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Abstract: The ever increasing demand of High Performance Computing (HPC) applications for higher
memory bandwidth and, at the same time, larger memory capacity is leading the industry towards hybrid
main memory designs, i.e., main memories that consist of multiple different memory technologies. This
trend, however, leads to one important question: how can we efficiently utilize such hybrid memories?
We propose a novel approach to solve this challenge by deploying a software-based pattern-aware staging
technique for memory intensive HPC applications. More specifically, our approach samples small parts of
the address sequence, characterizes the pattern, and then determines whether to apply the staging or not
at runtime to maximize performance. Our experimental results using HPC kernels on a KNL processor
achieve a 3x speed-up in the best case compared to an execution using only the large memory.
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1. Introduction
Guter Anfang ist halbe Arbeit. — Anonym

The performance of future High Performance Comput-
ing (HPC) systems relies less and less on the number of
Flop/s provided, but rather directly depend on both mem-
ory bandwidth and capacity [1]. As a consequence, sys-
tems built solely on classic memory technologies, which
normally only favor one of the two properties, will face
severe limitations. In order to counteract this trend, new
and promising technologies, such as 3D stacking, HMC [2]
or HBM [3], have been developed, but face limitations in
term of capacity and scalability [4]. Therefore, to increase
the memory capacity, DIMM-based off-package memories
including NVRAM, such as Intel’s 3D XPoint memory [5],
are still needed, but also face limitations, this time in terms
of bandwidth-scalability due to power constraints on the
memory-bus [6] and the number of off-package pins [7].
Driven by these diverging observations, hybrid memory ar-
chitectures, which combine different memory technologies
on a single processor, are an important design option for
upcoming HPC generations, including exascale systems [8].
For example, the Intel’s Knights Landing (KNL) processor
offers such a hybrid approach with two different memories:
the high-bandwidth, but small MCDRAM, which is a form
of HBM, and the conventional low-bandwidth, but large
DIMM-based DDR4 memory [9].
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While such hybrid memory systems have the potential
to improve the performance of bandwidth-critical applica-
tions, it is still unclear how to exploit—at the same time—
both the available bandwidth and the capacity on such
hybrid memory systems. As an answer to this open ques-
tion, we propose a software-based pattern-aware staging
technique. Our core concept follows the observation illus-
trated in Figure 1: (1) the fast memory outperforms the
large memory for random updates task, but (2) it takes a
much longer time than the sequential copy tasks. This is
because, thanks to significant amounts of parallelisms due
to a large number of channels, the fast memory can suc-
cessfully accelerate any kinds of bandwidth critical tasks.
However, the effective bandwidth for each task highly de-
pends on the access pattern, as more irregular and sparse
(low locality) tasks utilize fewer elements within a cache-
line, which significantly wastes memory bandwidth [10]
and also causes more bank/row-buffer conflicts [11].
We exploit this phenomenon to accelerate bandwidth

critical tasks by using the staging technique shown in the
figure if the accesses are irregular and sparse: (1) copy-
ing a large chunk of data from large to fast memory,
(2) performing accesses on the chunk, and (3) writing it
back to the large memory. We apply this technique when
the data footprint is larger than the fast memory. In
this technique, the data is divided into chunks of a few
GB, and the staged access is, in turn, applied to each
of them. Several recent studies also focus on the data
managements for bandwidth-heterogeneous hybrid mem-
ory systems [12], [13], [14], [15], [16], [17], [18], but none of
them considers this large performance impact of the access
pattern nor exploits it to improve performance.
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* This experiment was performed on the KNL-based system de-
scribed in Section 6. The same number/size of memory references
are issued for both the random and the copy task (details are pro-
vided in Section 2.3).

Fig. 1: Concept of our staging technique

To successfully enable our pattern-aware staging tech-
nique, we need to decide when it is profitable to apply.
For this, we propose a lightweight software-based mecha-
nism that samples small parts of the access sequence, an-
alyzes the access pattern in terms of regularity/sparseness
and then decides—at runtime—whether to apply staging
or not. More specifically, to characterize access patterns
based on sampled addresses, we propose an efficient ap-
proach consisting of two different detectors implemented
with Bloom filters: a Page Address Filter (PAF) for
sparseness analysis and a Stride Filter (SF) for regularity
analysis. Finally, we propose a quantitative methodology
to use the analysis to decide if an application can likely
benefit from staging or not.
The followings are the major contributions of this paper:

• We report the following important observations for our
staging technique: (1) the high-bandwidth fast mem-
ory outperforms the large memory for bandwidth-critical
tasks in a hybrid memory system, and (2) the overhead
of a sequential copy operation between them can be rel-
atively small when the memory access pattern of the ex-
ecuted task is irregular and sparse.

• Based on the observation, we propose a software-based
approach called pattern-aware staging that samples
parts of an access sequence with multiple threads, char-
acterizes the access pattern, and determines whether to
apply the staging or not.

• We propose a simple address sampling mechanism, which
can easily be integrated into the compilers/runtime sys-
tem tool chain.

• We realize a lightweight pattern characterization mech-
anism using two different small Bloom filters: PAF and
SF. Our evaluation suggests that sampling and analyz-
ing only 2K/1K addresses with only 256B Bloom filter
per thread is enough for PAF/SF, which takes less than
0.040% of time compared with an 8GB round-trip copy
operation between the memories.

• We propose a quantitative approach to make a decision
based on the outputs of the above access pattern anal-
ysis. Our experimental result shows that our approach
provides and accuracy of 79.0%.

• Finally, we implement and evaluate our pattern-aware
staging approach on a KNL-based system using HPC

CPU / CPU+GPUOn Package 3D Stacked

Fast (but Small) Memory

Off Package

Large (but Slow) Memory

.....

High BW

Low BW

Fig. 2: Hardware architecture with bandwidth-
heterogeneous hybrid main memory

Bandwidth Capacity
Fast Memory(MCDRAM) up to 450GB/s up to 16GB
Large Memory(DDR4) up to 90GB/s up to 384GB

Table 1. An example of bandwidth-heterogeneous hybrid main mem-
ory (supported in KNL processors [9])

kernels. The result clarifies that our proposal offers a
3x times speed-up in the best case compared to the con-
ventional large memory only approach.

