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A Large Scale Dataset for Cross Modal
Action Understanding
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Abstract: In recent years, many vision-based multimodal datasets have been proposed for human action understand-
ing. Except RGB, most of them provide only one additional modality like depth. Unlike vision modalities, body-worn
sensors or passive sensing can however avoid the failure of action understanding in cases of occlusion. Among the
state-of-the-art bechmarks, a standard large-scale dataset does not exist, in which different types of modalities are
integrated. To address the disadvantage of vision-based modalities, this paper introduces a new large-scale bench-
mark recorded from 20 distinct subjects with seven different types of modalities: RGB videos, keypoints, acceleration,
gyroscope, orientation, Wi-Fi and pressure signal. The dataset consists of more than 36k video clips for 37 action
classes covering a wide range of daily life activities such as desktop-related and check-in-based ones in four different
distinct scenarios. On the basis of our dataset, we propose a novel multi modality distillation model with attention
mechanism that appropriately utilizes both RGB-based and sensor-based modalities. The proposed model significantly
improves performance of action recognition by up-to 8% compared to models without using sensor-based modalities.
The experimental results confirm the effectiveness of our model on cross-subject, -view, -scene and -session evaluation
criteria. We believe that this new large-scale multimodal dataset will contribute the community of multimodal-based
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action understanding.
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1. Introduction

Human action understanding is an important fundamental tech-
nology for supporting several real world applications such as
surveillance system, health care services and factory efficiency
services. In recent years, vision-based models dominates the
community of action understanding due to the advance of deep
learning technologies [30], [37], [42]. Meanwhile, utilizing of
body-worn inertial sensors e.g., accelerator, gyroscope and ori-
entation to capture human motions is a newly emerged way of
realizing human action recognition [7], [25], [31]. It is well
known that vision-based and sensor-based information in action
recognition is complementary. Sensor information is difficult to
be affected by occlusion, illumination changes in which vision-
based models may encounter problems. Therefore, it is consid-
erable to utilize both vision-based and sensor-based modalities
to improve performance of action understanding in multimodal
[13], [23], [29] and crossmodal [3], [22], [41] manners.

However, in the community of action understanding, a standard
large-scale benchmark does not exist, in which both vision-based
and sensor-based modalities are aggregated and a wide range of
activities are provided. The current multimodal datasets for ac-
tion understanding have following four limitations. First, there
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Fig. 1: The illustration of our dataset. Each column shows actions under a
scenario. The number after the name of scenario denotes the amount of ac-
tion category in the scenario. Each row denotes the action under one of four
camera views.
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is the limited scale of vision-based and sensor-based modalities.
There are some but limited number of large-scale multimodal
action datasets [21], [28] focusing on 3D human action recog-
nition or detection. However, only three to four vision related
modality are provided in the existing datasets. Second, there is
the limited number of supported action understanding task with
enough instances per action. Most existing datasets only support
action recognition but can hardly be utilized for action detection.
Third, actions in the existing datasets are taken in a fixed loca-
tion. Therefore, the distance between the actor and the camera
does not change. In addition, the actions always appear in the
center of the camera. These limit the naturality and perspective
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feature under each camera view. Forth, the limited number of
instances for each modality with distinct subject, scenario, view
and session in a factored data structure, especially for crossmodal
related research across large domain gaps. This paper proposes
a new multimodal dataset to overcome the above limitations, es-
pecially for expanding the multimodal research on human action
understanding across modalities, like from vision to Wifi-signal
stength.

Our dataset, named as multimodal action dataset (MMAct),
consists of 36,764 trimmed clips with seven types of modalities
for 20 subjects, which include RGB videos, acceleration sensor,
gyroscope sensor, orientation sensor, Wi-Fi signal and keypoints.
The illustration of our dataset is shown on Fig. 1. MMAct is
designed under a semi-natural data collection protocol that a ran-
dom walk will be performed between the end of current action
and the start of next action. The action is only performed after
a start sign was given from the outside monitor. This protocol
makes sure that the action will occur randomly in the action area
to provide various perspective action video in different camera
views.

For traditional multimodal models, the more modality a model
uses, the higher cost is taken for the model to be deployed in a
realistic environment. The technique of crossmodal transfer, a
kind of knowledge distillation [16], is a useful way to allow a
model with only one modal input to achieve the performances
using multiple modalities. For example, a student model with
RGB input learns complementary information from other modal-
ities from depth or keypoint, which is served as teacher informa-
tion. At test phase, only RGB information is used in the student
network that is able to achieve better performance of action recog-
nition than the model with RGB information.

