
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

Visualization of Counterexamples of Memory Model-aware
Model Checking Using SPIN

KosukeMatsumoto1,a) Tomoharu Ugawa1,b)

Received: December 14, 2018, Accepted: March 17, 2019

Abstract: In modern computer processors, the order of memory access instructions in a program (the “program or-
der”) is not necessarily the same as the order in which the instructions are reflected in memory (the “memory order”).
This means that the memory order has to be taken into account when verifying concurrent programs. We previously
developed a library, MMLib, that facilitates model checking of programs by enabling the memory order to be taken
into account when using the SPIN model checker. The input to SPIN is a model of the program written in Promela, an
imperative style modeling language. When SPIN detects an error, it generates a trace of the execution path that led to
the error. To determine what caused the error, the user has to understand this counterexample. However, counterexam-
ples of models written using MMLib are difficult to understand because include internal MMLib execution steps, and
the user has to interpret the internal data structures of MMLib to understand the memory order. We have now In this
paper, we developed software for visualizing counterexamples of models written using MMLib. It visualizes execution
of the model step by step along the path of the counterexample. It skips visualizing the internal MMLib steps and
visualizes only the execution of each step corresponding to statement in the user model. It also highlights memory
access instructions that have been executed but have not yet been reflected in memory. This makes users aware of
when the memory order differs from the program order.

Keywords: SPIN, memory model, model checking, debug, visualization

1. Introduction

When model checking a concurrent program, not only does the
order of memory access instructions written in the program, the
program order, have to be considered but also the order in which
they are reflected in memory, the memory order, has to be consid-
ered. This is because the two orders may be different in modern
computer processors. Because memory access instructions exe-
cuted in a thread are observed by other threads as if they were
executed in memory order, a program that runs correctly if mem-
ory access instructions are reflected in memory in program order
may not run correctly if the two orders differ. Possible memory
orders are defined in the memory model of each processor.

We previously developed a library, MMLib, that enables the
SPIN model checker to check programs in accordance with the
memory model [6], [7]. MMLib is a set of model components
written in Promela, a modeling language for SPIN. The user gives
a model of the program together with MMLib to SPIN, and SPIN
checks the model in accordance with the memory model.

MMLib is designed to be used for finding and fixing bugs
caused by differences between the memory order and program or-
der. It is intended for use after other tools are used to ensure that
the program is error-free in regards to the program order. There-
fore, we assume that the programs being checked using MMLib
are error-free in terms of program order execution.

1 Kochi University of Technology, Kami, Kochi 782–0003, Japan
a) matsumoto@pl.info.kochi-tech.ac.jp
b) ugawa.tomoharu@kochi-tech.ac.jp

SPIN’s modeling language, Promela, is an imperative lan-
guage. It checks if an error might occur if thread executions are
interleaved *1. It executes its statements of threads one by one. If
an error could occur, the program is said to have a bug. When
SPIN finds a bug, it generates a counterexample, which is a trace
of the execution path leading to the error.

When debugging a program using model checking, a program-
mer should be able to understand the cause of the bug from the
counterexample. However, there are two difficulties in under-
standing counterexamples when using MMLib. First, the coun-
terexamples include the MMLib internal execution steps. Be-
cause MMLib is written in Promela, the same language used to
write the program model, SPIN handles the execution steps of
the program model and the MMLib internal execution steps in
the same way when it generates a counterexample. This makes it
difficult for a user to find the line in the model corresponding to an
execution step in the counterexample and vice versa. Second, the
user needs to interpret the values of the MMLib internal variables
to understand the order in which memory access instructions are
reflected in memory. The first difficulty is not specific to MMLib
but is common among similar model checking libraries that are
implemented using macros. The second one is specific to mem-
ory model-aware debugging. We focused on the second one and
developed a way to visualize the memory orders.

From our experience in using memory model-aware model
checking for debugging, we identified the following information
for each execution step as useful for understanding bugs [5], [15].

*1 Threads are called “processes” in Promela.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

(1) Values of global and local variables in memory and the val-
ues observed by each thread.

(2) Memory access instructions that had been executed but were
not yet reflected in memory.

We thus developed a counterexample visualizer that provides
this information. The software reproduces the execution of the
model along the path of the counterexample and displays this in-
formation on the model. More specifically, it shows step-by-step
execution of the model at the statement or line level, like typi-
cal debuggers for imperative languages. Moreover, it highlights
the memory access instructions that have not yet been reflected in
memory and those that were reordered with subsequent instruc-
tions.

We explain the problem with debugging using MMLib in Sec-
tion 2 and describe the memory models supported by MMLib
and the structure of MMLib in Section 3. We then describe the
design the counterexample visualizer and explain its operation in
Section 4. In Section 5, we demonstrate debugging and bug un-
derstanding using the counterexample visualizer and in Section 6,
we compare our counterexample visualizer with an existing one.
We describe related work in Section 7 and summarize the key
points and mention future work in Section 8.