2. Staging Accesses in Hybrid Memory
Look deep into nature, and then you will understand

everything better. — A. Einstein

To support applications with both high bandwidth and
large capacity memory requirements, HPC systems have
begun to support hybrid main memories with heteroge-
neous bandwidth properties. Looking forward, this kind
of architecture is not only considered indispensable for any
next generation HPC systems, covering exascale and be-
yond [8], but is also poised to find its way into mainstream
systems. Figure 2 shows a typical hardware architecture
for such a system: the memory consists of two different
parts: one consists of fast (in terms of bandwidth), but
small on-package memory; while the other one consists of
large, but slow off-package memory.
Table 1 shows a sample configuration of a hybrid mem-

ory system, as it is implemented in KNL-based systems.
As evident from the numbers, these different memory tech-
nologies have a trade-off between bandwidth and capac-
ity (their latency is comparable [9]). MCDRAM is a 3D-
stacked fast memory technology offering high on-package
internal bandwidth with TSV (Through Silicon Via) and
silicon interposer technologies [19]. Although this kind
of 3D-stacking technology is promising in terms of the
bandwidth, the capacity is limited compared to conven-
tional DIMM-based memories [4]. Therefore, the KNL also
supports conventional DIMM-based DDR4 memory. Al-
though this technology is better in terms of the capacity
it can offer, it faces limitations wrt. power budgets for
the memory bus [6] and off-package pin counts [7], lead-
ing to less scalable bandwidth properties. Consequently,
only both memories combined offer a viable path forward,
leading us to hybrid memory systems.

2.1 Concept of Memory Staging
The goal of this research is to provide an easy to use

way for memory-consuming bandwidth-critical appli-
cations to exploit the high-bandwidth of the fast mem-
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Fig. 3: Concept of staging

ory, while also being able to utilize the capacity of the
large memory. To achieve this goal, we aim aim at utiliz-
ing corse-grained data transfers/copies (data chunks in the
order of GBs) as accessing large enough data is essential
to exploit the available bandwidth. As few applications
naturally expose such coarse-grained accesses, we revisit
the concept of access staging and adapt and extend it
for managing data in hybrid memory systems.
Figure 3 illustrates an overview. First, we reserve a

buffer (up to few GB) in the fast memory and divide the
large data, still stored in the slow memory, into the several
data chunks of matching size in the fast memory. For each
data chunk, we then apply data staging as follows: (1)
copy the data from the large memory to the fast memory,
(2) perform bandwidth-critical tasks on the fast memory,
and (3) return it to the large memory by copying it back.
We then iterate this process across all data chunks, until
all chunks are processed.

2.2 Balancing Performance Boost and Overhead
To achieve performance improvements, we must apply

our staging technique only when the performance boost
gained in the second stage (Tboost) is larger than the copy
overhead caused by the first and third stages (Tcopy). They
can be formulated by using the parameters shown in Fig-
ure 3. Here, Tbase represents the execution time without
staging, while T1st, T2nd, and T3rd represent the execution
time of the first, second, and third stages in the staging
technique, respectively. We can obtain a performance im-
provement when these times meet the following conditions:

Tbase > T1st + T2nd + T3rd

Tboost(= Tbase − T2nd) > Tcopy(= T1st + T3rd) (1)

These times, however, depend on the characteristics of
the memory access patterns in the targeted code or al-
gorithm, which we need to carefully consider when deter-
mining wether we apply the staging or not.
Further, to reduce the copy overhead, in certain cases we

can remove the first stage or third stage in our approach.
More specifically, we remove the third stage (writing back
a chunk to the large memory) for read only tasks. Like-
wise, we remove the first stage (reading a chunk from the
large memory) for write only tasks such as overwriting
temporary arrays.

2.3 Tradeoff Observation
In Figure 4, we quantify the performance boost (Tboost)

by comparing T2nd and Tbase. For this evaluation, we uti-
lized a KNL-node for which the details are shown in Sec-
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tion 6. The vertical axis shows the execution time that
is divided by the data size, i.e., the inverse of bandwidth.
In this evaluation we analyze the performance boost for
two different access patterns. For random we performed
one billion random memory accesses on an 8GB data array
whose data element size is eight bytes; for sequential we
examined sequential memory references on the same 8GB
data array, also by issuing one billion memory references.
As shown in the figure, the fast memory outperforms the

large memory for both tasks. This is because the former
has significantly more parallelism in ranks/banks/channels
than the latter, and thus can provide a much higher band-
width regardless of access patterns if the accesses are in-
tensive.
The random access pattern, on the other hand, takes

much longer to complete than the sequential one, and
hence Tboost has to become much longer for the former.
This phenomenon is caused by the fact that memory sys-
tems are usually optimized in a way that they can ex-
ploit the bandwidth for sequential accesses by interleav-
ing data across banks/ranks/channels [20], while utilizing
open page policies [21]. Therefore, more irregular patterns
cause more bank/rank/channel level conflicts [11]. Fur-
ther, such accesses are very sparse (and hence come with
very low locality) and thus these contentions can occur
very frequently as, under such conditions, on-chip caches
cannot help with reducing the number of accesses to mem-
ory.
Figure 5 represents the copy overhead (Tcopy) between

the two different memories. By comparing Figure 4 and
Figure 5, we find that the significance of the copy overhead
depends on the access types of the codes. As shown in the
figures, it is better to move data for the random access
pattern (Tboost > Tcopy), but we should not do so for the
sequential accesses (Tboost < Tcopy).

