
情報処理学会研究報告
IPSJ SIG Technical Report

A Method for the Inverse QSAR/QSPR

Based on Artificial Neural Networks and

Mixed Integer Linear Programming

Rachaya Chiewvanichakorn1,a) Chenxi Wang1,b) Zhe Zhang1,c) Aleksandar Shurbevski1,d)

Hiroshi Nagamochi1,e) Tatsuya Akutsu2,f)

概要：In this study, we propose a novel method for the inverse QSAR/QSPR. Given a set of chemical

compounds G and their values a(G) of a chemical property, we define a feature vector f(G) of each

chemical compound G. By using a set of feature vectors as training data, the first phase of our method

constructs a prediction function ψ with an artificial neural network (ANN) so that ψ(f(G)) takes a value

nearly equal to a(G) for many chemical compounds G in the set. Given a target value a∗ of the chemical

property, the second phase infers a chemical structure G∗ such that a(G∗) = a∗ in the following way.

We compute a vector f∗ such that ψ(f∗) = a∗, where finding such a vector f∗ is formulated as a mixed

integer linear programming problem (MILP). Finally we generate a chemical structure G∗ such that

f(G∗) = f∗. For acyclic chemical compounds and some chemical properties such as heat of formation,

boiling point, and retention time, we conducted some computational experiments with our method.

1. Introduction

One of the important challenges in bioinformatics and

chemo-informatics is computational design of a novel

chemical compound that has desirable properties. This

problem has been extensively studied under the name of

inverse QSAR/QSPR (quantitative structure-activity and

structure-property relationships) [13], [19]. It can be for-

mulated as computation of a graph structure representing

a chemical compound that maximizes (or minimizes) an

objective function under various constraints, where ob-

jective functions are often derived from a set of train-

ing data consisting of known molecules and their activi-

ties/properties using statistical and/or machine learning

methods. Various heuristic and statistical methods have
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been developed for finding optimal or near optimal graph

structures under given objective functions [7], [13], [17].

In QSAR/QSPR, chemical compounds are often repre-

sented as a vector of real or integer numbers, which is

called a feature vector or (a set of) descriptors. There-

fore, it is an important subtask in inverse QSAR/QSPR

to infer or enumerate graph structures from a given fea-

ture vector and extensive studies have also been done for

solving this subtask [9], [15]. We also analyzed the com-

putational complexity of this inference problem [3], [14]

and developed efficient enumeration algorithms [4], [11].

Based on the recent progress of Artificial Neural Net-

work (ANN) and deep learning technologies, novel ap-

proaches have been proposed for design of chemical com-

pounds. For example, methods using variational autoen-

coder [5], grammar variational autoencoder [10], and re-

current neural networks [18], [20] have been developed. In

these approaches, ANNs are trained using existing chem-

ical compound data and then novel chemical graphs are

obtained by solving a kind of inverse problem on ANN, in

which an input vector of real numbers is computed from

given ANN and output vector. In order to solve this in-
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verse problem or its variants, various statistical methods

have been employed. Since the optimality of the solu-

tion is not necessarily guaranteed by statistical methods,

an integer linear programming (ILP)-based method has

also been proposed for solving a kind of inverse problem

on ANNs with linear threshold functions [12]. However,

linear threshold functions are not widely used in recent

ANNs. Therefore, we have recently developed novel meth-

ods for solving the inverse problem on ANNs with ReLU

functions and sigmoid functions [1], [2]. Since it is known

that the inverse problem is NP-hard even for ANNs with

linear threshold functions [12], we employed Mixed Inte-

ger Linear Programming Problem (MILP) formulations,

where MILP is one of widely used approaches to solving

NP-hard problems. In this method, activation functions

on neurons are efficiently represented as piece-wise lin-

ear functions, which can exactly represent ReLU functions

and well approximate sigmoid functions.

In this work, we combine our previous approaches; effi-

cient enumeration of tree-like graphs [4], and MILP-based

formulation of the inverse problem on ANNs [1], [2]. This

combined framework for QSAR/QSPR mainly consists of

two phases; one for constructing a prediction function to a

chemical property, and the other for constructing graphs

based on the inverse of the prediction function. In the

first phase, an ANN is trained from existing chemical com-

pounds and their properties using a standard learning al-

gorithm, where each chemical compound is transformed

into a feature vector that is used as an input for the ANN.

