
A Study of Synchronization Methods in Modern GPUs

Lingqi Zhang1,a) MohamedWahib2 Haoyu Zhang1 SatoshiMatsuoka3

Abstract: GPUs are playing an increasingly important role in general-purpose computing. Various scientific fields
utilize the power of GPUs. Many complex algorithms require different levels of synchronizations, through the use of
barriers. Many researchers struggle to implement communication methods for GPUs, and thus implementations tend
to under-perform for specific algorithms that require device-wide barriers. This work approaches this problem by using
micro-benchmarks to study Nvidia’s new synchronization methods, as well as the performance they yield.

Keywords: GPU, synchronization, micro-benchmark

1. Introduction
GPUs have been playing an increasingly important role in

general-purpose computing. Different scientific areas exploit the
power of GPUs to solve various questions. Many complex al-
gorithms require different levels of synchronizations, through the
use of barriers. Before Nvidia proposed a hierarchy of synchro-
nization methods [1], developers made use of block synchroniza-
tion and the implicit barrier inside a warp to develop complex
algorithm [2]. Besides, for applications like deep neural network,
an implicit barrier produced by kernel launch function is playing
a role of device-wide synchronization [3].

Previous researchers also struggled to develop software device-
wide barriers [4], [5]. But the upcoming GPU dense systems, e.g.
DGX, call for a general way for devices-wide synchronization.
Recently Nvidia proposed different levels of synchronizations, in-
cluding warp level, block level, and grid level. The grid level syn-
chronization can be a productive way to perform device-wide and
multi-device level synchronization. In other words, this hierarchy
of synchronization methods can make GPUs programming more
productive and help developers to construct a more complicated
software structure. Thus, it is valuable to study the performance
of utilizing different levels of synchronization methods.

There are many successful methods to conduct GPUs specific
micro-benchmark. Wong etc. [6] was the first research using
micro-benchmark to understand the performance of GPUs. Their
research was thorough and firm. Mei etc. [7] focus on memory
hierarchy of GPUs, they discovered some cache patterns that was
dismissed by [6]. Recently, Jia, etc. [8] proposed to use asm
code to conduct micro-benchmark. And conduct research on new
Nvidia Platforms, i.e. V100 and P100 GPUs. This result is guar-
anteed to be more accurate, but it is possible to achieve the same

1 Tokyo Institute of Technology, Dept. of Mathematical and Computing
Science, Tokyo, Japan

2 AIST-Tokyo Tech Real World Big-Data Computation Open Innovation
Laboratory

3 RIKEN Center for Computational Science,Hyogo,Japan
a) zhang.l.ai@m.titech.ac.jp

result with the methods proposed by [6]. Nonetheless, we see
no researches focus on Nvidia’s hierarchy synchronization struc-
tures.

In this research, we use micro-benchmark to demystify the per-
formance feature of different level of synchronization methods in
Nvidia GPUs.

The remainder of this paper is organized as follows. Section 2
reviews the CUDA programming model and CUDA synchroniza-
tion hierarchy. Section 3 describes our measurement methodol-
ogy, and Section 4 presents the results. Section 5 summarizes our
ndings and Section 6 introduces our future plan.

2. Background
2.1 CUDA Programming Model

Fig. 1 Programming model and corresponding hardware structure in CUDA

CUDA provides a C-like programming model to utilize Nvidia
GPUs. It offers three levels of programming abstractions: thread,
block and grid. Among them, Thread is the most basic program-
ming unit.

From hardware perspective, there is a hierarchy structure simi-
lar to CUDA programming model. Three different kinds of hard-
ware structure exists: Mathematics Unit, Stream Multi-Processor
(SM) and GPU. Take the structure V100 [9] as an example, a

c© 2019 Information Processing Society of Japan 1

IPSJ SIG Technical Report Vol.2019-HPC-170 No.21
2019/7/25

V100 GPU consists of 84 SMs; an SM is partitioned into 4 pro-
cessing blocks, each consists of several Mathematics Units, e.g.
16 FP32 Cores.

There is a special abstraction, named Warp, to bridge the gap
between the programming model and the hardware SMs. Cur-
rently a warp consists of 32 threads. And inside an SM in V100,
there are 4 Warp schedulers corresponding to the 4 partitions in-
side a SM. Beyond that, the CUDA runtime will schedule 1 block
to only one SM, and 1 grid to only one GPU, though it might
occupy several SMs.

Figure 1 shows the detail of CUDA programming model, its
corresponding hardware abstraction, and the mapping relation-
ship between both structures.