2.4 Overlapping and Pipelining
Pipelining is a well-known technique to hide the com-

munication latency between components/nodes by over-
lapping computation and data transfer [22], [23], [24], [25],
[26]. In our case, the second stage for one chunk and the
first/third copy stages of other chunks can be overlapped.
By overlapping them, the time of processing one chunk
becomes ideally T2nd.
However, when we apply overlapping to bandwidth-

critical tasks, the effectiveness is limited due to signifi-
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Fig. 7: Block diagram for Pattern-Aware Staging

cant hardware contention (referred to as C) on the mem-
ory bandwidth resources, particularly on the fast memory,
as all of the stages access it intensively. We refer to this
contention overhead as Toh = C ∗ Tcopy, and compared to
pure staging, the overlapping is effective only when C is
less than 1.
Figure 6 compares execution time among three methods

on the KNL-based system: Ideal (no copy overhead), w/o
Overlap (staging without overlapping), and w Overlap
(staging with overlapping). The X-axis indicates the work-
loads (Random and Sequential), which are the same as
those used in the previous subsection, while the Y-axis
represents relative execution time which is normalized to
Tbase for each workload. In this evaluation, Ideal or w/o
Overlap are executed by 64 threads, while for w Overlap,
additional 64 copy threads also run in parallel*1, which are
implemented using the OpenMP nested parallelism.
As shown in the figure, the performance benefit of

overlapping and pipelining is limited or even harmful for
bandwidth-critical applications, which are the major tar-
gets of this work. This is because (1) the overlapping
fundamentally does not reduce the loads on the memory
subsystem, (2) it can cause more conflicts on the memory
resources (e.g., at row buffers [27]) for Random, and (3) the
copy time is too large to hide for Sequential. Due to this
limited effectiveness, we purposely do not consider them in
our approach.

3. Pattern-Aware Staging
Die Natur liebt Einfachheit und Einheit. — J. Kepler

Following the insights in the last section, particularly
Section 2.3, which shows that staging can be highly ben-
eficial in some cases, but harmful in others when always

*1The copy threads are launched across all cores to balance the
loads among them. In this approach, two different threads share
the same core resources (e.g., local caches), but the impact is small
because all the workloads are memory bound with very little cache
locality — thus, the memory limits performance in this case.

Sampling Thread

PAF

SF

Hit or 
Miss

Sampling

Characterization

Decision

PAF Hit Rate

S
F

 H
it

 R
at

e

Addr.
>>

Cnt–

Last Addr.

Stride

Page
Addr.

Sample
Range

Cnt

Hit or
Miss

Address Sequence

+

+

PAF
Hit Rate

SF
Hit Rate

Sampling Thread

PAF

SF

Hit or 
Miss

>>

Cnt–

Last Addr.

Stride

Page
Addr.

Cnt

Hit or
Miss

High

Low

High Low

without 
Staging

with 
Staging

without 
Staging

without 
Staging

PAF: Page Address Filter
SF: Stride Filter

Addr.

Barrier

Sparse & 
Irregular

Fig. 8: Overall strategy of pattern analysis

applied, we developed a lightweight software mechanism
called pattern-aware staging that dynamically detects
access patterns and decides on the fly whether to apply
data staging or not. Figure 7 shows the overview with a
block diagram: we sample the access sequence for a chunk
just before executing the task, analyze the pattern, and
then use this information to make a decision on whether
we use the staging or not, i.e., we make a pattern-aware
decision. The time and memory overhead of this part has
to be small enough (compared to the copy overheads of few
GB of big chunk copy) in order for this scheme to be effec-
tive. We achieve this by (1) limiting the number of sam-
ples obtained, (2) parallelizing the sampling across multi-
ple threads, and (3) using a filter-based efficient pattern-
analysis, as described below. We perform this analysis at
runtime as it is both more convenient for the user and flexi-
ble to adapt to varying application behavior than perform-
ing a static, offline based pattern-analysis. Consequently,
no profile from a previous run is needed for the application
of our method.
Figure 8 describes the concepts behind our pattern anal-

ysis component, which consists of three parts: sampling,
characterization, and decision. Each Sampling Thread in
the figure acquires a part of the address sequence and ana-
lyzes the pattern. For this we use two separate detectors in
the form of (Bloom) filters — a Page Address Filter (PAF)
and a Stride Filter (SF) — as indicators. These filters keep
the recent history of inputs (page-addresses/access-strides)
and can thereby provide an answer on whether an input
page-address/access-stride exists in the recent access his-
tory or not. A low hit rate in the PAF indicates low data
locality, and thus a sparse access pattern. Additionally,
a low hit rate in the SF indicates that accesses are irreg-
ular. More specifically, when accesses are more regular,
the number of different access strides detected in the SF
decreases and hence hits in the SF increase. For example,
for an access pattern with only one constant stride, the SF
only has one entry and shows a hit for all access (but the
first one).
After completing the sampling, we collect the hit/miss

records of these two filters using a reduction operation and
with that complete the characterization part. Based on
the obtained statistics, we then make a decision based on
the following observation: if the accesses are sparse and
irregular, the task is likely to take much longer time than
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1 for( i =0;i<num_chunks; i++){
2 //processing ith chunk
3 #pragma our directive target(A[][])
4 for( j=0;j<M; j++){
5 for(k=0;k<N;k++){
6 A[ i ] [ ( j∗I [k])%L]+=1;
7 }
8 }
9 }

Fig. 9: Original code + newly intro-
duced directive

1 for( j=0;j<M; j++){
2 for(k=0;k<N;k++){
3 PAF. input(&A[i][(j*I[k])%L] ) ;
4 SF. input(&A[i][(j*I[k])%L] ) ;
5 sample++;
6 i f (sample >= max_sample) {
7 goto SAMPLE_END;}
8 }
9 }

10 SAMPLE_END:

Fig. 10: Sampling threads

1 for( i =0;i<num_chunks; i++){
2 //processing ith chunk
3 [Put the sampling threads code here]
4 i f (decision making( args )){
5 [ code with staging ]
6 }else{
7 [ code without staging ]
8 }
9 }

Fig. 11: Pattern-aware staging code

the copy and thus the performance boost brought by data
staging will be larger and hence worthwhile.

4. Sampling and Characterization
Zeit ist Geld. — Anonym

In this section, we explain the details of our sampling
and characterization approach in Figure 8, and then quan-
tify the overhead. More specifically, we describe how we
realize the sampling in Section 4.1, the details of the fil-
ter mechanism in Section 4.2, and the overhead analysis in
Section 4.3.