In the second phase, a feature vector is inferred from the

trained ANN and a given chemical property and then a set

of chemical structures is inferred whose feature vectors are

the same as or close to the inferred feature vector. That

is, the second phase solves two inverse problems; infer-

ence of a feature vector from a trained ANN and a given

chemical property, and inference of chemical structures

from a given feature vector. In order to effectively com-

bine these two problems, we develop a new set of graph

theoretical descriptors. In this report, we describe the

outline of our proposed framework and present results of

preliminary computational experiments using several data

sets consisting of chemical compounds with acyclic graph

structures and their chemical properties.

2. Preliminary

Let R and Z denote the sets of reals and non-negative

integers, respectively.

Graphs A graph stands for a simple undirected graph,

where an edge joining two vertices u and v is denoted

by uv (= vu). Let G = (V,E) be a graph with a set V

of vertices and a set E of edges. For a vertex v ∈ V ,

the set of neighbors of v in G is denoted by NG(v), and

the degree degG(v) of v is defined to be |NG(v)|. The

length of a path is defined to be the number of edges in

the path. The distance distG(u, v) between two vertices

u, v ∈ V is defined to be the minimum length of a path

connecting u and v in G. The diameter dia(G) of G is de-

fined to be the maximum distance between two vertices in

G; i.e., dia(G) ≜ maxu,v∈V distG(u, v). The sum-distance

smdt(G) of G is defined to be the sum of distances over

all vertex pairs; i.e., smdt(G) ≜
∑

u,v∈V distG(u, v).

Chemical Graphs We represent the graph structure of

a chemical compound as a graph with labels on vertices

and multiplicity on edges in a hydrogen-suppressed model.

Let Λ be a set of labels each of which represents a chemi-

cal element such as C (carbon), O (oxygen), N (nitrogen),

S (sulfur) and so on, where we assume that Λ does not

contain H (hydrogen). Let mass(a) and val(a) denote the

mass and valance of a chemical element a ∈ Λ, respec-

tively. Two atoms a and b joined with a bond of multi-

plicity k is denoted by a tuple γ = (a, b, k) (= (b, a, k)).

Let Γ denote the set {(a, b, k) | a, b ∈ Λ, k ∈ {1, 2, 3}} of

tuples.

A chemical graph in a hydrogen-suppressed model is de-

fined to be a tuple G = (H,α, β) of a graph H = (V,E), a

function α : V → Λ (called an atom-function) and a func-

tion β : E → {1, 2, 3} (called a bond-function) such that

(i) H is connected; and (ii)
∑

v∈NH(u) β(uv) ≤ val(α(u))

for each vertex u ∈ V . Figure 1 illustrates an example of

a chemical graph G = (H,α, β).

CN O

CC

C

v1

v2

v5

v3

v6

v4

e1

e2
e5

e3 e4

f(G)=(n=6, m=13, 

          nC=4, nO=1, nN=1,

          n(C,C,1)=2, n(C,C,2)=1, 

          n(C,O,1)=1, n(C,N,1)=1, 

                                             n1=3, n2=3, n3=1, 

          n4=0, n5=0, n6=0,

          b2=1, b3=0, dia=0.667, 

          smdt=0.1435)

-
-

-

図 1 An example of a chemical graph G = (H,α, β) and its

feature vector f(G), where V = {v1, v2, . . . , v6} E =

{e1 = v1v2, e2 = v2v3, e3 = v4v6, e4 = v3v5, e5 = v2v4},
α(vi) = C, 1 ≤ i ≤ 4, α(v5) = O, α(v6) = N, β(ei) = 1,

1 ≤ i ≤ 4 and β(e5) = 2.
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3. A Method for Inferring Chemical

Graphs

Our method for the inverse QSAR/QSPR mainly con-

sists of two phases; one for constructing a prediction func-

tion to a chemical property, and the other for constructing

graphs based on the inverse of the prediction function. For

a specified chemical property such as boiling point, we de-

note by a(G) the value of the specified chemical property

for a given chemical compound G, which is represented by

a chemical graph G = (H,α, β).

Phase 1.

1. Prepare a data set D = {(Gi, a(Gi)) | i = 1, 2, . . . , p}
for a specified chemical property, where Gi is a

chemical graph. Set reals a, a ∈ R such that a ≤
min{a(Gi) | i = 1, 2, . . . , p} and a ≥ max{a(Gi) | i =
1, 2, . . . , p}.

2. Set a graph class G to be a set of chemical graphs

such that G ⊇ {Gi | i = 1, 2, . . . , p}. Introduce a

function f : G → RK for a positive integer K. We

call f(G) the feature vector of G ∈ G, and call each

entry of a vector f(G) a descriptor of G. (Our choice

of descriptors will be discussed in Section 4.)