2.2 Different Levels of Synchronization in CUDA
As Figure 2 shows, CUDA support different kinds of groups

and provide different levels of synchronization methods for these
groups, including warp level, block level and grid level.

Fig. 2 Synchronization Hierarchy in CUDA

2.2.1 Warp Level Synchronization
Current CUDA support 2 intra-warp synchronization methods,

i.e. tile synchronization and the coalesced group synchronization,
corresponding to the tile group and coalesced group in Figure 2

Tile synchronization is based on the tile group built inside
a warp. For example, set tile size to 4 can create 8 inde-
pendent tile groups inside a Warp currently, each group con-
sist of 4 threads. Coalesced group synchronization is based
on the coalesced group, which is built from a single branch of
an if-statement inside a warp. For example, the if statement
(tid%4==1) can create a coalesced group with 8 members inside
a Warp currently. Both of them can not possess a group size larger
than 32 (size of a warp). And the synchronization only happened
inside a single group.

Additionally, in order to better understand the difference be-
tween tile synchronization and coalesced synchronization, we can
take the reduction algorithm as an example. Both methods can be
used to implement the reduction algorithm inside a warp.

Figure 3 shows the case of using tile synchronization. At the
step of reduction moves forward, more tiny tile group is created.
When synchronization happens, each small tile groups synchro-
nize all threads inside.

Figure 4 shows the case of using coalesced synchronization.
At the step of reduction moves forward, a smaller group is cre-
ated. When synchronization happens, that group synchronizes all
threads inside.

Previous versions of CUDA guarantee that all threads inside a
warp process the same instruction at a time. But the proposing of
synchronization methods inside a warp implies a potential future
plan of removing this feature.

Fig. 3 Use tile group to implement reduction

Fig. 4 Use coalesced group to implement reduction

2.2.2 Block Level Synchronization
Block level synchronization corresponds to the block abstract

in the programming model. It is a rename of the instruction
syncthreads in previous CUDA versions.

2.2.3 Grid Level Synchronization
Start from CUDA 9.0, Nvidia proposed grid synchroniza-

tion and multi-grid synchronization. Grid synchronization syn-
chronizes every block inside a grid abstraction in CUDA pro-
gramming model. Multi-grid synchronization synchronizes all
the grid that launched by cudaLaunchCooperativeKernelMulti-
Device() function.

3. Micro-benchmark
Both Wong [6] and Jia [8] proposed methods to measure a in-

struction inside a GPU. Jia’s work needs to modify the asm code.
But according to our experiments it achieves the same result as
Wong’s work while requiring additional knowledge of Disassem-
ble.

Additionally, Jia’s work can work correctly only inside a sin-
gle thread, Wong’s work can work correctly only in single SM.
But Synchronization might involve cooperation across different
threads, different SMs and even different GPUs.

We utilize Wong’s work to measure the performance of syn-
chronization instruction inside an SM (Section 3.1). And we fur-
ther propose a method to measure the latency of GPU instructions
in CPU (Section 3.2).

3.1 Measuring GPU Instructions with GPU-based Methods
Wong’s [6] method is a GPU based measurement. The basic

methodology is to build a chain of dependent operations to re-
peat a single instruction several times to saturate the instruction
pipeline. By utilizing clock register to record the begin and end
time stamp of these serials of operations, it is possible to use aver-

c© 2019 Information Processing Society of Japan 2

IPSJ SIG Technical Report Vol.2019-HPC-170 No.21
2019/7/25

age latency to infer the latency of that instruction. Figure 5 takes
measuring add instruction as an example.

1 s t a r t =c l o c k () ;
2 r e p e a t 2 5 6 (p=p+q ; q=p+q) ;
3 / / an add i n s t r u c t i o n i s r e p e a t 512 t i m e s h e r e
4 end=c l o c k () ;
5 r e t u r n q ;

Fig. 5 Sample code to measure the latency of add instruction inside a GPU
kernel

3.2 Measuring GPU Instructions With CPU-based Methods
In order to test the performance of synchronization beyond

a single SM, a global clock is necessary. In CUDA execution
model, a CPU thread launches a kernel and it can call DeviceSyn-
chronize() function to wait for the finish of the kernel. So it is
possible to use the clock used by that CPU thread as a global
clock to test GPU instructions.

