
Regular Paper

Real-time free viewpoint rendering via viewport range
driven polygon plane arrangement

Keisuke Nonaka1,a) RyosukeWatanabe1 Jun Chen1 Sei Naito1

Abstract: Free viewpoint technologies that synthesize virtual viewpoint by using multiple actual videos would pro-
vide immersive experiences for users. To realize this concept, many conventional methods have been proposed. How-
ever, these methods require high computational cost to synthesize a virtual viewpoint because they have to calculate
huge data to express three-dimensional information. To overcome this problem, we propose a simple and fast free
viewpoint synthesis method based on a visual hull, which is a general concept in this field. We calculate the silhouette
of an object along view-dependent planes in virtual space by simple projection from images to the 3D space, and
express the whole shape of the object by integrating the planes. This scheme works very quickly while providing
fine quality because it consists of standard functions in general GPU architecture. The experimental results show our
method can generate a fine virtual view of an object by using multiple videos in real time.

Keywords: free-viewpoint, visual hull, voxel model, plane-based model, real-time processing

1. Introduction
In recent years, free-viewpoint navigation systems from a multi

camera environment [1, 2] have been among the hottest topics
in computer vision, and such systems are being reported with
increasing frequency. In the navigation system, users can se-
lect their viewpoint freely (not limited to actual camera posi-
tions), and the selected scene is synthesized by using multi-
camera videos and several additional items of information. This
makes the free-viewpoint system very useful for improving the
user’s understanding of a scene, and creates an immersive and
ultra-realistic user experience, especially when viewing sports.

A lot of methods [3–10] have been proposed to realize the free-
viewpoint system and we can organize these method into three
approaches. A “image based method [3, 4]” propose a method to
construct light field based on real optical properties captured by
multiple images. This approach has an advantage that can syn-
thesis natural and fine virtual view, but it require so many cam-
eras or specific equipment like light field camera. In addition, it
has a limitation that the range of virtual viewpoint is very narrow
and computational cost is high. Other approach called as “depth
based method [5]” uses depth value obtained by some sensors
to calculate the structure of target 3D space and it realizes wide
range virtual viewpoint. However, even in this approach, there is
a strict requirement regarding shooting environment, e.g. use of
depth sensor, and the computational cost is also high.

In addition, the “model-based method [6–10]” is also a well-
known approach for creating a free-viewpoint. This approach
constructs a three dimensional computer graphics (3DCG) model
that represents the actual target object shape and texture by using

1 KDDI Research, Inc., Saitama 356–8502, Japan
a) ki-nonaka@kddi-research.jp

camera
image

silhouette
of objectvisual hull

(darker region)camera

target object
(black region)

Fig. 1: Concept of visual hull.

information from sparsely arranged cameras, using fewer cam-
eras compared with other approaches [4, 5]. The selection of
the viewpoint is more flexible compared to the selection in other
methods. Considering these features, the approach is suitable for
commercial use.

A model-based method called “visual hull [6–10]” calculates
the shape of an object by using the intersection of the silhouette
obtained by multiple camera images (Fig. 1). Generally, a visual
hull is represented as a set of many points by using voxels that are
rectangular parallelepiped. However, to represent the fine detail
of a complicated object (like a human), it is necessary to use many
voxels and calculate which voxels belong to the object. This re-
quires huge calculation cost for generating the data of a 3D model
for free-viewpoint and it causes a time delay from input to synthe-
sis. Considering the use of live streaming of free-viewpoint, the
calculation time is a serious limitation, and we have to generate
at least one frame data per 33.3 milliseconds.

To overcome this limitation, we propose a fast calculation ap-
proach to represent the shape of the object based on the visual hull

ⓒ 2019 Information Processing Society of Japan 1

IPSJ SIG Technical Report Vol.2019-AVM-105 No.11
2019/6/14

(a) voxel based method (b) ours
voxel virtual plane

Fig. 2: Differences between two approaches.

concept. Differing from the conventional method, our method
uses a virtual plane as a unit of 3D space and the visual hull can
be calculated by using a simple projection scheme implemented
in a graphical processing unit (GPU). This scheme leads to accel-
eration of the calculation. The experimental result shows that our
method can generate almost same free-viewpoint synthesis com-
pared with the conventional method and it works in real-time, less
than 33.3 milliseconds per one frame.

2. Proposed method
2.1 Concept and Overview

Our method is based on the concept of a visual hull, which is
a general scheme for obtaining the shape of a shooting object. A
visual hull generates a 3DCG model of the target object by calcu-
lating the intersection of a projected silhouette cone of the object
which is obtained by multiple camera images (Fig. 1).

