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Predicting Medical-Grade Sleep-Wake Classification from Fitbit 
Data Using Tree-Based Machine Learning 

ZILU LIANG†1,†2  MARIO ALBERTO CHAPA-MARTELL†3 

Abstract: It has become increasingly popular among individuals and researchers to monitor sleep using consumer activity 
wristbands. Nevertheless, many validation studies have identified a significant gap between consumer wristbands and medical 
sleep monitors. This study aims to bridge this gap through developing predictive models that leverage Fitbit data to generate 
medical-grade sleep/wake classification. Considering that the “sleep” class significantly outnumbers the “wake” class, we 
formulated the problem of interest into an imbalanced classification problem. We applied two tree-based machine learning 
techniques, i.e. decision tree and random forest, in combination with four re-sampling methods, which yields in total 10 
classifiers. The performance of the classifiers was compared to the original Fitbit algorithm based on sensitivity, specificity and 
area under the ROC curve (AUC). Our results showed that in the best case, specificity was improved by 75% while sensitivity 
was reduced by 12%, which yielded a statistically significant increase of 11% in AUC. The decision tree technique was more 
robust and less affected by re-sampling method compared to the random forest technique, and random up sampling may be a 
most effective re-sampling strategy to balance the training sets. These findings demonstrate the feasibility of achieving 
medical-grade sleep/wake classification from consumer wristbands by applying proper combination of reesampling and machine 
techniques. 
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1. Introduction

Consumer sleep tracking devices are becoming more and

more popular not only among individual users who are curious 

about their sleep patterns but also among researchers who intend 

to collect longitudinal data ecologically [1-5]. Nevertheless, 

these devices are not able to achieve medical-grade accuracy [1, 

2, 6-9]. Many validation studies have endeavored to establish 

the discrepancy between consumer wristbands and medical 

sleep monitors. There is strong evidence that previous models of 

consumer wristbands such as Fitbit Flex and Fitbit Charge 

overestimated sleep time while underestimated wake time [5, 

10-13]. This problem can be traced back to the intrinsic

limitation of medical actigraphy which consumer wristbands

share the same mechanism with [13-17]. Recent models such as

Fitbit Charge 2 use multiple streams of bio-signals including

locomotion and heart rate to infer sleep stages, but their

accuracy is still not satisfactory [18, 19]. A large body of

research has been devoted to developing brand new sleep

trackers for better accuracy. Nevertheless, it is not likely that

these new devices will gain a larger user base worldwide than

well-established manufacturers such as Fitbit in the near future.

Therefore, re-engineering data from popular consumer

wristbands for better accuracy could potentially make a stronger

impact than making new devices.

The basic idea of our proposal is to train a classification 

model that takes Fitbit data and demographic information as 

input to predict medical-grade output. Since the “sleep” class 

outnumbers the “wake” class by a large proportion, the problem 

of interest was formulated into an imbalanced binomial 

classification problem. Four re-sampling methods are applied to 

the dataset to generate balanced training sets: random up 
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sampling, random down sampling, random over-sampling 

examples (ROSE), and synthetic minority oversampling 

technique (SMOTE). We applied tree-based machine learning 

techniques including decision tree and random forest because 

they can handle both continuous and categorical features. 

Previous studies have demonstrated their merit in solving 

classification problems in sleep research [20, 21]. The 

performance of the classification models is evaluated based on 

sensitivity (indicating the ability of a classifier in detecting sleep 

epochs), specificity (indicating the ability of a classifier in 

detecting wake epochs), and AUC (indicating the overall 

classification performance). 

The contribution of this study is two-fold. First, we proposed 

a promising solution to improve the overall performance of Fitbit 

(and wristband-type sleep trackers in general) in sleep/wake 

classification, and especially in terms of specificity. Second, we 

examined the performance of different combinations of 

classification technique and re-sampling methods. The results 

produce rich implications to future research along the same line. 

The rest of the papers is organized as follows. Section 2 

summarizes related work on sleep scoring in clinical settings and 

the validity of consumer sleep tracking technologies. Section 3 

and 4 present the proposed methodology and the performance 

evaluation. We discuss the strength and weakness of different 

classifiers in Section 5 and close the whole paper in the 

conclusions. 