Different from the existing methods that focus on modality
transfer cross vision-based modalities, we intend to move a fur-
ther step towards knowledge transfer from sensor-based modali-
ties to vision-based modalities. We propose a novel multimodal-
ity distillation model with attention mechanism to realize an
adaptive knowledge distillation via the learning of teacher and
student models. The main contributions of our work are three-
folds:

e To the best of our knowledge, MMAct is the largest mul-
timodal dataset that includes both vision-based and sensor-
based modalities. It helps research community to move to-
wards crossmodal action analysis.

e Inspired by the knowledge distillation, we propose a novel
multimodality distillation model with attention mechanism.
This model has a student network with input of RGB infor-
mation, which learn useful information from a teacher net-
work with input of multiple sensor-based modalities.

e Our experimental results confirm the effectiveness of our
model in our dataset. A significant improvement can be
achieved in cases in which RGB modality may fail to rec-
ognize the actions.

2. Related Work

In this section, we illustrates some related datasets and works
in action understanding. The most traditional and famous ones
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are listed with brief introductions. For a more complete conclu-
sion, readers could refer to these survey papers [1], [6], [43], [44].

2.1 Related datasets

Some traditional and typical multimodal datasets for action un-
derstandin are dicussed below, with a comparison between them
and MMact in Table.1.

MSR-Action3D dataset [18] is one of the earliest datasets
which has contributed to several 3D action analysis researches.
This dataset is composed of depth sequences of gaming actions
and 3D body keypoints data made up by 20 different body joints.
Multiview 3D event [38] and Northwestern-UCLA [35] datasets
utilized a multi-view method to capture the 3D videos using more
than one Kinect cameras. This method has been widely utilized
in many 3D datasets. NTU RGB+D [28] is the state-of-the-art
large-scale benchmark for human activities analysis, which con-
tains videos of 60 action classes captured from 80 views with 40
subjects. It illustrated a series of standards of large-scale dataset
and was applied by many works. Achieving promising results on
this benchmark shows great importance in this field. Since only
clipped sequences are available in these datasets, they cannot be
applied to action detection and some other researches. G3D [5]
is the earliest action detection dataset, of which most sequences
contain multiple gaming actions in an indoor environment with
a fixed camera. Watch-n-Patch [39] and Compostable Activities
[20] are the first datasets focusing on the hidden correlation of
actions in supervised or unsupervised methods. However, the
number of instance actions in each video is not enough to fulfill
the basic requirement for training a deep network. PKU-MMD
[21] is a large-scale benchmark for human action detection, which
has large number of instances for different modalities, including
RGB, depth, infrared radiation and keypoints. Nevertheless, it
was still limited to the vision modalities.

CMU-MMAC [31] is a multi modality human activity dataset
combining vision modalities with sensor signals, including RGB,
depth, keypoints, and sensor signals obtained by accelerometers
and microphones. This dataset was collected in a kitchen and 25
subjects were recorded cooking and food preparation. MHAD
[25] and UTD-MHAD [7] include sensor signals as well, provid-
ing more action classes and instances to support the evaluation
of new algorithms. However, these datasets are no longer suf-
ficient and satisfied enough for fast developing data-driven algo-
rithms. Thus, we considered to build a large-scale dataset MM Act
with various kinds of modalities and actions, combining with ran-
dom walk and occlusion, providing both untrimmed and action-
clipped data to support different level researches.

2.2 Multimodal action recognition

Action recognition has been developed for a long period, but
action recognition based on multi modalities is a reletively new
topic due to the development of deep learning technology and
hardwares such as depth cameras and wearable devices. There
are some typical ideas of dealing with multi modality data. [34]
proposed a 3D ConvNets for extracting spatiotemporal features to
model appearance and motion information simultaneously. [29]
designed a deep autoencoder architecture to decompose its mul-



IPSJ SIG Technical Report

Vol.2019-UBI-62 No.13
2019/6/7

Table 1: Comparison between different multimodal datasets for action understanding. Ego: Egocentric view, D:Depth, Acc:Acceleration, Mic:Microphone,

Gyo:Gyroscope, Ori:Orientation.