2. Problem with Debugging Using MMLib

2.1 Peterson’s Mutual Exclusion Algorithm
Figure 1 shows a program written using Peterson’s mutual ex-

clusion algorithm [10]. This algorithm is based on the assumption
that memory access instructions are reflected in memory in pro-
gram order. For memory models not based on this assumption, it
fails to maintain mutual exclusion.

The program in Fig. 1 is based on the assumption that func-
tions T0 and T1 are executed in different threads. The comment
Critical Section represents the critical section for mutual ex-
clusion. Shared variables want0 and want1 are used by threads
T0 and T1, respectively, to declare that the thread wants to en-
ter the critical section. Hereafter, we refer to both of these vari-
ables as want. A thread attempting to enter the critical section

Fig. 1 Program using Peterson’s mutual exclusion algorithm.

sets want to 1. Then it tests the want of the other thread. If
it is 0, the thread enters the critical section. Because a thread
reads the other’s want after it sets want to 1, it is impossible for
both threads to be in the critical section simultaneously. However,
there could be a deadlock if both threads set want to 1 and wait
for the other one to clear it. The variable turn is used to prevent
this deadlock.

2.2 Promela Model Using MMLib
Figure 2 shows a model of the program shown in Fig. 1; it was

written in Promela using MMLib. In Promela, a thread is defined
with the keyword proctype. In the model in Fig. 2, threads T0
and T1model the functions T0 and T1 in Fig. 1. Line 38, contain-
ing the keyword ltl, in the model in Fig. 2 has a linear temporal
logic (LTL) formula specifying that both threads are never in the
critical section simultaneously. SPIN searches for an execution
trace that violates this specification.

A user can use MMLib to model threads accessing variables
that are accessed by multiple threads. We call these variables
shared variables. MMLib manages shared variables and pro-
vides macros to access them. That is, in MMLib, shared memory
and memory access instructions are modeled using shared vari-
ables and shared variable access instructions, respectively. MM-
Lib provides three macros as shared variable access instructions:
READ(x), which reads a value from shared variable x, WRITE(x,

v), which writes value v to x, and FENCE(), which forces preced-
ing instructions to be reflected in the shared variables before the
subsequent instructions are reflected.

Fig. 2 Promela model with MMLib for program in Fig. 1.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 3 Relevant portion of counterexample for model in Fig. 2.

In MMLib, shared variables are identified by an integer.
Hence, WRITE expects an integer that identifies a shared vari-
able as its first argument. Lines 5–7 in the model in Fig. 2 de-
fine names of shared variables written as C language macros,
which is valid in a Promela model. We can thus use the names
of shared variables as the first argument of WRITE. For example,
WRITE(turn, 1) on line 11 writes 1 to the shared variable turn.
Similarly, READ(turn) on line 13 reads from turn.

2.3 Cause of Error
In order for thread T0 in the model in Fig. 2 to enter the crit-

ical section, at least one of the conditions of the if statement
on line 12 must be satisfied. In Promela, a conditional branch
can be described using if and fi. The conditions of an if-
statement follow to the keyword “::”; it represents a nondeter-
ministic choice. An if-statement chooses a branch for which the
condition is true nondeterministically, if any, and executes it. If
there is no such branch, the thread is blocked until one of the
conditions is satisfied.

In the model in Fig. 2, thread T0 reads want1 on line 14;
want1 is the shared variable with which thread T1 declares
that it wants to enter the critical section. If the value written
by WRITE(want1, 1) of thread T1 on line 21 were visible to
READ(want1) of thread T0 on line 14 through the shared vari-
able immediately after T1 wrote the value, T0 would be blocked
by the if-statement, and mutual exclusion would be maintained.
However, if there is a delay in reflecting the WRITE to the shared
variable want1, T0 enters the critical section because it observes
that want1 is still 0.

2.4 Counterexample
Figure 3 shows a relevant part of the counterexample gener-

ated by SPIN for the model in Fig. 2. In our previous research [5],
counterexamples like this were interpreted to understand bugs.
However, this required knowledge of the internal data structure
of MMLib, and even with such knowledge, it was a difficult task.
In the following, we explain how the information needed for un-
derstanding bugs related to memory order can be obtained.

2.4.1 Values of Shared Variables Being Accessed
The value of the shared variable being accessed by READ or

WRITE depends on the values of multiple internal variables of
MMLib. For example, the value read by READ(want1) on
line 14 in the model in Fig. 2, which corresponds to line 14 of
the counterexample in Fig. 3, depends on the values of buffer,
lcounter, and shared memory, the values of which are shown
on lines 2–13 in the counterexample. In this example, READ
reads the value of shared memory[1], which is 0, because
lcounter[7] is 0, where the index of shared memory, 1, is the
integer identifying the shared variable want1, and the index of
lcounter, 7, is computed using the integer.
2.4.2 WRITEs That Have Not Been Reflected
WRITEs that have not been reflected in shared variables are

stored in MMLib’s internal queues. The queues shown on
lines 16–20 in the counterexample in Fig. 3 store the WRITEs
that have been executed but are not yet reflected in the
shared variables. The element of queue 11, “[1]”, represents
WRITE(want1, 1) executed by T1. Because the WRITE has not
yet been reflected in the shared variable, 0 is read from want1 on
line 14 in the model in Fig. 2. This sort of interpretation is needed
to understand the counterexample.