2. Related Work

In recent years many sleep tracking wristbands appeared in

the consumer market [1, 2], featuring popular brands such as 

Fitbit, Apple, Garmin, etc. These consumer sleep tracking 

technologies resemble clinical actigraphy that infer sleep/wake 

based on a person’s movement [17] and they offer an ecological 

method for individuals to monitor their sleep at home. Fitbit 

devices offer two working modes: the “normal” mode for 
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healthy users and the “sensitive” mode for people with sleep 

disorders. Many studies show that these devices have positive 

impact on people’s sleep hygiene and raise people’s awareness 

of sleep health [3, 22]. In the meanwhile, there are increased 

number of research studies using consumer sleep tracking 

devices to measure sleep outcomes [3, 23]. 

Nevertheless, the measurement accuracy of consumer sleep 

trackers has raised wide concern [2, 9]. Validation studies on 

older models of consumer sleep-tracking wristbands found that 

these devices overestimated sleep while underestimated wake [5, 

10-12]. Epoch-wise comparison between Fitbit and PSG

demonstrated high sensitivity (i.e. the accuracy in classifying

sleep, range: 80% ~ 96%) but low specificity (i.e. the accuracy

in classifying wake, range: 40% ~ 61%) when used in normal

mode [5, 18, 19, 24-26]. When used in sensitive mode, the

specificity may be improved at the sacrifice of reducing

sensitivity [10, 12, 27]. To this end, relying solely on

locomotion and heart rate has been considered insufficient for

accurate classification of sleep and wake. In this study, we adopt

a novel approach that leverages Fitbit data to predict

medical-grade sleep-wake classification.

3. Methodology

3.1 Data collection 

Sleep data is simultaneously collected using Fitbit Charge 2 

device and a medical device. The PSQI (Pittsburgh Sleep Quality 

Index) [28] is used to measure subjective sleep quality as well as 

recording basic demographic information such as sex and age. 

The Fitbit Charge 2 wristbands use imbedded optical sensors 

and accelerometers to measure heart rate and locomotion 

respectively. These data are then used to infer other 

physiological and behavioral data such as steps, exercise, heart 

rate, and sleep. The processed data are presented to users on a 

dashboard on the Fitbit smartphone application. In this study, we 

take advantage of the sleep data (both aggregate sleep data and 

intra-day sleep data) and heart rate data (intra-day heart rate data 

during sleep) from the Fitbit devices. We extracted aggregate 

sleep data through the Fitbit public API using a web application 

that we developed in our previous study [3]. As for the intra-day 

sleep and heart rate data, we extracted the data at 1s resolution 

through the Fitbit partner API upon getting permissions from the 

Fitbit Company. 

Different from Fitbit devices that rely on accelerometer and 

optical sensors, the medical device, i.e. Sleep Scope, is a single 

channel EEG that measures brainwaves. The Sleep Scope device 

has been validated against the golden standard PSG [29][30]. The 

main body of the device is connected to two gel-type electrodes 

by cables. Users need to stick one of the electrodes on their 

forehead and the other behind an ear. The raw EEG data was 

analyzed by the company, firstly using proprietary auto-scoring 

software and then inspected and revised by sleep experts based 

on sleep scoring standards [31]. 

3.2 Feature Construction 

TABLE I. FULL LIST OF FEATURES 

Level Feature Type (Unit) 
Measuring 

Method 

Macro-l

evel 

Sex 
Nominal 

(0=female/1=male) 

Self-report 

Age Ordinal Self-report 

PSQI Ordinal PSQI [28] 

Total sleep time 

(TST) 
Continuous (s) 

Fitbit Charge 2 

Wake after sleep 

onset (WASO) 
Continuous (s) 

Fitbit Charge 2 

Sleep efficiency 

(SE) 
Continuous 

Fitbit Charge 2 

Wake ratio Continuous Fitbit Charge 2 

Light sleep ratio Continuous Fitbit Charge 2 

Deep sleep ratio Continuous Fitbit Charge 2 

REM sleep ratio Continuous Fitbit Charge 2 

Micro-l

evel 

k Ordinal Fitbit Charge 2 

Sleep(k) 
Nominal 

(0=wake/1=sleep) 

Fitbit Charge 2 

HR (k) Ordinal Fitbit Charge 2 

HR(𝑘)–  HR(𝑘 − 1)