Temporal Random
Datasets Classes | Instances | Subjects | Scene Views Modalities Localization Walk Occlusion | Year
MSR-Action3D [18] 20 567 10 1 1 D+Keypoints No No No 2010
CAD-60 [32] 12 60 4 5 RGB+D+Keypoints No No No 2011
RGBD-HuDaAct [24] 12 60 4 1 - RGB+D+Keypoints No No No 2011
Act4?[8] 14 6844 24 1 4 RGB+D No No No 2012
UTKinect-Action3D [40] 10 200 10 1 4 RGB+D+Keypoints No No No 2012
3D Action Pairs [26] 12 360 10 1 1 RGB+D+Keypoints No No No 2013
Multiview 3D Event [38] 8 3815 8 1 3 RGB+D+Keypoints No No No 2013
Northwestern-UCLA [35] 10 1475 10 1 1 RGB+D+Keypoints No No No 2014
Office Activity [36] 20 1180 10 - 3 RGB+D+Keypoints No No No 2014
NTU-RGB+D [28] 60 56880 40 1 80 RGB+D+Keypoints No No No 2016
G3D [5] 20 1467 10 1 - RGB+D+Keypoints Yes No No 2012
CAD-120 [33] 20 1200 4 1 - RGB+D+Keypoints Yes No No 2013
Compostable Activities [20] 16 2529 14 1 1 RGB+D+Keypoints Yes No No 2014
‘Watch-n-Patch [39] 21 2500 7 13 - RGB+D+Keypoints Yes No No 2015
OAD [19] 10 700 - 1 1 RGB+D+Keypoints Yes No No 2016
PKU-MMD [21] 51 21545 66 1 3 RGB+D+IR+Keypoints Yes No No 2017
CMU-MMAC [31] 5 186 39 1 RGB+D+Keypoints+Acc+Mic No No No 2010
MHAD [25] 11 660 12 1 12 RGB+D+Keypoints+Acc+Mic No No No 2013
UTD-MHAD [7] 27 861 8 1 1 RGB+D+Keypoints+Acc+Gyo No No No 2015
MMAct 37 36764 20 4 | 4+Ego Gﬁﬁﬁfm‘_’gfﬁtﬁgﬁ Yes Yes Yes | 2019

timodal input (RGB and depth) to modality-specific parts and a
structured sparsity learning machine for a proper fusion of de-
composed feature components, achieving state-of-the-art accu-
racy for action classification on 5 challenging datasets. The two-
stream architecture introduced by [30] has been widely developed
in several works. How one could insert cross-stream connec-
tions to fuse the two networks are discussed in [11][9]. A novel
spatiotemporal architecture was presented in[10], which applied
multiplicative interaction of appearance and motion features by
injecting motion streams signal into the residual unit of the ap-
pearance stream. The network was designed in an end-to-end
manner and fully convolutional for both streams. [13] is the most
related work sharing the same task with our work. It proposed
a new multimodal stream network to exploit and leverage multi-
ple data modalities. Meanwhile, a newly designed hallucination
network based on [17] was proposed to mimic the depth stream
when relying only on RGB data at test time. However, the modal-
ities used in this work are still RGB and depth, the same as most
multimodal works, which shows limitation in modality diversity.

2.3 Crossmodal transfer

Most related to our work is the concept of transfer learning
across different modalities. While conventional transfer learning
works only focus on category-level knowledge transfer, cross-
modal transfer works devote to modality shift, which transfers
knowledge learned in one data modality to another.

[17] proposed a modality hallucination architecture to mimic
the depth mid-level features to enhance an RGB object detec-
tion model. [22] [14] both contributes to supervision transfer,
which transfer information from a large labeled source domain
to a sparsely labeled or unlabeled target domain. They also con-
tributes to transferring across different tasks: image object recog-
nition to video action recognition. [41] designed a network to
learn a non-linear feature mapping from the RGB channels to the
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thermal channel, in order to reconstruct the thermal channel when
only RGB images are available in the pedestrian detection task.
Unlike most works focusing on transfer between vision modali-
ties, [45] suggests using vision data to provide crossmodal super-
vision for a radio data based human pose estimation task. And [3]
learns sound representations by transferring discriminative visual
knowledge from visual recognition models to the sound modality
using unlabeled videos. These works provided promising eval-
uation results on some multi modality datasets, but nonetheless
for most of them, only limited modalities were tested. The rea-
son may be the lack of large-scale multimodal datasets, which
can provide more than vision modalities and reach the demand of
enough samples for network training.

3. MMAct Dataset

MMAct is a novel large-scale dataset focusing on action recog-
nition/detection tasks and cross-modality action analysis *!. We
collected 36,000+ temporally localized action instances in 1,968
continuous action sequences, each of which lasts about 3~4 min-
utes for desk work scene containing 9 action instances, 7~8 min-
utes for the other scenes with approximately 26~28 action in-
stances. More details are introduced in the following parts.