3. Select an architecture and an activation function of

an artificial neural network (ANN) N that, given a

vector in RK , returns a real in the range [a, a]. Using

the data set D as training data, choose weights and

biases of N to construct a prediction function ψ with

N so that ψ(f(G)) takes a value nearly equal to a(G)

for many chemical graphs in D.

The novelty of our method is to directly treat the fol-

lowing inverse problems.

Inverse Prediction

Input: A real a∗ ∈ [a, a].

Output: A vector f∗ ∈ RK such that ψ(f∗) = a∗.

Graph Enumeration

Input: A vector f∗ ∈ RK .

Output: All graphs G∗ ∈ G such that f(G∗) = f∗.

It is known [1], [2] that given an ANN N with a

piecewise-linear activation function (such as a rectified

linear unit (Relu) function), a mixed integer linear pro-

gramming problem (MILP) P (N ) with variables xi, i =

1, 2, . . . ,K and y (and some other others) can be formu-

lated so that the set of feasible solutions (x1, x2, . . . , xK)

to P (N ) with y = a∗ is equal to the set of vectors f∗ ∈ RK

such that ψ(f∗) = a∗. When the activation function of

N is not piecewise-linear function, we approximate the

function with a piecewise-linear function to introduce an

MILP P (N ) whose feasible solution f∗ = (x1, x2, . . . , xK)

with y = a∗ nearly satisfies ψ(f∗) = a∗.

An algorithm to Graph Enumeration is designed

based on the branch-and-bound method (see [4] for enu-

merating acyclic chemical compounds).

Phase 2.

4. Formulate Inverse Prediction for the resulting

prediction function ψ as an MILP P (N ) based on

N . Find a set F ∗ of vectors f∗ ∈ RK such that

(1− ε)a∗ ≤ ψ(f∗) ≤ (1 + ε)a∗ for a small real ε > 0.

5. Enumerate all graphs G∗ ∈ G such that f(G) = f∗

for some f∗ ∈ F ∗.

In Step 4, we introduce a tolerance ε > 0 because there

may not exist a vector f∗ such that ψ(f∗) is numerically

equal to a real a∗.

In Step 5, there may not exist a graph G∗ ∈ G such

that f(G) = f∗ for some vector f∗ ∈ F ∗. We try to

avoid generating such vectors f∗ in Step 4 by including

some additional constraints into the MILP P (N ), as will

be discussed in Section 5.

4. Descriptors in Feature Vectors

In our method, we use only graph theoretical descriptors

for defining a feature vector, which facilitates our design-

ing an algorithm for constructing graphs in the second

phase. Given a chemical graph G = (H = (V,E), α, β),

we define a feature vector f(G) that consists of the follow-

ing graph theoretical descriptors.

n : the number of vertices; i.e., n = |V |.
m : the average mass of atoms in G; i.e., m =∑

v∈V mass(α(v))/n.

na, a ∈ Λ: the number of vertices with label a ∈ Λ; i.e.,

na = |{v ∈ V | α(v) = a}|.
nγ , γ = (a, b, k) ∈ Γ: the number of label pairs {a, b} with

multiplicity k; i.e., n(a,b,k) = |{uv ∈ E | α(u) =

a, α(v) = b, β(uv) = k}|, a, b ∈ Λ, k ∈ {1, 2, 3}.
nd, d ∈ {1, 2, . . . , 6}: the number of vertices of degree d

in H; i.e., nd = |{v ∈ V | degH(v) = d}|, where the

multiplicity of edges incident to a vertex v is ignored

in the degree of v.

bi, i = 2, 3: the number of double and triple bonds; i.e.,

bi = {e ∈ E | β(e) = i}, i = 2, 3.

dia : the diameter of H divided by n; i.e., dia =

dia(H)/n.

smdt: the sum of diameters of H divided by n3, i.e.,

smdt = smdt(H)/n3.

Figure 1 illustrates an example of a feature vector f(G).
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We may not include a descriptor s as an entry of our fea-

ture vector if s = 0 for all chemical graphs in a data set

D.

5. Additional Constraints in MILPs

An MILP P (N ) can be formulated so that a feasible so-

lution f∗ = x ∈ RK to P (N ) satisfies ψ(f∗) = a∗ [1], [2].