HR(𝑘 − 1)
Continuous 

Fitbit Charge 2 

The input data that we use to construct features include Fitbit 

data (both daily aggregate data and intra-day data), demographic 

information (i.e. sex and age), and subjective sleep quality 

measured by the PSQI [28]. We extract two types of features: 

macro-level features and micro-level features. The macro-level 

features include sex, age, PSQI, and daily aggregate sleep data 

(i.e. total sleep time, wake after sleep onset, sleep efficiency, 

wake ratio, light sleep ratio, deep sleep ratio, and REM sleep 

ratio). These macro-level features do not vary across the samples 

from a certain participant. The micro-level features include 

intra-day sleep and heart rate averaged every 30s epoch, the 

change in heart rate compared to previous epoch, and the epoch 

ID. Each epoch corresponds to an instance in the dataset. The 

epoch ID captures the temporal information of an instance. This 

is important as human sleep demonstrates temporal patterns [32]. 

The medical data are synchronized with the Fitbit data, 

aggregated into 30s epoch, and are used as the labels for each 

corresponding instance. All the features are listed in Table I, 

where k, Sleep(k) and HR(k) denote the k-th epoch, the average 

sleep status in epoch k, and the average heart rate in epoch k. In 

this study, k is within the range of 1~1208, Sleep(k) is either 0 

(indicating wake) or 1 (indicating sleep). 
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3.3 Training set preprocessing 

One characteristic of human sleep is that the “sleep” epochs 

significantly outnumbers “wake” epochs. Applying standard 

machine learning techniques directly to the imbalanced training 

sets will likely lead to classification models that are biased 

towards the “sleep” class. To mitigate this problem, we applied 

re-sampling strategies list below [33]. 

 Random up sampling [34] randomly generates artificial

instances to the “wake” class so that the frequency of the

“wake” class is close to that of the “sleep” class.

 Random down sampling [34] randomly subsets the “sleep”
class to match the frequency of the “wake” class.

 Random over-sampling examples (ROSE) [35] generates
new artificial samples to the “wake” class according to a

smoothed bootstrap approach that combines techniques

of up sampling and down sampling.

 Synthetic minority oversampling technique (SMOTE)

[36] synthesizes artificial data in the “wake” class based

on the feature space similarities between existing “wake”

samples.

3.4 Model Training, Tuning and Testing 

Two tree-based machine learning techniques are applied to 

achieve the classification purpose. The decision tree technique 

relies on a recursive partitioning strategy that repeatedly 

partitions the predictor space into multiple simple regions, so that 

the outcomes in each final subset is as homogeneous as possible 

[37]. This process generates a set of splitting rules that can be 

used to classify new data. In this study, information gain (i.e. 

entropy) was used as the split measure. 

TABLE II. DENOTATION OF ALL CLASSIFIERS 

Decision 

Tree 

Classifiers 

Random 

Forest 

Classifiers 

Original imbalanced training sets DT RF 

Randomly up sampled training sets DT-U RF-U 

Randomly down sampled training sets DT-D RF-D 

ROSE sampled training sets DT-R RF-R 

SMOTE sampled training sets DT-S RF-S 

The random forest (RF) technique is an ensemble learning 

method that combines many decision trees to yield a single 

consensus prediction [38]. In this study, each tree of the random 

forest is built using the CART method without pruning, and 500 

trees were used. Random forest is a more robust technique 

compared to single decision trees and it has the advantages of 

fast computation, high accuracy, and robust to noise compared to 

other machine learning techniques. Several studies have 

proposed to use random forest for automatic sleep scoring [39, 

40]. Combining the two techniques with different re-sampling 

strategies listed up in the previous subsection, we obtain in total 

10 classifiers summarized in Table II. 

We use a leave-one-out strategy for validating the 

performance of the classification models. In each iteration, the 

data of participant n, i.e. Dataset n,  is used as the test set, while 

the data of all other N-1 participants (N is the total number of 

participants; in this study, N = 23) are merged into one large 

dataset as the training set. As is illustrated in Fig. 1, this process 

is iterated N times and the average values across the N iterations 

are used as the final results. In each iteration, the classification 

model is trained using 10-fold cross validation with 3 repeated 

times to avoid overfitting [41, 42]. The parameters in the 

classification models are tuned using random search with tune 

length = 8 to overcome any biases of manual tuning. Paired t-test 

is conducted to examine if there is any statistically significant 

differences between the predictions made by the classification 

models and those made by the proprietary Fitbit algorithm. 

Fig. 1. Leave-one-out cross validation. 