3. MMLib

3.1 Memory Models
For models with MMLib, SPIN checks the executions in which

shared variable access instructions are reflected in the shared vari-
ables in an order that differs from the program order. It performs
model checking in accordance with the memory model. The cur-
rent version of MMLib supports total store ordering (TSO) and
partial store ordering (PSO) memory models. In TSO, only the
pairs of a WRITE and a following READ can be reordered. In PSO,
two WRITEs can be reordered in addition to TSO. In either mem-
ory model, reflection in the shared variables can be delayed only
for the WRITEs.

Hereafter, we assume PSO memory model.

3.2 Structure of MMLib
In a model using MMLib, queues for each thread and the mem-

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 4 Structure of model using MMLib.

ory process are introduced, as shown in Fig. 4. The “threads”
represent those of the Promela model described by the user. The
arrows represent the flows of data caused by a WRITE or a READ.
Array shared memory in Fig. 4 models shared variables. The
indexes of the array are the integers used to identify the shared
variables.

When a thread executes WRITE, a pair of an integer that identi-
fies the shared variable to be written to and the value to be written
is inserted into the queue as a write request. The (FIFO) queues
are implemented using several channels in Promela. Their struc-
tures depend on the memory model. A write request inserted
in a queue is dequeued by the memory process and reflected in
the shared variable. The memory process nondeterministically
chooses a queue from which it dequeues a write request. This
enables an execution with a memory order that differs from the
program order to be checked.

In contrast, READ completes immediately when it is executed.
That is, READs are reflected in the shared variables immediately.
The value read by a READ may differ from one thread to another.
If a write request is stored in the queue of the thread that executes
the READ, the READ returns the value found in the write request.
This mechanism uses the variable lcounter to track the number
of write requests stored in each queue and the variable buffer to
store the value in the latest write request.

When a thread executes a FENCE, all the write requests stored
in the queue of the thread are immediately reflected in the shared
variable. This causes the shared memory access instructions ex-
ecuted before and after the FENCE to be reflected in the shared
variables in this order.

Shared memory access instructions are implemented using
atomic blocks of Promela so that they can be executed without
being interleaved with other threads during their execution. Thus,
the lines that contribute to a single memory access instruction are
contiguous in the counterexample.

4. Counterexample Visualizer

The counterexample visualizer we developed enables users to

understand bugs without interpreting the counterexample. There
were two specific requirements for this visualizer.
(1) It should visually display the time when each WRITE was re-

flected in a shared variable.
(2) It should display the values of the variables being accessed

by shared variable access instructions.
We implemented this visualizer as a plug-in for the Eclipse.

4.1 Functions of Counterexample Visualizer
Our counterexample visualizer visualizes the execution of the

model step-by-step like GUI debuggers for imperative languages.
It shows information for each execution step, one by one. The
execution step displayed is the current execution step.

An images of the counterexample visualizer displaying the
counterexample for the error found in the model shown in Fig. 2
is shown in Fig. 5. The visualizer has a model view, a navigation
view, and two variable views: a shared variable view and a local
variable view, which is not shown in the figure. The model view
shows the program model created by the user. The navigation
view has buttons for loading a model and a counterexample and
navigation buttons for moving the current execution step forward
and backward. The shared variable view and the local variable
view display the values of shared and local variables, respectively.
Various types of information, such as the lines being executed
by each thread at the current execution step and the unreflected

WRITEs, which are the WRITEs that have yet to be reflected in the
shared variables are displayed.

This counterexample visualizer has two functions correspond-
ing to requirements (1) and (2) above.
(1) A function for highlighting unreflected WRITEs.
(2) A function for displaying the values of the shared variables

observed by each thread.
4.1.1 Highlighting Unreflected WRITEs

The counterexample visualizer highlights in yellow in the
model view the unreflected WRITE instructions at the current exe-
cution step. In accordance with our assumption that the program
being checked is error-free in terms of program order execution
programs being checked using MMLib are error-free in terms of
program order execution, the bug the user is trying to understand
using this counterexample visualizer is related to memory order.
To understand such bugs, users have to focus on these unreflected
WRITEs because their memory order is still uncertain.

The counterexample visualizer also highlights in red in the
model view the unreflected WRITEs at the execution step when
they match one of the following conditions because they can lead
to bugs.
A. An unreflected WRITEW0 preceding a shared variable access

instruction, i.e., READ or WRITE, M in the program order, and
M is reflected in memory at the execution step.

B. An unreflected WRITE W1 writing to x, which x is a shared
variable that reflected READ in another thread read from and
the READ is reflected in the shared variable at the current ex-
ecution step, and some shared variable access instructions
following W1 in the program order have been reflected in the
shared variable.

