,.,)

4 i d(s,71,,,.) < lnappea-dimension then

5: ASSOCs e = ASSOCs gy + 1

6:  else

7 for VI' € L(I" # Lyappea N € = (I, Lyapped) € Efioor) do
8: if d(s, r1,,,,,.,) < € .distance + lyqppeq-dimension then
9: assocsy = assocgp + 1
10: end if
11: end for
12:  endif
13: end for

Algorithm 5 matching(G fioor, G sensors Akey)

Require: G fip0r = (Lfioors E fioor) is a floor plan graph.
Require: G 0r = (S, Egensor) is a sensor graph.
Ensure: A :S — Ljor

1: satisfy = FALSE

2: Initial A : S yapped = Skey = Liey

3: while —satify do

4 call feasible_location(S, S napped>As Gsensor» G floor)
5 satify =TRUE

6: forVseS As ¢S appea do

7 Lij; = arg max; assocy

8 if |L;;| == 1 then

9 ﬂmapped(s) = head(Ly;s;)

10: if r00teqqr,,,) 1 not set then
11: rOOthead(Lyy) = S

12: end if

13: satify =FALSE

14: end if

15:  end for

16: end while

17: return A

We check the valid constraint of the sensor-room association
score in the second step. The idea behind this step is the first
step may increase an invalid score of the sensor-room association
because we rely on only one mapped sensor. Therefore we will
check rooms " which are mapped to each sensor $qppeca and we
will set assocsy to zero if there is no edge e = (5, Spapped) €
Esensor-

In the third step, we estimate location [ for each sensor s by
using arg max; assoc,;. This means the location with the highest
score is regarded as the location of sensor s. Then we will update
the mapping function A by appending “A(s) = [”. After that, our
algorithm repeats the step one until the algorithm is unable to find
the maximum score of score,; shown in Algorithm 5.

5. Experiment

5.1 Datasets and Evaluation
We conducted experiments by utilizing four datasets. The first
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three datasets, called DT1, DT2 and DT3, consist of the sensor
events which we collected from two real houses. In particular, we
installed sensors in a two-story house (house A) with three family
members and a single-story house (house B) where a single el-
derly person lives. DT1 was collected from 19 motion sensors in
house A in mid of 2016 (shown in Fig. 6 (a)). DT2 was collected
from 18 motion sensors in the same house A in early 2015. DT3
was collected from 17 motion sensors in the house B in February
2017 (shown in Fig. 6 (c) and Fig. 7).

The fourth dataset (called DT4) is the public dataset (CASAS
dataset). In this dataset, the sensor events were collected in the
Japanese house where two residents lived [37]. Even though we
cannot see the scale information of the floorplan in this work
clearly, we apply the average size of the front door in the Japanese
house to estimate the scale information. In this dataset, we regard
only the motion sensor events caused by the presence of the res-
idents as “ON” events. In this work, many binary sensors were
deployed in the house, but it is not realistic to assume that a nor-
mal resident buys many sensors for their typical 2-story home.
Therefore, we picked up 21 sensors for this dataset. We randomly
picked a maximum of two sensors from each room, and we have
many sets of sensors where we pick up. For example, there are
6 sensors in a room and we pick up to 2 sensors, then we have 6
combinations. After that, we apply our method to every combi-
nation and take the average of the result from every combination.

We consider the only the cases that we know or can estimate
the floor plan in more detail such as room size. According to Sec-
tion 3.2, we, therefore, mention the floor plan at least the third-
level floor plan information. The fourth-level and fifth-level floor
plan information have enough information to be classified into the
same categories. The performance of matching result is evaluated
by an accuracy. We assume that the floor plans of these houses
have already been identified.

5.2 Matching Performance

We conducted the performance testing on 4 datasets by assum-
ing the sensors in key locations were already identified. Since
we need to see the effect of the number of identified sensors in
specific locations on the matching performance, we assumed that
we could estimate sensors in 5 key locations (“bedroom”, “living
room”, “kitchen”, “front entrance” and “wash basin’’) and evalu-
ated our matching method in the following 3 cases. The first case
named “3keys” is that the resident places sensors in the bedroom,
kitchen and front entrance. In the second case named “4keys”,
one more sensor is placed to the living room in the “3keys” case.
In the “Skeys” case, one more sensor is placed in the wash basin
in “4keys” case. The results of our room-level sensor localization
are shown in Table 1.

