EHMMPFASHYEE 075327 Vol.12 No.3 14 (July 2019)

RRBE

INA F) aA— FERE L=Esh D EiE 8
Use-After-Free fi

NIRRT =S - L [A

2019F1A17H SR

AR, Use-After-Free (UAF) Mgtk 2 M L 72O KL AR L T b, UAF Bagg PRI @R & 0
AEVHEBASBL TR 7)) VIR U e il T A2 ETHRAEL, TREEMTAHI &L TLE
I — FOFATREHRFR L LGSR SNAWEENH L. CNFETC VY —AT— FITH L TEGED,
DA — Ny T UAF EEHEOER 2 CFEPS L (IRESNTE . —HT, "M FY LRV TO
UAF #HIEF — 3y ROSKRE L, UT VT A L TOREIZAD R NLDNS . T2, N4 F 1) L)L
TEAY v 7 7L — A0SR T S UAF OO L v, RERTEINAF) a—FEGL L
PO LR UAF M T2 % $ 5. KRTHES FreeSentry /81 F 1 2 — F & SICHERE Lz E
T, FHEY - VAo E, KA Y YBEIRIE) maE LV I AY ERET S I & Traba ER L7,
I72, cal R ret AL EREHT A ETAY v 7 IGERS 2 UAF OB D W FRIC L7z, Mlikses
IZoWT, HfED 11 ®F A h 7 — A & NIST SAMATE benchmark suite @ 38 D5 A k7 — A TRk H
R IVEEAE L d o7, F72, LAVA % UAF HICSGEL7- b D% L THELZMIE L. +—
NNy RIZOWT, grip ICATHEZ@H T 5 & FATRIE 7 RIS o 72,

Presentation Abstract

Efficient and Precise Dynamic Use-After-Free Detection for Executables

TaicHI ISHIYAMAY® YOSHITAKA ARAHORI''?) KaTsuHiko GoNDOw!:©)

Presented: January 17, 2019

Use-After-Free (UAF) is a memory bug in which a (dangling) pointer to a freed memory objects is deref-
erenced. UAFs are a notorious source of many security vulnerabilities such as arbitrary code execution and
information leakage. There have been proposed a number of efficient and precise detection techniques for
UAFs. However, most of them are implemented via source-code instrumentation, limiting the range of code
checked. Binary instrumentation-based UAF detectors are, on the other hand, neither efficient nor precise.
Especially, they are too inefficient to be used as an online UAF detector, and not able to detect UAFs over
stack frames. In this work, we propose an efficient and precise dynamic UAF detector based on binary
instrumentation. We extend FreeSentry, a source-level UAF detector, to precisely check binary execution via
monitoring stack frames, while taming runtime overheads by optimizing binary instrumentation and limiting
registers over which to perform pointer-tracking. Our experiments with 18 small benchmarks and 38 NIST
SAMATE benchmarks show that our approach incurs neither false positives nor false negatives. In addition,
the runtime overhead imposed by our approach was about 7x for gzip.

1

a)
b)
c)

This is the abstract of an unrefereed presentation, and it
should not preclude subsequent publication.

FOL TSR

Tokyo Institute of Technology, Meguro, Tokyo 152-8550,

Japan

ishiyama@sde.cs.titech.ac.jp
arahori@cs.titech.ac.jp
gondow@cs.titech.ac.jp

© 2019 Information Processing Society of Japan

14