Condition A can lead to a bug because the order of WRITE W0

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 5 Counterexample visualizer.

and M is changed, and this reordering occurs in the current ex-
ecution step. It is important to note that executions of READs
are reflected in the shared variables immediately in all of the
memory models supported by MMLib. In the model in Fig. 2
for example, when thread T1 executes READ(want0) on line 25,
WRITE(want1, 1) on line 21 is highlighted in red if it has not
yet been reflected in the shared variable.

Condition B can lead to a bug because the reordering of W1

with its following shared memory access instructions is observed
by another thread. Note that W1 was highlighted in a previ-
ous execution step due to condition A. In the model in Fig. 2
for example, when thread T0 executes READ(want1) on line 14,
WRITE(want1, 1) of thread T1 is highlighted in red if it has
not yet been reflected in the shared variable, and if the following
READ(want0) has been executed. This is the cause of the error
mentioned in Section 2.3.
4.1.2 Indicating the Values of Shared Variables Observed

from the Viewpoint of Each Thread
As shown in Fig. 5, the shared variable view displays a table

indicating the names of the shared variables and their values of
the variables stored in them at the current execution step. The
first column shows the names, and the second column shows their
values at the current execution step. The following columns show
the values observed from the viewpoint of each thread. The val-
ues observed from the viewpoint of a thread may differ from the
values stored in the variables. The counterexample visualizer re-
produces these observed values by using the same computation
used by the READ macro.

The counterexample visualizer uses a shared variable mapping

file, as described below in Section 4.2.2, to display the names of
the shared variables in the first column of the table. If a shared
variable mapping file is not given, the visualizer display the inte-
gers identifying the shared variables instead of their names.

The counterexample visualizer provides a local variable view
in addition to the shared variable view. Because the memory or-
der does not affect local variable accesses, its design is straight-
forward.

4.2 Other Features
4.2.1 Execution Steps

The counterexamples generated by SPIN include the MMLib
internal execution steps. These steps are obstacles to debugging a
program. The counterexample visualizer thus regards only events
in the Promela model that the user described as execution steps.
More specifically, an execution of a WRITE or FENCE macro is
regarded as a single step though these macros comprise multiple
atomically executed Promela statements. Reflecting an executed
WRITE is also regarded as a single step though a dedicated pro-
cess executes multiple atomically executed Promela statements
to reflect it.

Promela has a dedicated thread called never claim for specify-
ing a property that the model should not satisfy. The specification
is written in an LTL formula and converted into a never claim

thread. The thread is executed concurrently with other threads
so that, if the model satisfies a property that should not be satis-
fied, the never claim thread enters a cycle that has an accept label.
When the never claim thread enters such a cycle, SPIN regards it

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

as an error and creates a counterexample *2. Although the never

claim thread is not a model of the program, its behavior is impor-
tant for debugging the program. The counterexample visualizer
thus deals with each step of the never claim thread as a single
execution step.
4.2.2 Shared Variable Names

Although MMLib identifies shared variables by using integers,
which we call variable numbers, users usually define symbolic
identifiers for the variable numbers and use them to refer to shared
variables in Promela models using MMLib. However, referring
to the definitions while reading counterexamples is a tedious task.
The counterexample visualizer accepts a shared variable mapping
file, in which the user describes this mapping. The visualizer
uses the names described in the mapping file for the names of the
shared variables displayed in the shared variable view.

5. Case Studies

In this section, we describe debugging and bug understanding
using the counterexample visualizer. We first describe the de-
bugging of Peterson’s mutual exclusion algorithm (Fig. 1) *3. We
then describe how we can get an understanding of the bug in Stac-
cato [8], a concurrent copying garbage collection (GC).

Table 1 shows the sizes of the models discussed here in terms
of number of lines, the number of threads, and number of shared
variables.

5.1 Strategy for Understanding Bugs
The strategy used for understanding bugs is as follows. First,

a short counterexample is used. In general, if there is an error,
there are multiple execution traces leading to the error. SPIN has
an operation mode in which it searches for the execution trace
with the smallest number of execution steps. Because a shorter
counterexample is easier to understand, we use the shortest coun-
terexample to understand the bug. The shortest counterexample
is the shortest one including the MMLib internal execution steps
as well. Nevertheless, it is sufficient as an approximation of the
shortest counterexample for the Promela model described by the
user.

Next, attention is paid to the WRITEs highlighted in red, which
are the WRITEs that can lead to a bug. We assume that the pro-
gram being checked runs correctly if its memory access instruc-
tions are reflected in the program order. This means that a bug
is caused by reordering of the memory access instructions; that

Table 1 Model sizes.

no. of no. of no. of
model lines threads shared variables

Peterson 38 2 3
Staccato 174 2 6

*2 SPIN translates a Promela model into a Büchi automaton and uses it to
search for errors. In the semantics of a Büchi automaton, the automa-
ton accepts an input if the control enters a cycle having an accept state.
When the never claim is accepted, SPIN reports an error.