4. Evaluation

4.1 Performance measures 

TABLE I. PERFORMANCE MEASURES 

Measure Definition Interpretation 

Sensitivity 
TP

TP + FN

The proportion of true positive 

that are predicted as positive, 

also called recall.  

Specificity 
TN

TN + FP

The proportion of true negative 

that are predicted as negative.  

AUC 
The area under 

the ROC curve 

A general measure of 

predictiveness. 

  The performance of the classification models is evaluated 

using the measures summarized in Table III, where TP, TN, FP, 

FN denote true positive (i.e. the number of sleep epochs that are 

correctly classified as sleep), true negative (i.e. the number of 

wake epochs that are correctly classified as wake), false positive 

(i.e. the number of wake epochs that are incorrectly classified as 

sleep), and false negative (i.e. the number of sleep epochs that 
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are incorrectly classified as wake). Sensitivity indicates the 

accuracy of a classification model in detecting sleep epochs, and 

specificity indicates the accuracy in detecting wake epochs [43]. 

The AUC (Area Under the ROC Curve) provides an aggregate 

measure of a classifier’s performance on average [44, 45]. Other 

metrics such as accuracy and F1 score are not used as they tend 

to be deceiving in the case of extremely imbalanced datasets 

[46]. The machine learning process and statistical analysis were 

conducted in open source software R [47]. 

4.2 Descriptive statistics of datasets 

  We collected data from 23 healthy adults (9 female, age range: 

21 ~ 30 years). The total number of epochs from the sleep 

hypnogram of each participant ranges between 418 ~ 1208 (on 

average 777). The distribution of the number of sleep epochs and 

that of the number of wake epochs are shown in Fig. 2 and Fig. 3. 

The number of sleep epochs demonstrates a binomial distribution 

with a peak between 600 ~ 1000 epochs, while the number of 

wake epochs demonstrates a Poisson distribution with a peak 

between 0 ~ 50 epochs. In each iteration of the leave-one-out test, 

the training set consists of 16671 ~ 17461 samples and the test 

set consists of 418 ~ 1208 samples. The sample size is sufficient 

as suggested by previous studies [48]. 

Fig. 2. Distribution of the positive class (i.e. the sleep class). 

Fig. 3. Distribution of the negative class wake (i.e. the wake class). 

A. Classification Performance

We conducted epoch-wise comparison between the predicted

values and the true values to calculate the performance 

evaluation measures. The average performance of all models is 

summarized in Table IV. Asterisks indicate statistically 

significant differences to the proprietary Fitbit algorithm. The 

results show that in the best case, specificity was improved by 

75% while sensitivity was reduced by 12%, which yielded a 

statistically significant increase of 11% in AUC. 

We also used box-and-whisker plots to demonstrate the 

distribution (i.e. minimum, first quartile, median, third quartile, 

and maximum) of the performance measures for all classification 

models [49]. As shown in Fig. 4 ~ Fig. 6, the white, light grey 

and dark grey boxes indicate the performance of the proprietary 

Fitbit algorithm, the decision tree classifiers, and the random 

forest classifiers respectively. The data points that fall outside the 

maximum and minimum range are outliers.  

TABLE II. AVERAGE PERFORMANCE OF ALL MODELS 

Sensitivity (%) Specificity (%) AUC 

Fitbit 96.4±2.4a 35.0±19.5 65.7±9.7 

DT 97.1±4.0 17.1±11.6 57.5±5.0**b,c 

DT-U 84.8±13.8*** 61.4±16.7*** 73.1±7.2** 

DT-D 85.3±14.8** 58.8±16.8*** 72.0±7.9* 

DT-R 83.6±11.9*** 59.9±19.5*** 71.8±8.9* 

DT-S 88.4±9.7*** 55.6±20.6** 72.0±8.9* 

RF 97.4±3.6 16.4±12.3*** 57.1±5.2*** 

RF-U 83.0±16.7** 58.9±20.7*** 71.0±7.3* 

RF-D 96.0±4.2 16.4±14.5*** 56.8±5.6*** 

RF-R 78.5±21.6*** 55.8±23.8** 67.2±8.6 

RF-S 86.4±14.5** 36.7±23.6 63.4±8.5 

a.
The results are presented in the form of “average ± standard deviation”.

b.
Statistical significance is based on comparison to the proprietary Fitbit algorithm.

c.
*: p < 0.05; **: p < 0.01; ***: p < 0.001.