3.1 Data Modalities

Seven types of modality are provided with the MMAct dataset:
RGB videos, acceleration sensor, gyroscope sensor, orientation
sensor, Wi-Fi signal, pressure sensor and keypoints of persons.
RGB videos were captured by four commercial surveillance cam-
eras (Hitachi DI-CB520) aligned at the four top corners of the
space capturing the scene with a resolution of 1920 x 1080 at
30 FPS. Subjects are wearing a Google Glass to record egocen-
tric videos to support action recognition research in this direc-

#1 https://mmact19.github.io/2019/
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Fig. 2: Average trimmed action clip length per class. Overall the dataset is
well balance with only a few outlayers like carry heavy, looking around and
talking being longer, due to nature of the class.
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Fig. 3: Distribution of the trimmed action clip length. The average length is
in a range from about 3 sec. to 8 sec.

tion. A smartphone (ASUS ZenPhone AR) installed with some
initial sensors, such as accelerator and gyroscope, was used to
obtain data of acceleration, gyroscope signal, orientation, Wi-Fi
signal and pressure. The smartphone was carried and put inside
the pocket of the subject’s clothes. The acceleration and gyro-
scope signal both have 3-dimensional axis information, and the
orientation modality is represented by 3 types: azimuth, pitch,
roll. These 3 modalities are collected at a 100 Hz, 50Hz and 50
Hz sampling rate respectively, while for the Wi-Fi signal and the
pressure is 1 Hz and 25 Hz respectively. Subjects are also wear-
ing a smartwatch which further extends the provided acceleration
data. Wi-Fi access points were installed at the four corners of
the space in order to transmit as well as receive the Wi-Fi signals
from the smartphone or each other.

3.2 Data Construction

Class: A total of 37 action classes were considered, which
have been categorized into 3 major groups: 16 complex actions:
carrying, talking, exiting, etc. 12 simple actions: kicking, talking
on phone, jumping, etc. and 9 desk actions: sitting, using PC,
pocket out, etc. The grouping of actions tries to follow the pat-
tern introduced by [2]. We summarized the duration of each class
and printed the minimum, average and maximum duration of each
class in Fig. 2, which illustrates that each action class has plenty
of distinct samples in our dataset. Fig. 3 shows the distribution
of number of samples for different clip duration, illustrating that
we have large number of sequences among different duration and
most sequences last 4~6 seconds.

(© 2019 Information Processing Society of Japan
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Subject: We invited 20 subjects balanced between 10 males
and 10 females for our data collection. The ages of the subjects
are between 21 and 49 and their heights are between 147 cm and
180 cm. Each subject has a consistent ID number over the entire
dataset.

Scene: We designed 4 scenes in an indoor environment: free
space, occlusion, station and desk work. In the scene of free
space, there’s nothing set up in the area. This is a standard scene
following most related datasets. In the scene of occlusion, 3 pot-
ted plants were arranged in the space in order to mimic blind
spots for the cameras. The subject could be occluded by the pot-
ted plants at some directions and positions. Occlusion is a weak
point of vision based algorithms, thus we provide this scene aim-
ing to prove that sensor signals are worth exploited to enhance
the vision relied systems. In the station scene, 3 gates were set
in parallel with a space to go through with a suitcase. It was de-
signed to simulate a real world application scene. In the scene of
desk work, a sofa and a deck was arranged in the center of the
space for the purpose of recording desk actions.

View: We have videos from 5 views in total. Four of them were
recorded from 4 top corners of the space, and one was recorded
from the egocentric view by wearing the Google Glass. The cam-
eras were located at the same height recording from a top view.

Session: We defined a session as one untrimmed video consist-
ing of 9 actions for desk work scene and 26 to 28 actions for the
other scenes. Each subject was asked to perform each session for
5 times with random changes in motion, direction and position.
In this way, the collected data could be distinct and well balanced
for each scene, view and subject.

Fig. 8 shows the variety of our views, scenes, also the subjects
in age, gender, and height.

3.3 Data Collection
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Fig. 4: The environmental setup of the action area showing the size and loca-
tion of the cameras and sensors.

Generally, collecting untrimmed data for action recognition is
a difficult task. The recording environment and process must be
appropriate designed and temporal boundaries must be control-
ling. MMAct was deployed under a semi-naturalistic collection
protocol [4] to make sure that the action will occur randomly in
the action area to provide various perspective action videos in dif-
ferent camera views.