The intersection is calculated by using voxels, rectangular par-
allelepiped, as units of 3D space (Fig. 2 (a)). On the other hand,
changing the point of view of the visual hull construction, our
method uses a virtual plane instead of voxels to express the shape
of the object. Based on the plane, the intersection can be cal-
culated by using the simple projection scheme proposed in this
paper, and this feature contributes to accelerating the calculation
of the visual hull. Fig. 2 shows an overview of the framework of
our method.

Our method is composed of five parts, “Data acquisition,”
“Mask extraction,” “Virtual plane setting,”“Alpha projection” and
“Texture projection.” In the following section, we describe the
five procedures in detail and how to implement them in GPU for
synthesizing a virtual viewpoint.

2.2 Shooting Environment and Data Acquisition
In our method, we assume that the object is surrounded by K

cameras, each camera position is fixed and the camera param-
eters are known. The time synchronization between all cam-
eras is adjusted in advance. The camera image is represented as
S i(i ∈ {1, . . . ,K}). Throughout this paper, we discuss how to syn-
thesize a visual hull from a virtual viewpoint in only one frame,
but our method can easily be applied to all video sequences be-
cause the procedure is independent frame by frame.

2.3 Mask Extraction
Being similar to the conventional voxel method [10], we use

a binary mask image of the target object to know the shape of
the object in an image. Therefore, we generate silhouettes of
the object by using a conventional background subtraction (BS)

Z

X

Y
virtual
viewpoint

3D space

P1P2
PN

virtual planes

Fig. 3: Virtual plane setting.

method [11]. The BS method outputs binary mask image corre-
sponding to the silhouette of the object, executing the subtraction
between the background model image and the current frame im-
age. Let Mi(i ∈ {1, . . . ,K}) be the binary mask image generated
by i-th camera image. The pixel value included in the object is 1,
and the other is 0 in this case.

2.4 Virtual Plane Setting
Then, we set a square virtual plane Pn(n ∈ {1, . . . ,N}) as a unit

of the model, into 3DCG space. Where N is the number of the
planes in the target space. By using a homography matrix Hi,
which is given by the pre-calculated camera parameters, Mi can
be easily projected onto the plane as follows,

Pn(x, y, z) ∝ HiMi(u, v, 1), (1)

where the (u, v) are the coordinates in Mi and the (x, y, z) are the
coordinates in Pn. Considering the projection for all the mask im-
ages M1,M2, . . . ,MK , the intersection of all the mask PI

n can be
calculated as,

PI
n(x, y, z) =

∏

∀(u,v)∈Mi

Pn(x, y, z). (2)

Since the PI
n is the intersection of all the object silhouettes in

the camera image, we consider it as a sectional view of the ob-
ject along plane Pn. In other words, if we can stack the plane for a
sufficient number, we can represent the actual shape of the object.

In addition, if we can use an infinite number of planes in the
target 3D space, the planes can be set at arbitrary positions and
angles. However, considering the usage of hardware memory, a
finite number of planes should be set at the optimal position ac-
cording to the virtual viewpoint keeping the quality of the synthe-
sis. Our method sets the planes as if they face toward the virtual
viewpoint perpendicularly (Fig. 3). This solution avoids an arti-
fact caused by the distance between the planes to the extent.

2.5 Alpha Projection
In an actual case, we do not use the binary value of the mask

image because the binary silhouette representation is too strict
considering the noise of the mask image. Instead of the binary
value, to retain the ambiguity of the shape representation, we set
an alpha value Ai related to all the pixels in the mask image as
follows,

ⓒ 2019 Information Processing Society of Japan 2

IPSJ SIG Technical Report Vol.2019-AVM-105 No.11
2019/6/14

Ai(u, v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 Mi(u, v) = 1

α otherwise.
(3)

α works to dilate the shape of the object and we set α = 0.01
heuristically. This alpha value is projected onto planes PI

n in the
same way as Eq. 2.

The integrated alpha value on PI
n is used as the actual opac-

ity of the projected texture described in Section 2.6. Besides, by
summing the value for all planes Pn along an optical axis of the
virtual viewpoint, the virtual view can obtain the shape (opacity)
of the target object.

2.6 Texture Projection
To render a virtual viewpoint, we have to know the color of

the target object. For this purpose, we use texture mapping of the
camera image similar to alpha projection. However, we use only
Q number of camera images near the virtual viewpoint as follows,

PT
n (x, y, z) =

∏

∀(u,v)∈S q

λqPn(x, y, z), (4)

where index q represents the index corresponding to the near Q
cameras and λq is the weight of texture alpha blending. PT

n (x, y, z)
represents the bended texture on Pn by the Q cameras. By iterat-
ing this procedure for all planes, we can render the virtual view-
point. λq is calculated according to distance d(q) between the
virtual viewpoint and each camera as,

λq =

∑
x∈Q′\q d(x)

(Q − 1)
∑

x∈Q′ d(x)
, (5)

where, Q′ returns a set of index of Q cameras, and we set Q = 2
to blend just two camera textures in this paper.