This, however, does not guarantee that there always ex-

ists a graph G∗ ∈ G such that f(G) = f∗. This is because

the original MILP P (N ) does not contain any constraint

that some of the descriptors of a chemical graph must

obey. To reduce the chance of generating a vector f∗ that

does not admit any graph G∗ with f(G) = f∗, we include

additional constraints into the original MILP. For space

limitation, we here list up only basic constraints.

The number of vertices in a graph H is equal to the

total number of labels; i.e.,

n =
∑
a∈Λ

na.

The molecular mass in G is the sum of mass over all

labels; i.e.,

n ·m =
∑
a∈Λ

mass(a)na.

The sum of degree over all vertices in graph H is twice

the number of edges; i.e.,∑
d=1,2,...,6

dnd = 2
∑
γ∈Γ

nγ .

The number of k-bonds in G is the total number of

label-pairs with multiplicity k; i.e.,∑
γ=(a,b,k)∈Γ

nγ = bk, ∀k = 2, 3.

The number of vertices of degree at least d in G is

bounded from above by the total number of vertices with

label a and val(a) ≥ d; i.e.,∑
d≤i≤6

ni ≤
∑

a∈Λ: val(a)≥d

na, ∀d = 1, 2, . . . , 6.

The total number of multiplicities incident to a label a

in G is at most the total valence of vertices of a; i.e.,∑
k=1,2,3

(
∑

γ=(a,b,k):a̸=b

knγ +
∑

γ=(a,a,k)

2knγ) ≤ val(a)na

for each label a ∈ Λ.

The number of edges is at least the number of vertices

minus 1 in a connected graph H; i.e.,∑
γ∈Γ

nγ ≥ n− 1.

There are several other constraints, some of which are

specialized to acyclic chemical graphs, but we omit de-

scribing them here due to space limitation.

6. Experimental Results

We implemented our method for inferring acyclic chem-

ical graphs and executed on a PC with Intel Core i5 1.6

GHz CPU and 8GB RAM running under the Mac OS op-

erating system version 10.14.4. We select five chemical

properties: heat of atomization (Ha), heat of formation

(Hf), boiling point (Bp), octanol/water partition coeffi-

cient (Kow) and retention time (Rt).

For Ha, Hf, Bp and Kow (resp., Rt), we used the

acyclic chemical graphs in [16] (resp., [8]). Table 1 shows

the size and range of data sets that we prepared for each

chemical property, where we denote the following: a():

chemical property; |D|: the size |D| of data set D; Λ:

chemical elements in D; [n, n]: the minimum and maxi-

mum number of vertices in H over data set D; [a, a]: the

minimum and maximum values of a(G) over data set D;

and K: the number of descriptors in f(G).

表 1 The size and range of data sets in Steps 1 and 2

a() |D| Λ [n, n] [a, a] K

Ha 128 C,O,S [2,11] [450.3, 3009.6] 19

Hf 88 C,O,S [2,16] [20.2, 94.8] 19

Bp 131 C,O,S [2,16] [-103.7, 286.8] 19

Kow 62 C,O,S [2,16] [-0.77, 8.20] 19

Rt 39 C,O [11,16] [1422, 1919] 18

We set a graph class G to be the set of all acyclic chem-

ical graphs on the label set Λ in Table 1

Results on Phase 1. We use scikit-learn to con-

struct ANNs where the tool and activation function are

set to be MLPRegressor and Relu, respectively. We tested

several different architectures of ANNs for each chemical

property. To evaluate the performance of the resulting

prediction function ψ with cross-validation, we partition

a given data set D into five subsets Di, i = 1, 2, 3, 4, 5

randomly, where D \Di is used for a training set and Di

is used for a test set in five trials i = 1, 2, 3, 4, 5.

Table 2 shows the results on Phase 1, where we denote

the following: arch.: architecture of ANN N , time: the

average time (sec) to construct ANNs for each trial; test

R2 (ave): the average of coefficient of determination over

the five test sets; and test R2 (best): the largest value of

coefficient of determination over the five test sets.

Results on Phase 2. We implemented Steps 4 and 5

in Phase 2 as follows.