4.1 Sampling threads
Figure 9 represents a sample code to apply our pattern-

aware staging technique*2. In this figure, the 2D array
(A[num chunks][L]) can be divided into chunks, and the
outermost for loop then selects one of them turn by turn.
The 3rd line in the figure shows our newly introduced
directive to specify the target array to apply our tech-
nique to. Here, we assume the following scenario: when
a compiler comes across this directive, it automatically
attempts to transform this original code into the pattern-
aware staging code in Figure 10/11 for the target array.
Although this transformation is performed by hand in this
paper, as in previous software-based data management
studies [28], [29], [30], this can be automated using, e.g., a
source-to-source compiler, similar to previous studies on
compiler-based pre-execution or helper thread prefetch-
ing [31], [32], [33]—they generate both load instructions
and addresses, while ours needs the latter only.
Next, we describe the code for the sampling threads in

Figure 10*3. This code can be considered a modified ver-
sion of the inner two loops of Figure 9. More specifically,
instead of calculating A[i][(j*I[k])%L]+=1, our sampling
threads just obtain the address (&A[i][(j*I[k])%L]) and re-
place with the calculation with the code for their own fil-

*2Here, to simplify the explanation, we utilize the sequential
code. But, our codes are actually parallelized with OpenMP in our
evaluation.

*3This code is also parallelized with OpenMP in our implementa-
tion. Note that we apply the following modifications to parallelize
the code: (1) as OpenMP does not allow GOTO statement in par-
allel for loops, we utilize cancel for statement as a substitution for
GOTO; (2) as we set the statistics of the filters as private variables
to minimize the communications among threads, we collect them
using atomic statement just after the end of the samplings.

PAF or SF

if # of inputs  Threshold
           3. Clear

1. Test(x)

x: Page Addr. or Stride if Test(x) = Miss
  2. Set(x)

Fig. 12: Filter operations

ters (PAF and SF) in the innermost for loop. Note that, if
the array is accessed multiple times in the loop (e.g., un-
rolled loop), we add the filter input and sample counter in-
crement lines to each. When the total number of sampled
addresses exceeds a given threshold, we abort the loops
and collect the statistics. Putting it all together, this sam-
pling code is placed at the 3rd line in Figure 11, just before
the decision making function (decision making(args)).

4.2 Access Characterization
We characterize the access pattern in terms of sparse-

ness and regularity using the sampled address sequence.
To do so, as described in Section 3, we convert the ad-
dress sequence into page/stride addresses for the PAF/SF
filters, respectively, which keep their own address history,
and then acquire the hit rates. To realize this, the filters
have to be efficient in terms of memory and time over-
heads. For this reason we turn to Bloom filters, as thy
fulfill these requirements, as laid out below.
4.2.1 The Filter Mechanism
We assume each filter has three functionalities: Test(),

Set(), and Clear as shown in Figure 12. First, the Clear

function is used to initialize the contents to initialized and
reset the filter, as described later. For each access, we use
the Test() function to examine whether an incoming ele-
ment x (page-address/stride for PAF/SF, respectively) is
recorded in the filter or not. If it returns a hit, then the
corresponding hit counter is incremented, otherwise the
miss counter is incremented and Set() is called to register
x in the filter to detect future accesses.
4.2.2 Bloom Filter Based Implementation
To implement PAF and SF, we utilize Bloom filters,

which are a probabilistic data structure that can record
a large set of elements with a small memory footprint [34].
Figure 13 shows their principle structure: it consists of
a bit array, which stores the elements in the filter, and
multiple hash functions, each of which returns an index
to the bit array. At first, all of the bits are set to zero.
Then, to register input elements (e.g., in our case page-
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Fig. 13: Bloom filter mechanism

addresses/strides for PAF/SF), we can use the Set() func-
tion to identify the bits associated with the input using
the hash functions and then set them to one. We use the
Test() function to extract the bits associated with an in-
put element using an AND operation on the bits pointed
to by the hash functions: it should return a hit (1) if an
element was recorded in the filter before, otherwise a miss
(0).
In the figure, Test(x) returns a hit because x was al-

ready registered (True Positive). The output of Test(z)
is a miss, as z has not appeared, yet, at this point (True
Negative). However, due to the hash collisions, Test(w)

can return also return a wrong answer: a hit for a non-
registered element w (False Positive). Small numbers of
false positives do not have a significant impact, but to
avoid too frequent false positives, the size of the bit array
must be chosen large enough. Thus, the memory over-
head and the false positive probability are an important
trade-off, which is further influenced by picking the right
hash functions. Further, after recording a certain amount
of records, the Clear function must be used to re-initialize
the filter contents; otherwise the filter can be filled with
positive values and always return hits. Nevertheless, due
to their probabilistic nature and in combination with well
chosen hash functions, Bloom Filters (using the right ar-
ray sizes and hash functions) have been shown to be highly
effective in recording such information in a compact fash-
ion [34].

4.3 Overhead Analysis
We evaluate the overhead of our sampling and character-

ization approach using access patterns for various sparse
matrices. The matrices are collected from the Florida
sparse matrix collection [35] and are listed in Table 2. As-
suming SpMV with CRS format [36], we use the column
indices of each matrix as an index array to a vector and

Table 2. Selected matrices
Matrix Name
2cubes sphere, audikw 1, eu-2005, europe osm, F1, FullChip,
G n pin pout, GL7d20, Hamrle3, hugebubbles-00020, HV15R,
offshore, pkustk14, poisson3Db, pre2, rajat29, road usa,
scircuit, soc-sign-epinions, thermomech dK, thermomech dM,
tmt unsym, torso3, tx2010, wiki-Talk, wikipedia-20061104

Table 3. Sampling and filter settings
Sampling

# of sampling / thread 2K ([1K, 2K, 4K, 8K] in Fig. 14/15)
# of threads 64

Filters (PAF/SF)
Size [B] (=2N/8) 256 ([64, 128, 256, 512] in Fig. 16)
Max # of inputs 256

