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Use-After-Free (UAF) is a memory bug in which a (dangling) pointer to a freed memory objects is deref-
erenced. UAFs are a notorious source of many security vulnerabilities such as arbitrary code execution and
information leakage. There have been proposed a number of efficient and precise detection techniques for
UAFs. However, most of them are implemented via source-code instrumentation, limiting the range of code
checked. Binary instrumentation-based UAF detectors are, on the other hand, neither efficient nor precise.
Especially, they are too inefficient to be used as an online UAF detector, and not able to detect UAFs over
stack frames. In this work, we propose an efficient and precise dynamic UAF detector based on binary
instrumentation. We extend FreeSentry, a source-level UAF detector, to precisely check binary execution via
monitoring stack frames, while taming runtime overheads by optimizing binary instrumentation and limiting
registers over which to perform pointer-tracking. Our experiments with 18 small benchmarks and 38 NIST
SAMATE benchmarks show that our approach incurs neither false positives nor false negatives. In addition,
the runtime overhead imposed by our approach was about 7x for gzip.
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