But there still remain two issues:
• CPU function is more unstable than GPU’s
• Need to wipe off the latency not related to the aimed instruc-

tion
By assuming that the latency of every instruction is stable when

the pipeline is saturated, and additional instruction does not in-
crease the launch overhead of kernel launch, we propose a CPU
based measurement. If we increase the repeat times in the GPU
kernel in Figure 5, the additional time consumption is only re-
lated to the additional repeat times. In this way, we are able to
wipe off unnecessary latency. Formula 1 shows how to compute
instruction overhead with this method.

Tinstruction =
Latencykernel1 − Latencykernel2

Repeatkernel1 − Repeatkernel2
(1)

Standard Deviation shows how far every experiment spread out
over mean value. We can use the Standard Deviation to indicate
the stability of the test result. Formula 2 shows that, given that
Standard Deviation is not related to the repeat time of the instruc-
tion, if the difference in repeat times is large enough, the Standard
Deviation of the result of the instruction we want to test will be
small. And small Standard Deviation means that the mean of the
result is stable. Because the stability of CPU function is indepen-
dent to the kernel function, it can be reduced to a low level if we
choose a suitable difference in repeat time.

σinstruction =

√
σ2

kernel1 + σ2
kernel2

Repeatkernel1 − Repeatkernel2
(2)

3.3 Verification
In order to verify the method we proposed in section 3.2 is fea-

sible, we use both Wong’s method and our method to test float
add instruction in both V100 and P100. Both results show that
float-add costs 6 cycles in P100 and 4 cycles in V100. These
results match the result in [8].

Table 1 shows the details of the verification result in the V100
GPU. It is easy to see that CPU inferred latency is equal to GPU
result within the margin of error. We can also observe that when
the repeat times is larger than 8192, the average latency of a single

instruction starts to increase. We guess this is caused by either the
overflow of instruction pipeline or the cache miss of instruction
cache. The experiment in P100 GPU also gave a similar result.

So, in conclusion the CPU based method we proposed gives
exactly the same result as Wong’s [6] and Jia’s [8] method.

Table 1 Comparison of measuring latency of float add instruction with CPU
based measurement and GPU based measurement in V100(average
in 20 experiments)

Repeat
Difference

CPU Inferred
Latency(cycle)

GPU Tested
Latency(cycle)

(512) - 4.150
2056 4.045 4.025
5120 4.034 4.025
7680 5.278 5.067
10240 7.259 6.952
20480 7.080 6.950
25600 7.066 6.958
40960 7.014 6.954
51200 7.005 6.958

3.4 Metrics
We used two metrics to measure the performance of synchro-

nization instruction, i.e. latency and throughput. Latency is the
time required to finish a certain operation. Throughput is the max
number of operations finished per time unit. The choice of these
metrics follows the Little’s Law [10].

Additionally, synchronization is not steady by its nature. We
only record the average value here among 20-time experiments.

Table 2 shows the test plan for the following experiments. As
Table 2 shows, we only use GPU based method to measure warp
level synchronizations and latency of block level synchronization,
while use CPU based method to measure others. This is because
GPU based measurement is easy to implement with higher accu-
racy. But GPU based measurement can only measure the latency
in a single SM, which is not the case in testing the throughput of
block and testing grid level synchronizations.

For GPU based measurement, we use a basic repeat time of
512 times, which is the same as [6]. But we observe a suddenly
latency increase in warp-level synchronization, before the aver-
age latency is stable to a certain value. Seems that some overhead
happened before warp-level synchronization reaches its pipeline
saturation. Because the faster result might be the closest to the
value when it reaches its saturation point, we only record the
faster result here.

For CPU based measurement, we keep the basic repeat time
to 512 times and repeat difference to 5120 times. We also did
additional test to prove that the latency of block and grid syn-
chronization instruction is stable when the pipeline is saturated,
and additional instruction does not increase the launch overhead
of kernel launch.

We record both latency and throughput for block level and
warp level synchronizations, while only record latency for grid
level synchronizations. Because we can hardly imagine a scenery
that several kernels run simultaneously in a single GPU and need
to run synchronization instruction at the same point, but it is easy
to imagine similar cases in both warp level and block level syn-
chronizations.

c© 2019 Information Processing Society of Japan 3

IPSJ SIG Technical Report Vol.2019-HPC-170 No.21
2019/7/25

Table 2 Methods and metrics to test different synchronization levels

Level Method Metric
Warp GPU based Latency and Throughput
Block GPU based and CPU based Latency and Throughput
Grid CPU based Latency

3.5 Experiment environment
We use both P100 and V100 card to conduct this experiment.

Both are an up-and-coming platform in CUDA. The feature of
these platforms suggests the trend of Nvidia GPUs in the near
future.