2.7 Implementation for Rendering
Below we briefly describe how to implement the above proce-

dure. Basically, we use programmable shader, the general GPU
function, for this implementation. Firstly, we calculate the ar-
ray of all the corner points of Pn and enter them into a vertex
shader. Then, the corresponding (u, v) in all the images and the
virtual viewpoint can be calculated. After that, all the pixel values
(including alpha) of the viewpoint can be easily obtained by the
alpha and the texture projection which is executed in a fragment
shader. That works very quickly because the pixel value is inde-
pendent for the neighboring pixel values and the current GPU is
optimized for the pixel-wise procedure.

3. Experimental results
To examine the performance of our method, we synthesized

images by the conventional method [10] and our method, and the
results are shown in Fig. 5. For both methods, we used 16 full
HD cameras surrounding in a semicircular position (Fig. 4) and
the results are also rendered in full HD. Only for the background
subtraction, we resized the input image to 640 × 360 [pixels] to
accelerate it, because in our implementation, the procedure is im-
plemented for a CPU. In addition, we used 1.0 cm as the distance
between each voxel in the conventional method and as the dis-
tance between each virtual plane in our method. This means the

Table 1: Objective evaluation of two methods.
Voxel Ours

SSIM (Virtual viewpoint 3) 0.686 0.684
SSIM (Average score of 10 viewpoints) 0.670 0.689

run time [milliseconds/frame] 1.96 × 102 3.17 × 10 (< 33.3)

capability of expressing an object shape by both methods is al-
most the same, theoretically. Under these settings, the number of
voxels to be calculated was approximately 1.5×108, and the num-
ber of virtual planes was 8.0×102. The background 3DCG model
in this experiment (the baseball stadium) was constructed in ad-
vance, and the results shown in Fig. 5 were cropped to enhance
the difference between the two methods.

In Fig. 5, Virtual Viewpoint 1 is a viewpoint in the center of
two cameras (the 4th and the 5th camera from the left in Fig. 4),
and Virtual Viewpoint 2 is a viewpoint that is placed at a higher
position far from all the cameras. Virtual Viewpoint 3 is a view-
point with a camera position, but we did not use the correspond-
ing camera for the result (we used 15 cameras). This result was
for the objective evaluation described below.

From the qualitative viewpoint of Fig. 5, our method gener-
ated similar results compared with the conventional method. In
some cases, the voxel based method had a jaggy noise along the
boundary of the player because the extracted mask had an error.
On the other hand, along the boundary, our method did not have a
jaggy noise but had a burred texture caused by the layered plane
and the alpha projection. To clarify this finding, we cropped a red
rectangular region around the bat, and placed an enlarged one in
the top right corner in Fig. 5 (c).

In addition, we examined the quality of the synthesized images
by objective score. The most important feature of our method is
its ability to preserve both the player’s shape and structure in the
synthesis process. To verify this feature, we used a well-known
structure evaluation method related to human perception, Struc-
tural SIMilarity (SSIM) [12]. The input synthesized image for
this evaluation is the same as that shown in Fig. 5 (c) and we
calculate the SSIM for the luminance between the ground truth (a
camera image) and each method. We chose 10 viewpoints which
consists of virtual viewpoint 3 in Fig. 5 and randomly selected
9 camera positions as virtual viewpoints in this objective exper-
iment. The camera images on the virtual viewpoints were not
used for the synthesis but the viewpoints were the same. A higher
value is better in SSIM, and the range is from 0 to 1. The results
of SSIM are shown in Table 1 and the score shows our method
can generate almost the same result, although the score is slightly
degraded.

In addition, we evaluated the calculation time of the methods.
Table 2 shows the specifications of the desktop PC used for this
evaluation and we developed some viewers implemented by C++
with OpenGL [13] to measure the time from image input to ren-
dering. The time includes the calculation time of all procedures,
e.g. mask extraction.

From the third line of Table 1, the result shows that our method
outperforms the conventional voxel method from the viewpoint
of calculation time and can be adopted for the real-time stream-
ing system in 30 [frames/second]. This acceleration is caused by

ⓒ 2019 Information Processing Society of Japan 3

IPSJ SIG Technical Report Vol.2019-AVM-105 No.11
2019/6/14

Fig. 4: List of input images (in this figure, we selected only 5 camera images from 16 cameras due to the limitation of space).

Voxel
[10]

Ours

(a) Virtual Viewpoint 1 (b) Virtual Viewpoint 2 (c) Virtual Viewpoint 3

Fig. 5: Synthesized images by the conventional and our method.