# of hashs 2
hashk(x) (k = 0, 1) (x >> (N ∗ k))&(2N − 1)
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Fig. 14: Time overhead comparison
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Fig. 15: PAF/SF hit rates v.s. the number of sampling
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Fig. 16: PAF/SF hit rates v.s. filter size

analyze the access patterns with using our sampling and
characterization approach. For this evaluation, we use a
KNL-based system whose detailed configuration is shown
in Section 6. The configurations for our sampling phase
and the filters are summarized in Table 3.
Figure 14 compares the time overhead between 1 or 8

GB copy operations (T1st + T3rd) and our sampling and
characterization approach. The X-axis indicates the sam-
pled addresses for both PAF and SF in each thread, while
the Y-axis represents the time overhead. For the sampling
and characterization overhead, each value shows the aver-
age time with the standard deviation across workloads.
As shown in the figure, when we limit the number of

sampled addresses to less than 8K per thread, the over-
head of our approach becomes quite small (less than 1%)
compared with the few GB of round-trip copy operations.
In particular, it takes just 0.025% of time compared with
a 8GB copy at 1K samples.
Figure 15 shows how many sampled addresses are needed

to obtain accurate enough PAF/SF hit rates. The X-axis
shows the number of sampled addresses per thread, while
the Y-axis represents the PAF/SF hit rates. Each line in
the figure is associated with one of the matrices listed in
Table 2. As the graph shows, the PAF/SF hit rates are
almost constant when we sample more than 2K/1K ad-
dresses per thread. Based on this result, we limit ourselves
to 2K/1K addresses per thread for the PAF/SF. The time
overhead of this is less than 0.040% compared to the 8GB
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copy operations, as shown in Figure 14.
Figure 16 presents the PAF/SF hit rates as a function

of the filter size. We scale the filter size from 64B to 512B
(512bit to 4096bit) per thread while fixing the maximum
number of filter inputs as 256. As shown in the figure, as
the filter size scales, the PAF/SF hit rates become smaller,
i.e., fewer false positive happen. However, they are almost
constant when the size is larger than 256B. Based on this
result, we choose 256B for both PAF and SF.

5. To Stage or Not To Stage?
Wer die Wahl hat, hat die Qual. — Anonym

Based on the pattern features we determine whether it
is likely beneficial to apply our staging technique or not.
In this section, we first show the overview of the method
and then discuss the criteria to make decisions. Finally,
we analyze the accuracy of our approach.

5.1 Overview
Figure 17 illustrates the overview of our strategy: on the

Rsf -Rpaf plane, we consider the break even line (BEL) —
at any points on the line, the performance improvement
gained in the second stage (Tboost) is equal to the copy
overhead (Tcopy). If the pattern feature vector (Rsf , Rpaf )

is mapped below the BEL on the plane, we can gain speed-
up with the staging, otherwise not. The BEL is formulated
as follows:

Tboost(Rsf , Rpaf ,P)− Tcopy(P) = 0 (2)

In addition to the pattern features, this function also uti-
lizes additional input parameters (denoted through the
vector P), which help fine tune the shape of the BEL. In
particular we choose three additional parameters (U,R,W )
— how many times chunks will be accessed and whether
they will be read or written, also see Table 4 — on which
Tboost() and Tcopy() highly depend on for bandwidth criti-
cal applications. Tboost() (the performance gain) will be
shorter if the chunk is less utilized (U is smaller) and
the access direction is relevant due to read/write band-
width differences. Furthermore, T1st/T3rd in Tcopy() can
be skipped if the chunk is write/read-only as described in
Section 2.2. In this work, we set the parameters (P) man-
ually, but we assume this can be given by a compiler-based
code analysis.

5.2 Decision Criterium
First, we formulate Tcopy() [s/GB] with R and W :

Time Functions/Parameter
Tboost() Speed-up gained in the second stage [s/GB]
Tcopy() Time overhead of the copy operations [s/GB]

Tth Threshold to set the aggressiveness of decisions [s/GB]
Pattern Features

Rpaf Page Address Filter (PAF) hit rate [0:1]
Rsf Stride Filter (SF) hit rate [0:1]

Given parameters (P)
U # of accesses to the chunk / # of elements in the chunk
R 1 (if the chunk is read), 0 (otherwise)
W 1 (if the chunk is written), 0 (otherwise)

Table 4. Functions and parameters

Tcopy(P) = R/B1st +W/B3rd = R · T1st +W · T3rd(3)

In the equation (3), B1st/B3rd or T1st/T3rd represent the
copy bandwidth or the time per GB of the first/third stages
(see also Section 2.2). Note that Tcopy() does not depend
on Rsf , Rpaf , or U as it has nothing to do with how the
chunk is accessed during the task except for R and W .
Second, the following shows the definition of Tboost()

[s/GB] (time per chunk size):

Tboost(Rsf , Rpaf ,P) = Tboost(Rsf , Rpaf , U,R,W )

= U · Tboost(Rsf , Rpaf , 1, R,W ) (4)

=


U · T read

boost(Rsf , Rpaf ) (R = 1,W = 0)

U · Twrite
boost (Rsf , Rpaf ) (R = 0,W = 1)

U · T rw
boost(Rsf , Rpaf ) (R = 1,W = 1)

(5)

Equation (4) assumes Tboost to be proportional to U

for the same access features (Rsf , Rpaf ), i.e., it assumes
that a task takes N times longer when the access sequence
also becomes N times longer with the same pattern, which
is generally the case. We then (Equation 5) split Tboost

into three functions depending on the access type (R,W )
as read/write bandwidths are different in several memory
systems.
In order to describe T ∗

boost(Rsf , Rpaf ), we utilize the fol-
lowing linear approximation (∗ = read, write, rw):

T ∗
boost(Rsf , Rpaf ) = a∗0Rsf + a∗1Rpaf + a∗2 (6)

We choose this simple function as it is easy to determine
the coefficients (a∗i ) by just testing the following access
patterns on each memory (fast/large): (1) random accesses
on a large enough array (Rsf ≃ 0, Rpaf ≃ 0), (2) accesses
with a long enough stride (Rsf ≃ 1, Rpaf ≃ 0), and (3)
sequential streaming accesses (Rsf ≃ 1, Rpaf ≃ 1). By
getting T ∗

boost() for these patterns, we can solve the follow-
ing linear equations:

a∗2 = T ∗
boost(0, 0) (= T ∗

brand)

a∗0 + a∗2 = T ∗
boost(1, 0) (= T ∗

bstrd)

a∗0 + a∗1 + a∗2 = T ∗
boost(1, 1) (= T ∗

bseq)