Fig. 4 shows that the sensitivity of the classification models 

was scattered with many outliers. Paired t-test shown in Table IV 

demonstrated that classifiers DT, RF, RF-D were not 

significantly different from the proprietary Fitbit algorithm. The 

average sensitivity of all other classifiers were lower than that of 

the Fitbit. Among the decision tree classifiers, the ones that were 

trained using re-sampled data yielded significantly lower 

sensitivity compared to DT. In the meanwhile, different 

re-sampling method did not affect the sensitivity of decision tree 

classifiers, as no statistically significant difference was found 

among the average sensitivity of DT-U, DT-D, DT-R, and DT-S. 

Among the random forest classifiers, the ones that were trained 
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using re-sampled data also yielded significantly lower sensitivity 

compared to RF, except RF-D. No statistically significant 

difference was found in terms of average sensitivity among RF-U, 

RF-R, and RF-S. 

With respect to specificity, Fig. 5 demonstrates significant 

improvement of decision tree classifiers with all re-sampling 

methods and random forest classifiers with random up sampling 

and ROSE. The average specificity of classifier RF-S was 

statistically the same as that of the proprietary Fitbit algorithm, 

whereas classifiers DT, RF and RF-D had worse performance 

compared to Fitbit, all with strong statistical significance (p < 

0.001). All decision tree classifiers with re-sampled datasets had 

significantly better specificity compared to Fitbit and DT. 

Moreover, no statistically significant difference was found 

among these classifiers. Among the random forest classifiers, 

RF-U, RFR and RF-S yielded higher average specificity than 

Fitbit and RF. In addition, the average specificity of RF-S was 

significantly lower than that of RF-U (p = 0.002) and RF-R (p = 

0.010). 

Fig. 4. Box-and-whisker plots of sensitivity. 

Fig. 5. Box-and-whisker plots of specificity. 

The overall performance of the classifiers indicated by the 

AUC is shown in Fig. 6. Classifiers DT-U (p = 0.007), DT-D (p = 

0.023), DT-R (p = 0.039), DT-S (p = 0.031), RFU (p = 0.05) all 

had statistically significant improvement compared to the 

baseline Fitbit algorithm. Classifiers RF-R and RF-S had 

equivalent performance as Fitbit, whereas classifiers DT (p = 

0.001), RF (p < 0.001) and RF-D (p < 0.001) had worse 

performance compared to the baseline Fitbit algorithm. All 

decision tree classifiers with re-sampled training data 

demonstrated statistically equivalent performance with each 

other, which was better than the original decision tree classifier 

DT. The AUC of RF-S was significantly lower than that of RF-U 

(p = 0.003), but was statistically equivalent with that of RF-R. 

Fig. 6. Box-and-whisker plots of AUC. 

5. Discussion

The purpose of this study was to develop predictive models

that leverage Fitbit data to generate medical-grade sleep/wake 

classification. The problem of interest differs from standard 

binomial classification problems in that the “sleep” class 

outnumbers the “wake” class by a magnitude of 10 ~ 100. 

Therefore, applying machine learning techniques without 

addressing the imbalanced datasets was inadequate for building 

good classification models. As demonstrated by the evaluation 

results, the original decision tree classifier (DT) and the original 

random forest classifier (RF) were indeed biased towards the 

majority class (i.e. high sensitivity and low specificity).  

Evaluation also showed that proper re-sampling method could 

significantly improve a classifier’s overall performance as 

indicated by the AUC. Nevertheless, different combinations of 

machine learning technique and re-sampling strategy may yield 

distinct performance. Our analysis showed that there was always 

trade-off between sensitivity and specificity. Better specificity 

was always achieved at the sacrifice of sensitivity, though 

reduced sensitivity not necessarily corresponds to enhanced 

specificity. In what follows, we discuss the strengths and 

weaknesses of different re-sampling method and machine 

learning technique as well as the limitations of this study. 

5.1 Comparison of Re-sampling Methods 

Re-sampling has been a popular strategy for addressing 

imbalance data [46]. We have examined the effect of four 

different re-sampling methods on the overall performance of the 

classifiers. Our results showed that in general up sampling 

yielded better performance than down sampling. Random up 

sampling and ROSE produced consistently good performance 

regardless of the machine learning technique applied, and the 

former demonstrated less variance compared to the latter. To this 

end, the effectiveness of up sampling methods also echoes 

findings in previous studies in neurocomputing and finance that 

up sampling methods were superior to down sampling methods 

when there were only a few dozen minority instance, and vice 

versa when there were hundreds of minority samples [50, 51]. 