According to Table 1, we found our method can obtain good
accuracy in most cases after 3 days observation. Since there are
fluctuations in the performance in some datasets, we assessed the
event sequences and found that the resident might not do the same
activities every day. As a result, those activities of resident only
from 3 days were insufficient to affect the sensor graph topol-
ogy. Additionally, there were some locations where the resident
rarely visited. Consequently, sensors in those locations could not
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Fig. 6 Floor plan with Sensor Locations.

Fig. 7 Snapshot from experiment site.

Table 1 Matching Accuracy with sufficient floor plan information.

Running Days
Dataset T 3 3 7 5
DTI 3keys | 0.58 074 0.79 0.79 0.79
4keys | 0.79 079 0.84 0.84 0.84
Skeys | 0.84 0.89 095 095 0.95
DT2 3keys | 0.56 0.72 0.78 0.78 0.78
4keys | 0.56 0.78 0.83 0.83 0.83
Skeys | 0.67 0.89 089 089 0.89
DT3 3keys | 0.58 050 0.83 0.83 0.75
4keys | 0.67 0.83 0.83 0.83 0.83
Skeys | 092 092 092 1.00 0.92
DT4 3keys | 043 081 071 071 0.76
4keys | 0.48 0.81 0.86 090 0.95
Skeys | 052 090 095 095 0.90

be in the sensor graph due to insufficient event sequences from
those sensors. For example, the result in datasets “DT2” and
“DT4” with 1-day case, in which the resident did not pass all
the sensors on the first day, the accuracy was rather low. But as
we mentioned, the accuracy is totally good as it reaches 0.70 in
most cases and is close to 0.80 even in 3keys case, after 5-days
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observation.

We note that the major issue that affects the performance is
symmetric structure. Our algorithm is unable to match a sen-
sor into a location from those with similar conditions. In such a
case, we should increase the number of key locations to reduce
the similarity in the searching space. Consequently, the results
have been better when we have enough sensors in key locations
as in Table 1.

Furthermore, there is another benefit of having key locations.
Such benefit is that we can match some sensor into a location
close to key locations. Specifically, our method can estimate the
location of one or two sensors which are placed close to the key
locations correctly after sensor events are collected for 1 day.

6. Discussion

In this section, we found there are some factors that affect ac-
curacy of our method and we would like to discuss on that factors.
The factors rendering the greatest effect are walking speed of res-
ident and limitation of binary event for sensor in key locations.

6.1 Walking Speed of Resident

In this work, we assume the average walking speed is about
1 m/s, which is normal for most of people, because there may be
family members in the same house (e.g., kids, father, mother as
well as elderly). In such a house, some may move fast and some
others may move slow. Therefore, we consider using 1 m/s as the
average is reasonable. On the other hand, there are such houses
where only elderly people live. In such a house, if we adopt 1 m/s
as the average walking speed, the accuracy will be worse. There-
fore, we come up with the idea of estimating the walking speed
by observing the event sequence of resident who walks from one
key location to another key location directly (without passing
the other sensors). If we can recognize the event sequence with
known distance between those locations, we will be able to esti-
mate the average walking speed automatically.

6.2 Limitation of Binary Event for Sensor in Key Locations

In our method, the key locations are such locations where a res-
ident stay for some time to perform a well-known activity. Since
such activity has an individual characteristic of event pattern, we



Electronic Preprint for Journal of Information Processing Vol.27

can easily identify the type of the activity, and correspondingly,
those sensors which perceive the event pattern are considered to
be located in the “key location”. Our goal is automatic identifica-
tion of all the sensors in the key locations without any help from
the resident side. Nevertheless, some sensors in key locations are
difficult to identify only from the binary event patterns. For in-
stance, we see a few binary events of the resident who sits on a
sofa in a living room. However, our method actually can identify
three sensors in key locations. We, also, show if at least three
sensors in key locations can be identified, our method is able to
capture a good result. Our method, consequently, does not require
any input is necessary from the resident side.

7. Conclusion

This paper propose a method to find the location of motion
sensors that are used to detect the daily life activities in the home
environment. Our technique requires a prior knowledge such as
floor plan and can estimate the mapping function between sensors
and locations with about 80% or above accuracy after 3 days data
collection without any labeled data.

In the future, we will improve our technique for the more pre-
cise localization of binary motion sensors. Specifically, the sensor
graph which is generated from our method contains some feature
such as the distance between two sensors. Not only the room-
level localization but also the order of sensors can be estimated.
Besides localization of precision sensors, we will consider the
smart-home system in which the many types of sensors are in-
volved.
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