*3 Strictly speaking, this is not a bug in the algorithm but misuse of the al-
gorithm because Peterson’s algorithm does not support memory models
in which the program and memory orders are differ. However, we call
it debugging here to modify the algorithm so that it can work on such
memory models.

is, the memory access instructions are executed in an order dif-
ferent from the program order. The red highlighting visualizes
reordering at the execution steps when shared variable access in-
structions are reflected in the shared variable in an order different
from the program order.

5.2 Peterson’s Mutual Exclusion Algorithm
As we mentioned in Section 2, Peterson’s mutual exclusion

algorithm (Fig. 1) allows two threads to be in the critical sec-
tion simultaneously if memory access instructions are executed
in an order different from the program order. We demonstrate de-
bugging of the model of Peterson’s mutual exclusion algorithm
(Fig. 2) using the counterexample visualizer.
(1) We loaded the shortest counterexample into the counterex-

ample visualizer and advanced the execution to the execution
step at which the first thread entered the critical section. We
found that thread T1 entered the critical section in this execu-
tion step because condition READ(want0) == 0 on line 25
in the model in Fig. 2 was satisfied. This was the first step
when WRITEs were highlighted in red (Fig. 6). In particular,
WRITE(want1, 1) of thread T1 on line 21 was highlighted
in red at this step. This indicated that the declaration by
thread T1 to enter the critical section was still not visible to
the other threads. This can lead to an error.

(2) In the following execution steps, thread T0 progressed and
executed a guard for the critical section READ(want1) ==
0 on line 14 in the model in Fig. 2 (Fig. 7). At this execu-
tion step, WRITE(want1, 1) on line 21, which thread T1

Fig. 6 Execution step in which thread T1 enters critical section.

Fig. 7 Execution step in which thread T0 enters critical section.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 8 Execution step in which first red highlight is displayed in new coun-
terexample.

had executed, was highlighted in red, as well as the WRITEs
executed by thread T0. This highlighting indicated that the
declaration of thread T1 to enter the critical section was not
observed by thread T0. In fact, the shared variable view in-
dicated that the value of the shared variable want1 was still
0.

(3) From the results obtained above, we determined that the er-
ror was caused by the reordering of WRITE(want1, 1) on
line 21 and READ(want0) on line 25 in the model in Fig. 2.
We thus inserted a FENCE instruction before the if-statement
on line 23 to prevent them from being reordered. Simi-
larly, we inserted a FENCE in thread T0 because these two
threads are symmetric. After fixing this bug in this way, we
rechecked the model and found another error, for which we
created a counterexample.

(4) We loaded this new counterexample into the counterexample
visualizer and advanced the execution. Figure 8 shows the
first execution step in which a WRITE was highlighted in red.
The thread that made progress at this execution step was T1,
indicating that this highlighting was due to WRITE(turn,
0) on line 22 in the model in Fig. 2 being reflected in the
shared variable before the preceding WRITE(want1, 1) on
line 21. At this execution step, WRITE(turn, 1) executed
by thread T0 on line 11 was highlighted in yellow, meaning
that this WRITE had not been reflected in the shared variable.
Once this WRITE(turn, 1)was reflected in the shared vari-
able, and turn changed to 1, T1 was allowed to enter the
critical section. Meanwhile, WRITE(want1, 1) executed
by thread T1 on line 21 had not been reflected in the shared
variable. Thus, thread T0 was also allowed to enter the crit-
ical section. In fact, in the following execution steps, thread
T0 entered the critical section, and then thread T1 entered the
critical section because condition READ(turn) == 1 was
satisfied.

(5) The cause of this error was that thread T1 wrote to turn be-
fore the WRITE writing to want1 was reflected in the shared
variable. This meant that thread T0, which was allowed
to enter the critical section, overwrote turn, and thread
T1 was allowed to enter the critical section. We thus in-
serted a FENCE between WRITE(want1, 1) on line 21 and

Fig. 9 Cause of bug in Staccato.

WRITE(turn, 0) on line 22 to prevent these WRITEs from
being reordered. We also inserted a FENCE in thread T0 in the
same way. After fixing this bug in this way, we rechecked the
model again. No more errors were found.

5.3 Concurrent GC Staccato
Staccato is a GC algorithm that manages the heap by dividing it

into two semispaces: a from-space and a to-space. The collector
copies all the objects in the from-space that can be accessed by
the application threads (mutators) to the to-space. Concurrently
with this copying, the mutators are using the objects. Thus, an
appropriate synchronization is needed to ensure that the mutators
access the up-to-date copies.

Staccato uses fence instructions so that it works correctly even
if the memory order differs from the program order. However,
there is a bug in Staccato: a value written by the mutator may not
be copied to the to-space [15].

In an experiment, we developed a model of Staccato and repro-
duced the bug. We then, as described below, used the counterex-
ample visualizer to understand the cause of this bug.