(7)

By using T ∗
brand, T ∗

bstrd, and T ∗
bseq of the above equations,

the equation (6) is deformed as follows:

T ∗
boost(Rsf , Rpaf ) = T ∗

brand − (T ∗
brand − T ∗

bstrd)Rsf

−(T ∗
bstrd − T ∗

bseq)Rpaf (8)

We decide on whether to stage or not, based on these
functions, combined with a threshold Tth. More specifi-
cally, we apply the staging if the following condition holds:
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Tboost(Rsf , Rpaf ,P)− Tcopy(P) > Tth (9)

When Tth is set lower/higher, the staging is applied
more aggressively/conservatively, respectively. We assume
this parameter is predetermined, but as an option, this
should also be controllable by users depending on their
own confidence.

5.3 Accuracy analysis
In this section, we evaluate the accuracy of our staging

criteria using synthetic workloads. The system configu-
rations will be described in Section 6, and the sampling
thread settings are based on the evaluation in Section 4.3.
We apply our staging technique to the source vectors in
SpMV operations (CRS format) whose matrices are listed
in Table 2 of Section 4.3. In this evaluation, we utilize
multiple vectors and organize a chunk by using consecu-
tive vectors. The number of vectors is set so that the total
data size becomes around 90GB. Also, we scale the number
of rows of the matrices ranging from 1 to 1/32 to change
the chunk utilization (U).
Figure 18 demonstrates the performance impact of false

decisions. The horizontal axis represents workload num-
ber, while the vertical axis indicates relative performance
which is normalized to that of Large Mem Only (the pure
large memory only solution). The workloads appear in the
left side of the figure have smaller U but higher Rsf and
Rpaf — chunks are less utilized and more regularly ac-
cessed with higher locality. In this graph, the threshold
parameter Tth is set to 0. In the figure, Always Staging
means the staging is always applied regardless of the ac-
cess features.
According to the figure, the false decisions (False Pos-

itive/Negative in the figure) occur more often when the
performance impact of decision makings is less signifi-
cant (Always Staging and Large Mem Only are closer),

which is a preferable feature for our approach. This is
because (1) our approach basically compares Tboost and
Tcopy, which is equal to comparing the performance of Al-
ways Staging and Large Mem Only as |Tboost − Tcopy| =
|(T1st + T2nd + T3rd) − Tbase| (see also Section 2.2); and
thus (2) this comparison becomes more error tolerant when
the performance difference of the two approaches becomes
larger.
Figure 19 shows the breakdown of decision types as a

function of Tth/Tcopy (Tth: the threshold parameter used
in decisions). In the figure, “True” means the decision is
correct, and “Positive” represents the staging is conducted
— the equation Tboost() − Tcopy() > Tth is expected to
stand. As shown in the figure, 79% of the decisions are cor-
rect (“True Positive/Negative”) at Tth/Tcopy = 0. We can
trade-off “False Positive” and “False Negative” by chang-
ing the threshold parameter Tth. According to the figure,
scaling Tth/Tcopy from 0 to 1 has no significant impact on
the decision accuracy, allowing users to freely choose the
right tradeoff.

6. Evaluation setup
An experiment is a question which science poses to

Nature — M. Planck

We evaluate our proposal using various bandwidth-
critical HPC kernels. In this section, we clarify the envi-
ronment. First, we explain the system configuration, the
details of the calibration to obtain the coefficients, and the
compared methods in the evaluation (Section 6.1). Then,
we describe our implementation on benchmark applica-
tions (Section 6.2).

6.1 Methodology
6.1.1 Configuration
Table 5 summarizes the environment for our experi-

ments. We utilize a KNL-based system whose nodes pro-
vide a hybrid memory system. In particular, we use Flat
mode for the memory system except for the hardware
cache evaluation and Quadrant mode for the in-node clus-
ter mode setting (one cluster per node). Note that our
method is effective and extensible to any other in-node
cluster settings such as SNC mode (dividing the 64-cores
within a node into multiple clusters) [9]. The operating
system used for the evaluation is Cent OS 7 [37] and we
use Intel C/C++ compiler (ICC) [38] v19.0.1.144 with us-
ing the following options: -O3, -qopenmp, -lmemkind, and
-xMIC-AVX512. The sampling thread settings are based
on the evaluation in Section 4.3, and the threshold pa-
rameter Tth is set to 0. Through this evaluation we set
the number of threads to 256 for all of the applications.

Table 5. Evaluation setting
Name Remarks
CPU XeonPhi 7210, 64cores, 1.3GHz, quadrant mode

Memory MCDRAM: 16GB 450GB/s, DDR4: 96GB 90GB/s
OS CentOS 7

Compiler ICC 19.0.1.144
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In our implementation, the buffer is allocated to the fast
memory using the memkind library, which is designed to
use different kinds of memories in a computing node [39].
6.1.2 Calibration
To conduct the pattern analysis for applications, we have

to correctly set the coefficients described in Section 5.2:
T1st, T3rd, T ∗

brand, T ∗
bstrd, and T ∗

bseq (∗ = read, write, rw).
Here, we summarize how to acquire them. First, to obtain
T ∗
brand, T ∗

bstrd, and T ∗
bseq, we measure the bandwidth of (1)

1G times random accesses on an 8GB array, (2) 2M times
stride accesses on 8GB array (4K+B stride), and (3) a
streaming task on 8GB array. These measurements are
performed for read-only, write-only, and read-and-write
cases on both fast and large memories. Second, to deter-
mine T1st and T3rd, we just measure the copy bandwidth
between the memories.
6.1.3 Performance Comparison
We compare the performance of the following methods:

Large-only: The execution only with the large DDR4
memory.
NumactlP: The execution with a Numactl command (nu-
mactl –preferred) which preferentially stores data on the
fast MCDRAM memory [9], [40]. If the node runs out of
the fast memory, then it allocates data on the large DDR4
memory.
Hardware$: The KNL-based systems support hardware
cache mode, with which the fast memory works as an usual
direct map cache [9].
Proposal: The execution with the proposed pattern-aware
staging.