In order to get a more accurate result, we set the application
frequency of both platforms to default. We used the latest driver
and CUDA version. But because V100 card located in a DGX
machine, the driver of the machine is relatively out of data then
P100, but relatively stable. Table 3 shows the details of the ex-
periment environment.

Because synchronization operation my introduce random error,
the results in Section 4 is the average value of 20 times experi-
ments.

Table 3 Environment information
Platform Default Freq Driver CUDA
P100 X 2 1189MHz 418.40.04 V10.0.130

V100 X 8(DGX1) 1312MHz 410.104 V10.0.130

4. Results
4.1 Warp Level Synchronization

Table 4 Performance of Warp Synchronization

Group Latency(cycle) Throughput(OP/cycle)
Type Size V100 P100 V100 P100
TILE * 54 198 8.353

(GroupS ize)
2.89

GroupS ize
Coalesced 1-31 108 1 0.166 1.882
Coalesced 32 14 1 0.769 1.882

Under a believe that the size of a synchronization group might
influence the result. We tested every possible group size for both
tile group and coalesced group. The possible tile group size is:
1, 2, 4, 8, 16 and 32. The possible coalesced group size is 1-32.
Latency is tested by using only 32 threads (a warp) in a CUDA
kernel with 1 block. Throughput is tested by using 1024 threads
(upper limit of a block) in a CUDA kernel with 1 block.

Table 4 shows the result of warp level synchronization.
For tile group synchronization the size of the group partici-

pated do not influence the performance, both latency and through-
put. A possible explanation is that current CUDA might merge
all the concurrent tile group synchronization instruction into one
single instruction.

For coalesced group synchronization, the group size does not
influence the performance of P100 GPU. But the group size does
influence the performance of V100 GPU. When all the threads in-
side a warp belong to a single coalesced group, the performance
is the highest.

4.2 Block Level Synchronization
Again, we tested every possible group size in the block level,

i.e. start from 32 to 1024. Latency is tested with only one block.

Table 5 Performance of Block Synchronization

Latency(cycle) Throughput(block sync/us)
Thread Size V100 P100 V100 P100

32 22 220 219.296 87.329
64 24 220 200.602 51.67
128 28 224 143.136 27.674
256 36 235 81.241 13.731
512 52 317 40.812 6.598
1024 84 428 19.469 3.130

Fig. 6 Relationship between latency and warp/SM

Fig. 7 Relationship between throughput of block sync (per warp perspec-
tive) and active warp/SM

Throughput is tested by increasing the block size from 1 block
per SM to 64 blocks per SM and record the highest throughput
among all results.

Table 5 shows the result. We observe a performance decrease
both in V100 and P100 platform as block size increases.

Additionally, Figure 6 shows the relationship between total
block synchronization latency and warp/SM. There are around
42 points in the figure, and most of the points are close to a line.
Thus, we can deduce that the performance of block synchroniza-
tion is related to the warp count per SM.

In order to prove that, we additionally draw a figure to show
the relationship between the throughput of block synchronization
divided by warp count (warp sync per us) and the activate warp
per SM. Figure 7 shows the result. Maximum active warp is com-
puted according to [9], maximum block count is 32 and maximum
warp count is 64 per SM in both V100 and P100 platform. When
warp count exceeds the size of max activate warp per SM, the
device is saturated and the throughput of block synchronization
reaches its maximum.

4.3 Grid Level Synchronization
In order to utilize grid synchronization and multi-grid syn-

chronization, cooperative launch related methods are necessary.
These launch methods will make some limitation to both grid-
dim and block-dim.

Our observation is that, when the total warp is larger then the

c© 2019 Information Processing Society of Japan 4

IPSJ SIG Technical Report Vol.2019-HPC-170 No.21
2019/7/25

maximum active warp in current kernel setting, the launch func-
tion will reject to launch a kernel.
4.3.1 Grid Synchronization

Fig. 8 Latency (us) of grid synchronization in V100 (left) and P100 (right)

Figure 8 shows the heat map of grid synchronization. It shows
that that in both V100 and P100 the latency of grid synchroniza-
tion is more related to grid dim than to block dim.