Although it has been widely recognized that multiplicities in 

random up sampling may become “tied” and thus leading to 

overfitting, this did not occur in this study probably due to the 

relatively small sample size corresponding to each epoch ID. The 

synthesized up sampling method SMOTE enhanced the 
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sensitivity of the random forest classifier towards the minority 

class (i.e. wake) compared to its counterpart trained using 

imbalanced dataset, but not to the extent of outperforming the 

original Fitbit algorithm with statistical significance. One 

possibility is that the synthesize process modified the distribution 

in terms of the feature “epoch ID”, whereas the other synthesized 

method ROSE drew new examples from an estimate of the 

conditional density underlying the data and thus ensured the 

distribution of the data into the class was not changed. 

As for the down sampling method, previous studies found 

that it may lead to information loss and thus worsen the 

sensitivity to the majority class [34]. Nevertheless, this is not the 

case in this study as the sensitivity of the classifier was not 

significantly reduced after re-sampling. On the contrary, we 

hypothesize that the deteriorated performance of the random 

down sampling method on specificity may be caused by the 

small sample size after re-sampling.  

5.2 Comparison of Classification Techniques 

In machine learning, tree-based techniques have several 

advantages in terms of scalability and robustness to outliers. 

Random forest has been considered more robust than simple 

decision tree as it is an ensemble method that combines 

predictions from many individual trees. Nevertheless, our 

analysis showed that simple decision tree classifiers consistently 

outperformed random forest classifiers regardless of the data 

re-sampling method applied.  

The performance of random forest classifiers was overall 

mediocre. On one hand, up sampling did not improve the overall 

performance of random forest classifiers. Despite of the 

enhanced performance in detecting wake (i.e. better specificity), 

the performance in detecting sleep (i.e. sensitivity) was 

significantly reduced, thus worsening the overall predictiveness 

of the model as indicated by AUC. On the other hand, random 

forest with down sampled training data has deteriorated 

performance in terms of specificity and AUC compared to the 

proprietary Fitbit algorithm. This indicates that the random forest 

technique may be more sensitive to sparse data due to down 

sampling.  

This result may contradict the impression that random forest 

achieves better performance than simple decision tree due to the 

ensemble process. However, several studies have found that 

random forest may not be suited for time series classification as 

it is not able to capture the temporal information of the dataset. 

In this study, the temporal characteristics of the sleep hypnogram 

was to a large extent erased as we mapped 30-s epochs to 

individual samples. Nevertheless, the “epoch ID” feature still 

incorporated sequential information, which may be the reason for 

the unsatisfactory performance of the random forest classifiers. 

5.3 Limitations 

This study has the following limitations. First, we did not 

examine the performance of the classification models on the 

aggregate level. Given the small portion of wake epochs, it 

remains unclear to what extent the benefit of enhanced 

specificity can be translate into enhanced measurement accuracy 

of total sleep time and total wake time. Second, we did not 

investigate the correction power of the classification models, i.e. 

to what extent the classification model corrected the 

classification errors of the proprietary Fitbit algorithm. Third, the 

methods that we applied to mitigate imbalance data were not 

exhaustive. We only investigated the performance of a few 

data-level methods. Other re-sampling strategies such as adaptive 

multiple re-sampling [52], boosting based synthetic 

over-sampling [53] and other ensemble methods [54] should be 

examined in future studies. In addition, future research may also 

apply algorithm-level approaches [55] and cost-sensitive learning 

[56].  

6. Conclusion

We have proposed and evaluated a machine learning based

method for predicting medical-grade sleep/wake classification 

from Fitbit data. We investigated the performance of the 

classification models combining different machine learning 

techniques (i.e. decision tree and random forest) and re-sampling 

methods (i.e. random up sampling, random down sampling, 

ROSE, and SMOTE). Our results showed that in the best case, 

specificity was improved by 75% while sensitivity was reduced 

by 12%, which yielded a statistically significant increase of 11% 

in AUC. Evaluation also showed that up sampling methods 

yielded better performance than down sampling method, and 

decision tree consistently outperformed random forest regardless 

of the re-sampling method applied. We conclude that up 

sampling combined with decision tree may be most suited for the 

problem of interest. 
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