Table 2: Specifications of devices in this experiment.
desktop PC

OS Windows 10 64bit
CPU Intel Core i7-6700K CPU @4.00GHz
GPU NVIDIA GeForce GTX 1080
RAM 32GB

the fact that our method does not calculate the 3D position of
the silhouette intersection explicitly and is implemented by fun-
damental functions in a general computer graphic library such as
OpenGL which is optimized for hardware.

Of course, the quality of both methods is significantly affected
by the quality of mask extraction of the target object. For the sake
of keeping the real-time rendering, currently we use a very simple
BG scheme executed in less than 33.3 [milliseconds/frame]. This
means it is not so easy to apply our method to complicated scene
rendering.

4. Conclusion
We propose a fast plane-based free-viewpoint synthesis tech-

nology for real-time live streaming based on the concept of a
visual hull. Differing from the conventional voxel based visual
hull, our method sets a virtual plane as a unit of 3DCG space, and
projects silhouette masks and textures of a target object given by
multiple camera images on the plane. The projected silhouettes
and the textures are easily utilized to obtain the intersection of
the silhouettes and it becomes one of the expressions of the vi-
sual hull. In the synthesis scheme, a vertex shader and a fragment
shader can execute the projection quickly within GPU hardware
in parallel.

In our experiments, the results show that our method can gener-
ate a similar result compared with the conventional voxel method,
even in terms of objective evaluation. In addition, we confirmed
our method can synthesize the virtual viewpoint in over 30 fps

from input to rendering. This means our method can be easily
applied to real-time live streaming.

Currently, we assume that the background of an actual scene is
not so complicated because we use a simple BS method to keep
the real-time processing. In future, we will propose a fast BS
method that can be applied to complicated scenes and apply our
method to cases of actual use.

References
[1] M. Tanimoto, M. P. Tehrani, T. Fujii, and T. Yendo, “Free-viewpoint

tv,” IEEE Signal Processing Magazine, vol. 28, no. 1, pp. 67–76, 2011.
[2] R. Suenaga, K. Suzuki, T. Tezuka, M. P. Tehrani, K. Takahashi, and

T. Fujii, “A practical implementation of free viewpoint video system
for soccer games,” in Proceedings of SPIE Electronic Imaging, 3D
Image Processing, Measurement and Applications, 2015, p. 93930G.

[3] A. Ishikawa, M. P. Tehrani, S. Naito, S. Sakazawa, and A. Koike, “Free
viewpoint video generation for walk-through experience using image-
based rendering,” in Proceedings of ACM International Conference on
Multimedia, 2008, pp. 1007–1008.

[4] C. Lipski, C. Linz, K. Berger, A. Sellent, and M. A. Magnor, “Vir-
tual video camera: Image-based viewpoint navigation through space
and time,” Computer Graphics Forum, vol. 29, no. 8, pp. 2555–2568,
2010.

[5] Z. Cui, J. Gu, B. Shi, P. Tan, and J. Kautz, “Polarimetric multi-view
stereo,” in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 369–378.

[6] C. Buehler, W. Matusik, L. McMillan, and S. Gortler, “Creating and
rendering image-based visual hulls,” Massachusetts Institute of Tech-
nology, Cambridge, MA, USA, Technical Report, 1999.

[7] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan,
“Image-based visual hulls,” in Proceedings of Annual Conference on
Computer Graphics and Interactive Techniques, 2000, pp. 369–374.

[8] Y. Furukawa and J. Ponce, “Carved visual hulls for image-based mod-
eling,” International Journal of Computer Vision, vol. 81, no. 1, pp.
53–67, 2009.

[9] V. Chari, A. Agrawal, Y. Taguchi, and S. Ramalingam, “Convex
bricks: A new primitive for visual hull modeling and reconstruction,”
in Proceedings of IEEE International Conference on Robotics and Au-
tomation, 2012, pp. 770–777.

[10] H. Sankoh, S. Naito, K. Nonaka, H. Sabirin, and J. Chen, “Robust
billboard-based, free-viewpoint video synthesis algorithm to over-
come occlusions under challenging outdoor sport scenes,” in Proceed-
ings of the 26th ACM International Conference on Multimedia, 2018,

ⓒ 2019 Information Processing Society of Japan 4

IPSJ SIG Technical Report Vol.2019-AVM-105 No.11
2019/6/14

pp. 1724–1732.
[11] A. M. Elgammal, D. Harwood, and L. S. Davis, “Non-parametric

model for background subtraction,” in Proceedings of the 6th Euro-
pean Conference on Computer Vision-Part II, 2000, pp. 751–767.

[12] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[13] (2018) OpenGL. [Online]. Available: https://www.opengl.org

ⓒ 2019 Information Processing Society of Japan 5

IPSJ SIG Technical Report Vol.2019-AVM-105 No.11
2019/6/14