So, in order to use grid synchronization, it is better to control
the number of blocks resided in a single SM.
4.3.2 Multi-Grid Synchronization

Fig. 9 Latency (us) of multi-grid synchronization in P100 platform 1 GPU
(left) and 2 GPUs (right)

Fig. 10 Latency (us) of multi-grid synchronization in V100 platform

Figure 9 and Figure 10 show the heat maps of the latency of
multi-grid synchronization in V100 and P100. Though we tested
through all 8 GPUs in DGX1, we found that the performance
multi-grid synchronization among 2-5 GPUs are similar to each
other, and the performance multi-grid synchronization among 6-
8 GPUs are similar to each other. The reason might more or less
related to the network structure of DGX1. From Figure 9 and
Figure 10, it is easy to see that the performance of multi-grid syn-
chronization is influenced by both grid dim and active warp per
SM. With griddim < 8 and activewarp < 32, the performance
is acceptable to our perspective. Apart from the case of 1 GPU,
its latency is no more than 2 times slower than the fastest case (1
block per SM, 32 threads per block) and 2 times faster than the
slowest case (32 blocks per SM, 64 threads per block).

Figure 11 shows the latency of multi-grid synchronization
across 8 GPUs in DGX1. We take three cases for this experi-
ment: 1. 1 block/SM, 32 thread/block as the fastest case; 2. 32
block/SM, 64 thread/block as the slowest case; 3. 4 block/SM,
256 thread/block as a general case, which is within the parameter

Fig. 11 Latency of multi-grid synchronization across 8 GPUs

Fig. 12 Latency(ns) of synchronization through all levels (1 V100 GPU, 1 block)

Fig. 13 Latency(ns) of synchronization through all levels (1 P100 GPU, 1 block)

we recommend in the previous paragraph. In addition to prov-
ing that the parameter setting we gave is practical, Figure 11 also
shows two performance gap: one between 1-GPU and 2-GPU
and one between 5-GPU and 6-GPU. It is easy to understand the
first performance gap, because 1-GPU case might not require any
network involvement. We thought that the second gap should
between 4-GPU and 5-GPU, based on the network structure of
DGX1 that 4 GPU groups together, if there are any kind of such
gap. This performance gap between 5-GPU and 6-GPU might
come from bad implementation.

4.4 Comparison through all level
To better understand the performance differences of all syn-

chronization methods through all levels, we plot two figure with
all the 1 block data from both V100 and P100 platform. Figure
12 and Figure 13 show the results of V100 and P100 respectively.
We list our finding as follow:
• Grid-level synchronization’s performance is similar in

single GPU.
• 1024-thread always means a large performance degrade
• Performance gap between different synchronization level

does not always exist The performance of warp level syn-
chronization is not so difference as block level synchroniza-

c© 2019 Information Processing Society of Japan 5

IPSJ SIG Technical Report Vol.2019-HPC-170 No.21
2019/7/25

Table 6 Summarize of latency results in 1 GPU, warp level and block level

Type Case V100 P100
Tile(cycle) groupsize = 1 − 32 54 198

Coalesced(cycle) groupsize = 1 − 31 108 1
Coalesced(cycle) groupsize = 32 14 1

Block(cycle)

blockdim = 32
(min) 22 220

Block(cycle)

blockdim = 256
(acceptable) 36 235

Block(cycle)

blockdim = 1024
(max) 84 428

Table 7 Summarize of throughput results in 1 GPU, warp level and block
level
Type Case V100 P100

Tile(sync/sync) group size = 1 8.353 2.89
Tile(sync/sync)
Tile(sync/sync) group size = 32 0.261 0.090

Coalesced(sync/sync) group size = 1 0.090 1.882
Coalesced(sync/sync) group size = 32 2.89 1.882
Block(warp-sync/ns) blockdim = 32 0.219 0.087
Block(warp-sync/ns) blockdim = 64 0.402 0.103
Block(warp-sync/ns) blockdim > 64 0.626-0.658 0.102-0.111

Table 8 Summarize of latency (us) results in 1 GPU, grid sync

V100 P100
Case Min Max Min Max

griddim = 1 1.435 2.199 1.762 2.254
griddim = 2 1.838 3.485 2.050 3.493
griddim = 4 2.847 4.536 3.421 4.852
griddim = 8 5.055 6.649 6.420 8.478
griddim = 16 9.207 10.393 13.228 16.627
griddim = 32 21.061 24.785 31.345 35.134

tion.
Lastly, we feel a little suspicious about two results:
• Block synchronization seems faster than warp level syn-

chronization in V100. We tend to believe that a higher level
of synchronization requires more resources and thus slower.