Recording environment: As Fig. 4 shows, we built our
recording environment in a 6mx8m indoor space, with 4 cam-
eras and 4 sensor nodes of the Wi-Fi access points equipped at 4
corners of the space. Subjects were asked to perform actions in a
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Fig. 5: Sample of our collected action sequence.

circular area of 5m radius, and were equipped with a smartwatch
on the right hand, a smartphone in the right pocket of clothes and
smart glasses.

Recording process: A series of actions was listed on a work-
sheet, as Fig. 5 shows as an example. Random walk was per-
formed by subjects between the end of current action and the start
of the next action. For the desk work scene, this random walk is
with sitting still. Unlike other datasets recording subjects at cer-
tain positions and directions, subjects were captured at random
positions and directions.

An outside monitor supervising through live videos would give
an action command referring to the worksheet when the subject
was random walking. Then the monitor gave a start and an end
command while labelling the temporal annotation using a tool-
box provided. Data collected between the start and end times
were labeled with the name of the commanded action class. After
hearing the start command, subjects should start within 3 seconds
to perform the commanded action and stop after the end com-
mand announced. For some continuous actions such as talking
and running, subjects were required to keep doing the action until
the monitor gives the end command based on self-judgment. For
some sudden actions such as throwing and kicking, the subject
would randomly walk after the action ends and the monitor would
record the end time label based on self-judgment. Thus, usually
random walk of less than 3 seconds could be clipped into the ac-
tion sequences, which is acceptable and reasonable for an action
analysis dataset. Furthermore, subjects had freedom in how they
performed each action. The monitor provided action classes for
subjects to perform, but did not design the concrete motions in-
volved, so that subjects can perform regarding their habits. We
invited 20 professional actors to perform these actions in order to
make our dataset more naturalistic, realistic and diverse.

4. Proposed Method on Cross Modal

In this section, we introduce a new crossmodal learning
method, which is a multi modality attention distillation method to
model the vision based human actions with the adaptive weighted
side information from inertial sensors using our MMAct dataset.

(© 2019 Information Processing Society of Japan

4.1 Preliminary

As for our method is a distillation based method, we introduce
the Knowledge Distillation [16] as our preliminary in advance.
The pure Knowledge Distillation is a useful way to significantly
improve the accuracy of a small model by transferring the gen-
eralization ability of an ensemble of networks, which leaded to a
significant performance enhancement on the image classification
task. The idea is to allow the student network to capture not only
the information provided by the ground truth labels, but also the
finer structure learned by the teacher network.

Neural networks generally output class probabilities by us-
ing a softmax output layer, which converts the classification
score output z; computed for each class into a probability p; =
softmax(3), where T is a temperature parameter to control the
distribution of the probability. A higher value for 7 means a
softer probability distribution over classes. The categorization
predictions p, of a teacher model or an ensemble of models are
used as “’soft target” to guide the training of a student model. The
student network is then trained by optimizing the following loss
function based on cross entropy:

Lxp = H(yy, ps) + AH(p;, ps) (D

where p; is the probability prediction of the student model and
H refers to the cross entropy. The hyper-parameter A controls
the balance between different losses. Note that the first term cor-
responds to the traditional cross entropy between the output of
a network and ground truth labels, whereas the second term en-
forces the student network to learn from the “’soft target” to inherit
hidden information discovered by the teacher network.

4.2 Proposed

The overview of our proposed model is shown in Fig. 6. In our
framework, teachers are a set of trained specialist models for each
teacher modality. We use acceleration, gyroscope and orientation
signal as our teacher modalities, and RGB stream of video as our
single student modality.
4.2.1 Training of teacher network

Let Dy = {(x;, yd}icy,
modality m € N,,, N, represents the number of teacher modali-

denote the training set for the teacher

ties, x; is ith action sample, and y; is it’s corresponding label, N,
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Fig. 6: Architecture of our proposed multi modality attention distillation learning framework. We first train the teacher model separately on its corresponding
modality, each teacher model is a 1D Convolutional Neural Network (CNN). Then we use the semantic embedding from the output of softmax layer as the side
information of corresponding modality in trained teacher model. As for the softmax layer where the influence of domain difference is the least due to teacher and
student share the same semantic space. Afterwards, each semantic embedding is weighted by the attention layer which generates adaptive weights according to
the feature representation of input modalities. The semantic embedding with their attention weights are incorporated as an ensemble soft targets for distillation.
Finally, we transfer knowledge from multiple teachers into the student network by training it with classification loss and weighted ensemble soft targets distillation

loss.