Step 4. In this step, we also specify a size n ∈ [n, n]

of graph. We choose two target values a∗ ∈ [a, a] for each
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表 2 Results on constructing ANNs in Step 3

a() arch. time test R2 (ave) (best)

Ha (19,10,1) 6.251 0.999 0.999

Hf (19,10,1) 0.818 0.985 0.993

Bp (19,15,1) 3.974 0.965 0.985

Kow (19,10,10,1) 0.219 0.968 0.980

Rt (18,10,10,1) 4.869 0.892 0.931

chemical property, and two values n ∈ [n, n] for each tar-

get value a∗. We set ε = 0.02. For each pair (a∗, n), we

fix one of some three values for n1 (the number of vertices

of degree 1), and divide a range A for possible values of

diameter into two ranges A1 and A2 and a range B for

possible values of sum of distances into three ranges Bi,

i = 1, 2, 3. This scheme results in 3 × 2 × 3 = 18 MILPs

with different restrictions for each pair (a∗, n), where each

MILP is either feasible or infeasible and we find one fea-

sible vector f∗ to each feasible MILP. Let F ∗ denote the

set of vectors f∗ generated from these 18 MILPs, where

|F ∗| ≤ 18. To solve an MILP P (N ) in Step 4, we use

CPLEX (ILOG CPLEX version 12.8) [6].

Tables 3 to 7 show the results on Step 4, where we

denote the following: a∗: a target value in [a, a]; n: a

specified number of vertices in [n, n]; |F ∗|: the number

|F ∗| of vectors f∗ generated from 18 MILPs; and f-time:

the time (sec.) to compute a set F ∗ of vectors f∗.

表 3 Results on generating vectors in Step 4 for Ha

a∗ n |F ∗| f-time

2700 10 18 0.1208

2700 11 18 0.1288

2900 10 18 0.0717

2900 11 18 0.1284

表 4 Results on generating vectors in Step 4 for Hf

a∗ n |F ∗| f-time

70 11 15 0.0708

70 12 3 0.0611

90 12 18 0.1495

90 13 18 0.1693

表 5 Results on generating vectors in Step 4 for Bp

a∗ n |F ∗| f-time

190 11 18 0.269

190 12 18 0.193

220 12 18 0.188

220 13 18 0.111

We observe that MILPs with some restrictions were in-

feasible. For example, |F ∗| = 3 for (a∗ = 70, n = 12) in

表 6 Results on generating vectors in Step 4 for Kow

a∗ n |F ∗| f-time

5 11 18 0.205

5 12 18 0.214

7 14 12 0.444

7 15 15 0.296

表 7 Results on generating vectors in Step 4 for Rt

a∗ n |F ∗| f-time

1600 14 18 0.263

1600 15 18 0.243

1900 15 18 0.233

1900 16 18 0.237

Table 4 means that three out of 18 MILPs were feasible.

Step 5. In this step, we modified the algorithm proposed

in [4] to enumerate all acyclic graphs. We conducted the

following two options in our experiment:

(a) for each f∗ ∈ F ∗, enumerate all graphs G∗ ∈ G such

that f(G) = f∗; and

(b) for each f∗ = (c1, c2, . . . , cK) ∈ F ∗, enumerate all

graphs G∗ ∈ G such that f(G) = (c1, c2, . . . , cK−1, c̃K)

and (1 − δ)cK ≤ c̃K ≤ (1 + δ)cK for a small real δ > 0

(where cK is a value to descriptor smdt).

The aim of Step 5(b) is to find a more number of graphs

than (a) by allowing some difference at the last entry of

descriptor smdt, and we later examine if the predicted

value ψ(f(G∗)) remains nearly equal to a∗.

Tables 8 to 17 show the results on Step 5, where we

denote the following: a∗: a target value in [a, a]; n: a

specified number of vertices in [n, n]; #G∗: the number of

acyclic chemical graphs G∗ such that f(G∗) = f∗, where

the number of chemical graphs already registered in chem-

ical database PubChem among the generated chemical

graphs is indicated in the parenthesis; [ψ,ψ]: the min-

imum and maximum values among ψ(f(G∗)) predicted

with the ANN for all generated chemical graphs G∗; and

G-time: the time (sec.) to compute all chemical graphs

G∗ (or to detect that there is no graph G∗).

表 8 Results on enumerating graphs in Step 5(a) for Ha

a∗ n #G∗ [ψ,ψ] G-time

2700 10 2 (2) [2736.9, 2737.7] 0.0331

2700 11 1 (1) [2649.0, 2649.0] 0.0579

2900 10 2 (2) [2922.2, 2923.1] 0.0297

2900 11 152 (7) [2882.3, 2894.6] 0.0352

We observe that some vector f∗ ∈ F ∗ admits no graph

G∗. For example, no graph G∗ was found in the case of

(a∗ = 220, n = 12) in Table 12. This is possible because
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表 9 Results on Step 5(b) with δ = 0.03 for Ha