• Coalesced group synchronization seems not work in
P100. It is not so possible that a synchronization instruction
lasts only 1 cycle.

5. Conclusion
In this research, we present our measurement techniques and

micro-benchmarks for the synchronization primitives in Nvidia
V100 and P100 GPUs.

The technique we proposed can not only measure the latency of
basic instructions in high accuracy, but also measure the latency
of synchronization instructions that require the involvement of
several different SMs. We believe this method will be useful for
measuring and analyzing the performance of GPU-like architec-
tures.

We use this measurement to analyze the performance of both
V100 and P100 GPUs, which we think can represent the up com-
ing trend of new Nvidia GPUs. Table 6, Table 7, Table 8 and Ta-
ble 9 summarize the results of our experiments. Table 10 shows
the lessons we can learn from these experiments. In general, con-
trolling the active warp per SM to a reasonable range can improve
performance when using synchronization methods. Considering
the possibility of achieving higher performance with lower occu-
pancy [11], future trend in CUDA programming might be using
smaller griddim and blockdim to control the total active warp per
SM.

Table 9 Summarize of latency (us) results in 2 GPU, multi-grid sync

V100 P100
Case Min Max Case Min Max

block/sm <= 4
and

warp/sm <= 16 6.02 9.12

block/sm <= 2
and

warp/sm <= 32 7.26 9.08
in between 11.39 16.40 in between 10.73 20.96
block/sm >= 16

or
warp/sm = 64 22.00 58.32 block/sm > 8 33.18 74.89

Table 10 Lessons learned
Block Sync Controlling the total warp/sm controls

the performance of block sync
Grid Sync Controlling the total block/sm controls

the performance of gird sync
Multi-Grid Sync Both block/sm and active warp/sm influ-

ence the performance of multi-grid sync

6. Future Work
Previous researchers developed software device-wide barriers

[4], [5]. The comparison of these barriers and the barriers pro-
vided by CUDA might be our future work.

And we want to understand the surprising results we mentioned
in section 4.4. We believe some interesting new code implemen-
tation method can be proposed if the block synchronization is
faster than warp level synchronization in V100.

Thirdly, as we mentioned in section 4.3.2, seems that the im-
plementation of multi-grid synchronization does not take the net-
work structure into consideration, the optimization of this syn-
chronization method can be our future work.

Lastly, we believe grid level synchronization can make multi-
GPU programming more productive. We plan to study the penalty
or performance advance of using this method over other counter-
parts in the near future.

References
[1] C. Nvidia, “Programming guide,” 2019.
[2] M. Harris et al., “Optimizing parallel reduction in cuda,” Nvidia de-

veloper technology, vol. 2, no. 4, p. 70, 2007.
[3] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a next-

generation open source framework for deep learning,” in Proceed-
ings of workshop on machine learning systems (LearningSys) in the
twenty-ninth annual conference on neural information processing sys-
tems (NIPS), vol. 5, pp. 1–6, 2015.

[4] T. Sorensen, A. F. Donaldson, M. Batty, G. Gopalakrishnan, and
Z. Rakamarić, “Portable inter-workgroup barrier synchronisation for
gpus,” in ACM SIGPLAN Notices, vol. 51, pp. 39–58, ACM, 2016.

[5] S. Xiao and W.-c. Feng, “Inter-block gpu communication via fast bar-
rier synchronization,” in 2010 IEEE International Symposium on Par-
allel & Distributed Processing (IPDPS), pp. 1–12, IEEE, 2010.

[6] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying gpu microarchitecture through mi-
crobenchmarking,” in 2010 IEEE International Symposium on Perfor-
mance Analysis of Systems & Software (ISPASS), pp. 235–246, IEEE,
2010.

[7] X. Mei and X. Chu, “Dissecting gpu memory hierarchy through mi-
crobenchmarking,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 1, pp. 72–86, 2016.

[8] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
nvidia volta gpu architecture via microbenchmarking,” arXiv preprint
arXiv:1804.06826, 2018.

[9] T. NVIDIA, “V100 gpu architecture,” 2017.
[10] J. D. Little and S. C. Graves, “Little’s law,” in Building intuition,

pp. 81–100, Springer, 2008.
[11] V. Volkov, “Better performance at lower occupancy,” in Proceedings

of the GPU technology conference, GTC, vol. 10, p. 16, San Jose, CA,
2010.

c© 2019 Information Processing Society of Japan 6

IPSJ SIG Technical Report Vol.2019-HPC-170 No.21
2019/7/25