6.2 Implementation
Our proposal is implemented manually in each appli-

cation, following the example of various published stud-
ies of software-based data management [28], [29], [30]. In
this evaluation, we choose bandwidth critical kernels from
HPC Challenge (HPCC) [41], NAS Parallel Benchmarks
(NPB) [42], and also use stencil codes (Jacobi2D/3D) [43].
The followings are the details:
RandomAccess (HPCC): This application randomly up-
dates a big table. We repeat the main update loop multiple
times, and, in the loop, we filter the update accesses: only
the accesses to a target area (chunk) pass the filter [44].
By doing so, we can restrain the accesses within the buffer
in the fast memory and, at the same time, can conduct
all the update accesses. Note that we apply this to all
methods that we compare. In this evaluation, the total
table size and the chunk size are set to 64GB and 16GB,
respectively.
PTRANS (HPCC): This application transposes a ma-
trix and adds it to another (T+ = AT ). These matrices
are dividable into sub-matrices (chunks), and we apply our
technique to the source matrix A, which is accessed with a
long stride. In this evaluation, the total size of the matri-
ces, and the chunk size are 96GB (=48GBx2) and 16GB,
respectively

Jacobi2D/3D: We utilize 5/7-point 2D/3D Jacobi stencil
codes. In these codes, we keep the results of all time steps
to different arrays (= chunks). We apply our technique
to the source array, which is heavily loaded in the stencil
operations. In this evaluation, the chunk size is set to 8GB
(the array size for one time step), and the total data size
is 80GB.
ConjugateGradient(NPB): In this kernel, we focus on
the iterative SpMV operations, as it is the major perfor-
mance bottleneck. We apply our technique to the source
vector for the SpMV operations whose size is 2GB (= the
chunk size). In this evaluation, the total data size is 90GB,
which includes multiple different vectors.
FFT (HPCC): This workload calculates one dimensional
FFT using two 32GB arrays: input and output array. We
apply our staging technique to the output array by di-
viding it into 4GBx8 chunks. Through the evaluation, a
temporal array is located at the fast memory.

7. Experimental result
A measurement is the recording of Nature’s answer.

— M. Planck

Figure 20 compares the performance among the meth-
ods across all applications. The vertical axis indicates rel-
ative performance that is normalized to the Large-only ap-
proach for each application. Our method achieves a factor
of three performance improvement over Large-only at the
best case, and on average, it improves performance by a
factor of 2.0. As the data management policy of NumactlP
is naive, it does not improve performance for most cases.
Compared to Hardware$, our approach has the following
benefits in terms of performance: (1) ours purposely puts
the useful chunk of data on the fast memory based on the
pattern-analysis thus can avoid unnecessary conflicts on it;
and (2) ours can fully utilize the hardware resources of the
fast memory, but the hardware cache wastes the available
bandwidth/storage due to the hardware overheads such as
tags. Thanks to these characteristics, our pattern-aware
staging outperforms Hardware$ for almost all workloads
in this evaluation.
One exception in Figure 20 is ConjugateGradient (the

hardware cache works better than ours), and we can see
the reason in Figure 21: in the figure, the X-axis repre-
sents the total data footprint size, while the Y-axis in-
dicates the relative performance which is normalized to
Large-only at 16GB. When the data footprint size is small
enough, the hardware cache approach can keep almost all
the useful data on the fast memory, thus it works well.
However, as we scale the data size, more conflicts happen
on the fast memory, which degrades performance signif-
icantly. In contrast to this, ours can explicitly hold the
useful data without conflicts on the fast memory no mat-
ter how much we scale the total footprint. Therefore, if
we would scale the data size more, ours would work better
than the hardware cache for this workload.
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Fig. 20: Performance comparison among methods across applications
Name Rpaf Rsf U R W Estimated Tboost/Tcopy − 1 Measured Tboost/Tcopy − 1 Decision Correctness

RandomAccess 0.0388 0.0620 4 1 1 22.9 (> 0) 20.3 (> 0) Correct
PTRANS 0.00297 0.999 1 1 0 6.60 (> 0) 3.73 (> 0) Correct
Jacobi2D 0.998 0.998 5 1 0 3.51 (> 0) 1.67 (> 0) Correct
Jacobi3D 0.996 0.998 7 1 0 5.37 (> 0) 2.18 (> 0) Correct

ConjugateGradient 0.368 0.0947 7 1 0 31.8 (> 0) 17.8 (> 0) Correct
FFT 0.968 0.998 4.5 0 1 5.54 (> 0) 9.08 (> 0) Correct

Table 6. Statistics of our pattern-aware staging approach
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Fig. 21: Performance vs. data size (ConjugateGradient)

Finally, we summarize the statistics of our approach in
Table 6. The pattern features (Rpaf , Rsf ) are taken from
our sampling technique, while the other parameters (U ,
R, W ) are set by manually counting the number of read-
/write references to the target array in the target loop. As
for the decision makings, if Tboost/Tcopy is greater than 1,
we should use the staging technique; otherwise not. From
this point of view, as long as the signs of the estimat-
ed/measured Tboost/Tcopy − 1 are the same, our approach
is correct, and our approach is correct for all the work-
loads. In most cases, the estimated values are higher (our
decisions are aggressive), which is adjustable by setting Tth

higher like we did in Section 5.3.