a∗ n #G∗ [ψ,ψ] G-time

2700 10 15 (14) [2672.3, 2737.7] 0.0315

2700 11 89 (13) [2646.4, 2686.7] 0.0610

2900 10 12 (12) [2915.7, 2928.0] 0.0308

2900 11 666 (48) [2847.4, 2898.1] 0.0414

表 10 Results on enumerating graphs in Step 5(a) for Hf

a∗ n #G∗ [ψ,ψ] G-time

70 11 18 (16) [70.89, 70.89] 0.0279

70 12 1 (1) [71.05, 71.05] 0.0072

90 12 38 (0) [88.76, 91.15] 0.0775

90 13 41 (0) [91.37, 91.37] 0.0687

表 11 Results on Step 5(b) with δ = 0.03 for Hf

a∗ n #G∗ [ψ,ψ] G-time

70 11 105 (85) [68.62, 71.25] 0.0275

70 12 2 (2) [71.05, 71.05] 0.0063

90 12 439 (2) [88.30, 91.15] 0.8498

90 13 573 (3) [88.82, 91.37] 0.0775

表 12 Results on enumerating graphs in Step 5(a) for Bp

a∗ n #G∗ [ψ,ψ] G-time

190 11 24 (0) [187.7, 189.7] 0.0510

190 12 2 (0) [216.8, 216.8] 0.0405

220 12 0 (0) - 0.0477

220 13 1 (1) [218.4, 218.4] 0.0346

表 13 Results on Step 5(b) with δ = 0.03 for Bp

a∗ n #G∗ [ψ,ψ] G-time

190 11 132 (15) [187.6, 189.8] 0.0539

190 12 55 (0) [187.5, 216.8] 0.0413

220 12 23 (1) [216.2, 224.5] 0.0479

220 13 32 (32) [216.6, 223.8] 0.0361

表 14 Results on enumerating graphs in Step 5(a) for Kow

a∗ n #G∗ [ψ,ψ] G-time

5 11 4 (1) [5.05, 5.05] 0.0411

5 12 17 (0) [5.05, 5.07] 0.0471

7 14 6(1) [6.93, 6.95] 0.0425

7 15 2(2) [6.88, 7.03] 0.1372

表 15 Results on in Step 5(b) with δ = 0.03 for Kow

a∗ n #G∗ [ψ,ψ] G-time

5 11 59 (14) [4.51, 5.05] 0.0400

5 12 126 (3) [4.40, 5.07] 0.0507

7 14 16(2) [6.93, 6.95] 0.0400

7 15 3(3) [6.88, 7.03] 0.1344

the current set of additional constraints in our MILP is

a necessary condition for a feasible vector f∗ to admit a

graph G∗ with f(G∗) = f∗. The graphs G∗ in Tables 16

and 17 for Rt have many double bonds between carbons

and none of them has been registered in PubChem.

表 16 Results on enumerating graphs in Step 5(a) for Rt

a∗ n #G∗ [ψ,ψ] G-time

1600 14 0 (0) - 0.533

1600 15 12 (0) [1582.2, 1582.2] 2.367

1900 15 0 (0) - 1.995

1900 16 5 (0) [1903.4, 1903.4] 3.922

表 17 Results on Step 5(b) with δ = 0.03 for Rt

a∗ n #G∗ [ψ,ψ] G-time

1600 14 1335 (0) [1578.4, 1628.4] 0.540

1600 15 2002 (0) [1575.2, 1631.8] 2.755

1900 15 399 (0) [1872.5, 1923.5] 2.066

1900 16 1634 (0) [1865.0, 1909.1] 4.103

7. Concluding Remarks

In this paper, we proposed a method for the inverse

QSAR/QSPR and implemented it for inferring acyclic

chemical graphs using a feature vector f with only graph

theoretical descriptors. For a different chemical property,

once we can successfully construct a good prediction func-

tion ψ with a new ANN N , the second phase such as for-

mulating an MILP P (N ) and generating vectors f∗ and

graphs G∗ can be executed in a rather straightforward

way. For the five chemical properties that we selected, it

seems that our graph theoretical feature vector performs

well for constructing a good prediction function. This is

probably because the kinds of chemical elements in Λ is

small. For a chemical property to which some electronic

descriptors are useful to construct a good prediction func-

tion, it would be worth for predicting those electronic de-

scriptors with a graph theoretical feature vector. Recently

we found a set of linear constraints with integer variables

that can be added to an MILP P (N ) in Step 4 so that

any feasible solution f∗ to P (N ) always admits a chemi-

cal graph G∗ such that f(G∗) = f∗. It is left as a future

work to implement the new MILP in our method.
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