We generated the shortest counterexample by using SPIN and
loaded it into the counterexample visualizer. Through the en-
tire execution, three WRITEs out of 17 WRITEs in the model
were highlighted in red 13 times in total. Among them, the
WRITE(from data, val) (highlighted in red on line 2 in Fig. 9)
was the cause of the bug. This WRITE was executed by the muta-
tor to write to the shared variable from data, which represented
the from-space. Because this write was delayed, the collector
could not read the up-to-date value. As a result, the collector read
an old value from from data and copied it to the to-space us-
ing WRITE(to data, READ(from data)) on line 20. This was
shown in the counterexample visualizer: because the collector
read an old value from the shared variable from data, the WRITE
on line 2, which was writing to the same shared variable and had
not been reflected, was highlighted in red.

5.4 Discussion
In the experiment on Peterson’s mutual exclusion, red high-

lighting was useful. In the first counterexample, the execution
steps in which WRITEs were highlighted in red were only the two
mentioned above. At both of them, the WRITEs contributing to the
error were highlighted. In the counterexample of the model after

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 10 iSPIN.

the first bug was fixed, although WRITEs were highlighted again
in the steps following the steps mentioned above, the number of
steps in which WRITEs were highlighted was small enough, and
most of them were related to the error. The WRITEs contribut-
ing to the error were highlighted in the concurrent GC Staccato
experiment as well. WRITEs were highlighted in red 13 times in
total. This number is small enough for the user to examine each
of them.

However, in the experiment on Peterson’s mutual exclusion,
the WRITE writing to turn, which did not contribute to the first
error but the second error, was also highlighted in the execution
steps mentioned above. This means that the causes of the bugs
that we fixed in steps (3) and (5) above were indicated simulta-
neously. In the experiment on Staccato, the counterexample con-
tained many unreflected WRITEs, and some of them were high-
lighted in red. In debugging of more complicated algorithms, the
counterexample could contain more unreflected WRITEs.

The reason many WRITEs were reordered was that we used
the counterexample that had the smallest number of execution
steps as the shortest counterexample. Reflecting a WRITE in a
shared variable takes multiple execution steps. And we had cho-
sen a counterexample in which there was a delay in reflecting the
WRITEs that did not contribute to the error in the shared variables.
If we had chosen the semantically simplest counterexample rather
than the shortest counterexample in which the MMLib internal
execution steps were counted, it would have been easier to under-
stand the bug. Addressing this problem remains for future work.

6. Comparison with Existing Counterexample
Visualizer

iSPIN [11] is a standard counterexample visualizer for SPIN.
Though iSPIN does not have any dedicated functions for MM-
Lib, it is worth discussing whether iSPIN would be useful for de-
bugging for users who have enough knowledge about the internal

data structure of MMLib.
iSPIN shows step-by-step execution with line granularity of

the counterexample. It shows all steps in the counterexample ex-
pect for those that execute the never claim thread. The iSPIN
GUI (Fig. 10) displays a screen for navigating step-by-step exe-
cutions in the upper part, views showing the model and sequence
diagram in the middle part, and views showing the counterexam-
ple and the contents of variables and channels in the lower part.
When debugging, the user reads the model shown without any
highlighting or marking in the middle part while referring to the
information shown in the other views. Here we compare some
aspects of our counterexample visualizer with iSPIN.

6.1 Counterexample
As shown in Fig. 10, iSPIN shows the counterexample with

almost no changes. For example, line 7 in the counterexample
view is the same as line 1 in Fig. 3. Although the counterexample
shown in Fig. 10 seems simpler than that in Fig. 3, this is because
we generated the counterexample in Fig. 3 with more command-
line options of SPIN. The counterexample in the view automat-
ically scrolls so that the current execution step is shown in the
view. Furthermore, the step number of the current execution step,
which is at the left of the line, is colored yellow. Nevertheless,
it does not indicate the lines being executed by each thread in
the current execution step, unlike our counterexample visualizer
does.

Our counterexample visualizer shows only a single execution
step at a time in the display. In contrast, iSPIN shows the com-
plete counterexample, which enables the user to check the execu-
tion steps around the current execution step. This is useful when
visualizing counterexamples of models that do not use MMLib.
However, for models that do use MMLib, the execution steps
around the current execution step are of little use because the ex-
ecution of a single shared variable access instruction is expanded

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

into multiple execution steps.

6.2 Values of Variables
iSPIN displays lists of variables and channels that occur in the

counterexample at the left bottom and right bottom of the display.
It updates the values of the variables and contents of the queues
so that they match the current execution step. The user has to
interpret this information to understand the values of the shared
variables observed by each thread. However, even if the user has
sufficient knowledge about the internal data structure of MMLib,
it is difficult to understand the values for two reasons. First, it
is difficult to find a single variable in a list containing the many
variables used by MMLib. Second, it is even more difficult to un-
derstand the value of a shared variable because it depends on the
values of multiple internal variables.

6.3 Filtering
In iSPIN, the user can specify regular expressions to filter the

information to be displayed. The text boxes for these regular ex-
pressions are arranged on the left of the buttons located in the
top left corner in Fig. 10. For example, if the user specifies “2”
in the text box labeled “process ids,” only the executions of the
processes that have “2” in their IDs, which SPIN automatically
assigns, are displayed.