8. Discussion
Nihil est sine ratione. — G. W. Leibniz

Automation: Although we quantify the effectiveness of
our proposal, some parts, such as the sampling and the
staging, are hand coded, and a few parameters used in our
criteria are given by the programmer. In future work, we
will automate them in the compilers/runtime tool chain.
Other promising options for this automation are hardware
and/or operating system side approaches based on our
idea. By using the automation, we may find yet another
optimization opportunity, such as combining conventional
prefetches and our staging technique to exploit their syn-
ergistic effects.
Latency critical cases: In this paper, we purposely did
not consider latency critical cases in the formulation/eval-
uation due to the following reason: HPC applications gen-
erally have plenty of parallelisms at various levels (e.g.,
thread, instruction, and data level) thanks to less de-
pendencies among instructions (or data), thus they are
rather throughput/bandwidth critical regardless of the ac-

1 # pragma omp paral le l for simd
2 for( i =0; i<N; i++){
3 A[ I [ I [ I [ I [ i ] ] ] ] ] += 2;
4 }

Fig. 22: Tested synthetic code (Depth = 4)
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cess patterns — otherwise they cannot be parallelized well.
However, to consider latency or bandwidth criticality in
future work, we demonstrate the relationship between the
parallelisms/dependencies and the criticality on our KNL-
based system using a synthetic code shown in Figure 22.
In this evaluation, we scale the number of references to the
index array (I[]) needed to update an element of the data
array (A[]) — we define this number as Depth. The higher
we set Depth, the more the code has instruction/data de-
pendencies like pointer chasing workloads.
Figure 23 illustrates the result. Through the evaluation,

we set both the number of elements (for A[] and I[]) and the
number of iterations (N) as 1G. We put random/sequential
numbers ranging from 0 to 1G-1 on the index array (I[]) for
Random/Sequential workloads. The code can be consid-
ered latency limited when the speed-up brought by the fast
memory is small (i.e., Depth ≥ 4) because the latencies of
the 3D stacking and the DIMM technologies are compara-
ble [9], [45]. The evaluation result suggests that regardless
of the access patterns, the instruction (or data) dependen-
cies determine whether the code is bandwidth or latency
critical. Therefore, applying dependency/parallelism anal-
ysis (e.g., data/control-flow analysis [46], [47], [48]) on a
code region of interest at compilation time and adjusting
Tboost in accordance with the dependency/parallelism will
be a promising way to cover it.

9. Related work
Wissen ist Macht. — Anonym

© 2019 Information Processing Society of Japan 10

Vol.2019-ARC-236 No.23
2019/6/12



IPSJ SIG Technical Report

Data management on hybrid main memories: Vari-
ous data management techniques have been proposed for
hybrid main memories. We classify them into bandwidth-
aware [12], [13], [14], [15], [16], [17], [18] or latency-
aware [14], [49], [50], [51], [52].
Several recent publications tackle bandwidth-aware data

managements for hybrid memory systems. However, our
approach is unique in terms of analyzing access pat-
terns at runtime and for being a pure software-based
approach. Recent studies provided software-based tech-
niques [12], [13], [14], [18], but they did not exploit the large
performance impact of access patterns to optimize coarse
grained data managements. Others proposed hardware-
based approaches for hybrid memories: prefetch buffers
in the logic of 3D-stacked fast memory [15], access par-
titioning technique for multi-program workloads [16], and
a data compression hardware for 3D-stacked fast memory
(used as cache mode) [17]. Although these approaches are
promising, they require hardware modifications.
Latency-aware techniques have been proposed for

DRAM+ NVRAM based hybrid memory systems focusing
on the latency difference in the memories. Although these
techniques are useful for latency-critical applications, they
are less effective for bandwidth-critical applications. Gen-
erally, HPC applications are more bandwidth-critical due
to their higher data/instruction/thread-level parallelism,
and thus processor cores issue more memory requests in
parallel while executing them.
Data management between on/off-chip memories:
Prior studies have proposed various hardware/software
techniques for data management between on-chip mem-
ories (caches or scratchpads) and off-chip main memories.
Some of them focus on hardware/software-based prefetch-
ing techniques that attempt to store data on upper lev-
els of the memory hierarchy before the requests [28], [29],
[30], [31], [32], [33], [53], [54], [55]. Others have pro-
posed software-based explicit data managements for on-
chip scratchpad memories [56], [57], [58], [59]. The major
differences from our study are: (1) they do not perform the
pattern analysis at runtime for coarse grained data man-
agements as their caches/scratchpads are too small for this
approach, and (2) they generally attempt to reduce latency
in exchange for the available memory bandwidth.
Data management on NUMA-based systems: NUMA
(Non-Uniform Memory Architecture) based systems also
have multiple memories, and several data management
techniques have been proposed for them [60], [61], [62].
These techniques partition a node into sets of local cores
and memories, and attempt to allocate a pair of threads
and data on the same part to counteract the fact that lo-
cal memory is faster than the remote memory. However,
such allocation techniques are not useful for hybrid mem-
ory system management in a node (or in a local part of
NUMA + hybrid memory) since in this case the smaller
memory is faster regardless of thread location.
Data management on CPU-GPU hybrid systems:

CPU-GPU hybrid computing, where discrete GPUs are
attached via PCIe, also utilizes multiple memories: CPU
host memory and GPU device memory. The major differ-
ence from our target is that current GPUs cannot directly
access CPU host memory [63]. Thus, it is necessary to
move data from the host to the device memory for any
data requests regardless of the access patten [24], [25], [26].
In contrast, this is not required in our targets, opening ad-
ditional opportunities that can be leveraged with our novel
dynamically applied pattern-aware technique. Further, re-
cent GPUs support unified memory spaces for CPU-GPU
systems to automate the data transfer [63], [64]. Although
the memories are unified in virtual address spaces, GPUs
still physically utilize only their own device memories. If
host memories are physically shared, we can extend our
work to GPUs.

10. Conclusions
Ende gut, alles gut. — Anonym

This paper proposed and made a case for a software-
based data management technique called patten-aware
staging to exploit—at the same time—both the high band-
width and the large capacity components of hybrid main
memory systems. Our technique dynamically examines
the irregularity of memory accesses and, in case of irreg-
ular patterns, fetches chunks of data from large memories
to fast memories, just before they are referenced. More
specifically, we sample parts of the address sequence with
multiple threads, analyze the pattern with two different
Bloom filters, and then make a decision by quantifying the
performance benefit based on outputs of the filters. The
experimental result using HPC kernels on a KNL node
show that our Bloom filter based detector enables a 3x
speed-up in the best case compared to a large memory
only approach.
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