This filtering function is useful for focusing on the behavior
of a specific process or on the queue that stores the WRITE in-
structions to a specific shared variable. However, even with this
function, it is difficult to hide the internal execution steps of MM-
Lib in the counterexample in order to focus on the behavior of the
Promela model of a program that uses MMLib.

6.4 Sequence Diagram
iSPIN shows a sequence diagram at the right in the middle part,

as shown in Fig. 10. In this diagram, the operations to channels
executed by threads are arranged in time sequence. Threads are
arranged from left to right in the order of their IDs. Each yellow
box in the diagram represents a single operation to a channel. For
example, the topmost box indicates that thread T1 inserted 1 in
channel 11. The red dashed line indicates the current execution
step.

MMLib uses channels to implement queues for storing unre-
flected WRITEs. Thus, a user who understands the implementation
of MMLib can determine the times when WRITEs were inserted
in and removed from the queues by interpreting the sequence di-
agram. If the sequence diagram indicated the names in the pro-
gram model, such as the names of the shared variables, a user
of our counterexample visualizer could benefit from the comple-
mentary use of such a sequence diagram. Future work includes
adding a function for showing such a sequence diagram.

7. Related Work

Although there is a body of work on memory model-aware
model checking, none of the proposed methods help the user
to understand counterexamples, to the best of our knowledge.
Abe et al. developed a memory model-aware model checker, Mc-
SPIN [1], that translates a program written in C into an internal

representation. The internal representation is then translated into
a Promela model that the user can use to check every possible
execution path in accordance with the memory model specified
by the user. SPIN produces an execution trace as a counterex-
ample if it finds an error in the translated Promela model. How-
ever, the execution trace is in terms of the internal representa-
tion, so it does not correspond to the C program. Therefore, it
is difficult for the user to use the execution trace for debugging.
Travkin et al. developed a memory model-aware model checker,
WEAK2SC [14], [16], that translates the internal representation
of the LLVM compiler infrastructure generated from a C/C++
program into a Promela model that can emulate any possible ex-
ecution in accordance with the memory model. The translated
Promela model uses goto statements to control its execution.
Thus, it is difficult to understand the counterexample and debug
the C/C++ program. In contrast, our counterexample visualizer
indicates the memory order of the Promela model specified by the
user. The user can thus easily understand the counterexample.

Many counterexample visualizers have been developed that do
not take the memory model into account. iSPIN [11], which we
discussed above (Section 6), is the standard counterexample vi-
sualizer for SPIN. Pakonen et al. developed a model checker
for hardware logics, MODCHK [9], that has a visualizer show-
ing step-by-step execution on a model of the hardware logic. It
also emphasizes the important part of LTL in understanding the
counterexample. UPPAAL [3] is an integrated tool environment
for modeling, simulation, and model checking for embedded sys-
tems. It visualizes the counterexample of model checking on a
sequence diagram and a diagram of the automaton. Aljazzar et al.
developed a tool, DiPro [2], that visualizes a counterexample of
the PRISM and MRMC model checkers. It shows the execution
on the automaton of the model. In contrast, our counterexample
visualizer shows the model as is and visualizes the memory order
on it because, in memory model-aware model checking under the
assumption that the program being checked runs correctly in pro-
gram order execution, the time when memory access instructions
are reflected in memory is important.

Many work has focused on visualizing program execution. Ter-
ada et al. developed a debugging tool for students, ETV [13]. It
visualizes the function calls in the execution log of a program on
the program. Tanno et al. [12] also developed a debugger that vi-
sualizes information on the program. It visualizes the lines of the
program that are executed frequently, which helps users debug
interactive programs. Our counterexample visualizer also visual-
izes information on the user described model and visualizes the
memory order.

Czyz et al. developed the JIVE debugging tool [4]. It generates
call graphs, which represent the calling relationships of methods
of classes, and sequence diagrams. This is useful for summariz-
ing the behavior of programs, which facilitates the understanding
of large-scale programs. However, in memory model-aware de-
bugging, the focus of our work, it is more important to understand
the fine-grain behavior of the program. Thus, our counterexample
visualizer shows step-by-step execution of the counterexample on
the Promela model.

c© 2019 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

8. Conclusion

We have developed a counterexample visualizer for the MM-
Lib library that enables the SPIN model checker to check pro-
grams in accordance with the memory order. This counterex-
ample visualizer shows step-by-step execution on the model
along the path of the counterexample. This enables the user to
obtain useful information for debugging, such as the order in
which shared variable access instructions are reflected in shared
memory, without having to interpret a counterexample of model
checking using MMLib. As case studies, we used the counterex-
ample visualizer to modify Peterson’s mutual exclusion algorithm
so that it can work under memory models that allow the memory
order to differ from the program order and used the counterexam-
ple visualizer to understand the bug in concurrent GC Staccato.
From these case studies, we found that it is useful to highlight
reordered shared variable access instructions only at the execu-
tion steps in which these instructions are reflected in the shared
variables.

Simple counterexamples must be generated to enable efficient
debugging. In debugging using MMLib, we rely on SPIN’s fa-
cility to generate the shortest counterexamples for generation of
simple counterexamples. However, SPIN generates the shortest
counterexamples on the model in which MMLib macros are ex-
panded. Thus, they are not necessarily the simplest. In particu-
lar, in such counterexamples, shared variable access instructions
tend to be reordered. This results in many shared variable access
instructions being highlighted in our counterexample visualizer.
The generation of semantically simple counterexamples remains
for future work.

Acknowledgments We are deeply grateful to Haruto Tanno
of Nippon Telegraph and Telephone Corporation for his advice in
carrying out this research. This research was partially supported
by JSPS KAKENHI Grant Number 16K00103.

References

[1] Abe, T. and Maeda, T.: A General Model Checking Framework for
Various Memory Consistency Models, Proc. 19th High-Level Paral-
lel Programming Models and Supportive Environments, pp.332–341
(2014).

[2] Aljazzar, H., Leitner-Fischer, F., Leue, S. and Simeonov, D.: DiPro
– A Tool for Probabilistic Counterexample Generation, Proc. 18th In-
ternational SPIN Workshop on Model Checking Software, pp.183–187
(2011).

[3] Behrmann, G., David, A., Guldstrand Larsen, K., Håkansson, J., Pet-
tersson, P., Yi, W. and Hendriks, M.: Uppaal 4.0, Proc. 3rd Interna-
tional Conference on the Quantitative Evaluation of Systems, pp.125–
126 (2006).

[4] Czyz, J.K. and Jayaraman, B.: Declarative and Visual Debugging in
Eclipse, Proc. 2007 OOPSLA Workshop on Eclipse Technology eX-
change, pp.31–35 (2007).

[5] Iiboshi, H. and Ugawa, T.: Towards Model Checking Library for Per-
sistent Data Structures, Proc. 7th Non-Volatile Memory Systems and
Applications Symposium, pp.119–120 (2018).

[6] Matsumoto, K., Ugawa, T. and Abe, T.: Improvement of a Library for
Model Checking under Weakly Ordered Memory Model with SPIN,
Journal of Information Processing, Vol.26, pp.314–326 (2018).

[7] Matsumoto, K., Ugawa, T. and Abe, T.: A library of memory access
instructions under relaxed memory models for SPIN, Proc. 23rd Foun-
dation of Software Engineering, pp.63–72 (2016).

[8] McCloskey, B., Bacon, D.F., Cheng, P. and Grove, D.: Staccato: A
Parallel and Concurrent Real-Time Compacting Garbage Collector for
Multiprocessors, Research Report RC24504, IBM (2008).

[9] Pakonen, A., Buzhinsky, I. and Vyatkin, V.: Counterexample Visual-

ization and Explanation for Function Block Diagrams, Proc. 16th In-
ternational Conference on Industrial Informatics, pp.747–753 (2018).

[10] Peterson, G.L.: Myths about the mutual exclusion problem, Informa-
tion Processing Letters, Vol.12, No.3, pp.115–116 (1981).

[11] spinroot.com: Getting Started: Using iSpin, spinroot.com (online),
available from 〈http://spinroot.com/spin/Man/3 SpinGUI.html〉 (ac-
cessed 2018-12-14).

[12] Tanno, H. and Iwasaki, H.: Debugging Method without Suspending
Program, Proc. 35th JSSST Annual Conference (2018).

[13] Terada, M.: ETV: A Program Trace Player for Students, Proc. 10th
Annual SIGCSE Conference on Innovation and Technology in Com-
puter Science Education, pp.118–122 (2005).

[14] Travkin, O. and Wehrheim, H.: Verification of Concurrent Programs
on Weak Memory Models, Proc. 13th International Colloquium on
Theoretical Aspects of Computing, pp.3–24 (2016).

[15] Ugawa, T., Abe, T. and Maeda, T.: Model Checking Copy Phases of
Concurrent Copying Garbage Collection with Various Memory Mod-
els, Proc. ACM on Programming Languages, Vol.1, No.OOPSLA,
pp.53:1–53:26 (2017).

[16] Wehrheim, H. and Travkin, O.: TSO to SC via Symbolic Execution,
Proc. 11th International Haifa Verification Conference, pp.104–119
(2015).

Kosuke Matsumoto was born in 1994.
He received his B.E. degree from Kochi
University of Technology in 2017. He
received IEEE Computer Society Japan
Chapter FOSE Young Researcher Award
in 2016.

Tomoharu Ugawa received his B.Eng.
degree in 2000, M.Inf. degree in 2002,
and Dr.Inf. degree in 2005, all from Kyoto
University. He worked for a research
project on real-time Java at Kyoto Univer-
sity from 2005 to 2008. In 2008–2014,
he was an assistant professor at the Uni-
versity of Electro-Communications. He is

currently an associate professor at Kochi University of Technol-
ogy. His work is in the area of implementation of programming
languages with specific interest of memory management. He re-
ceived IPSJ Yamashita SIG Research Award in 2012.

c© 2019 Information Processing Society of Japan