represents the number of samples. We use a sliding window to
generate a set of segments {(gi}, ¥i)}ien,, jeg, for sample x;, where
gijis jth segment for x;, and all the segments in this set share with
the same label y; as x;, G; represents the number of segments for
action sample x;. Each teacher model is an adaption of CNN with
1D conv trained on a segment g;; of the corresponding modal-
ity. Note that acceleration, gyroscope and orientation signals in
three orthogonal directions (x, y, and z) might be sensitive to sen-
sor placement, e.g., in pants. To cope with the problem, we use
the previously proposed combined signal as feature extraction for

—=—) [12], where R; is
the ith combined signal. The combined signal R; will be the input

sensor data, given by R; = arcsin(

to the follows 1D conv network. We sampling 64-sample window
for 100 Hz acceleration data and 32-sample for 50 Hz gyroscope
and orientation data with 70% overlaps for each action clip. As
for body-worn sensor is sensitive enough to capture the difference
about the same action performed by different subject. Therefore,
we use a standard triplet loss [27] instead of a cross-entropy loss
to train the teacher models which is being minimized is then L; =

ZTn(gly) = Tu(@I DI = ITw(gl) = Tu(@iDIP + al )

where T,(g;;) represents the semantic embedding from teacher
model T,,, a is a margin that is enforced between positive and
negative pairs. Here we want to ensure that a segment g?j(anchor)
of a specific action of subject is closer to the other gj}(positive)
of the same action of herself or the other subject, than it is to any
g;?j(negative) of any other actions. We use offline triplet mining
to ensure the positive segment of a specific action from the other
subject included in each batch.
4.2.2 Multi modality attention distillation

Let D, = {(x;, y,«)};.‘eN’ denotes the training set for the student
modality s. Our student network is a TSN [37] based network

(© 2019 Information Processing Society of Japan

with only RGB branch trained on the sample x; which is ith ac-
tion’s RGB stream. During the training of student network, the
parameter of teacher models are fixed. Let wl’.']‘. be an attention
weight of the jth segment for the ith action clip when mth modal-
ity. We use M(F;;) as a mapping function which is a Multi Layer
Perception (MLP) model M to map the feature F;; of segment g;;
to (wi'j, s w;'j'., m € N,,). F;jis an ensemble feature by concatenat-
ing the last pooling layer’s output from each teacher model. The
ith action clip multiple teacher supervision signal is a weighted
sum of semantic codes from each teacher modality as an ensem-
ble soft targets:

Gi

1
Z:EZ

L

Wi Tl 3)

M=

We use cross entropy loss to train the student network with stu-
dent network classification loss Les = H(y;,s;) and distillation
loss Lp = H(z;, s;), where s; represents the class probability pre-
diction of the student model, H refers to the cross entropy, the
student network loss L is organized as:

Ly= Y [ALcs +(1 = DLp] @

where A is the balance parameter. The attention model M aims
to generate adaptive weights for providing more accurate teacher
information, that it is optimized by minimize the distillation loss
and ensemble teacher classification loss simultaneously as loss
Ly
Ly = ) [BLcr + (1 = B)Lp] )
Xj

where 3 is the balance parameter, Lcr = H(y;,Z;) is our multiple
teacher classification loss.
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Table 2: F-measure for action recognition results of all compared methods by using our MM Act dataset.

Cross Cross  Cross Cross
Method Train Modality Test Modality Subject  View  Scene  Session
Student(Baseline) RGB RGB 64.44 6221 5791 69.20
Mutli-Teachers Acc+Gyo+Ori Acc+Gyo+Ori 62.67 68.13  67.31 70.53
SMDJ[16] Acc+RGB RGB 63.89 70.11  61.56 71.23
MMD Acc+Gyo+Ori+RGB RGB 64.33 68.19  62.23 72.08
MMAD (proposed) Acc+Gyo+Ori+RGB RGB 66.45 7033  64.12 74.58

5. Evaluations

5.1 Evaluation Setting

Due to the distinct splitting of the dataset, several settings have
been evaluated.

Cross-Subject: in this setting, samples from 80% of the sub-
jects have been used for training the model and the remaining
20% for testing. Cross-View: samples from 3 views of all the
subjects have been used for training the model and the 4th view
for testing. Cross-Scene: samples from the scenes except for oc-
clusion of all the subjects have been used for training the model
and the occlusion scene from all the subjects for testing. Cross-
Session: samples from 4 sessions of all the subjects have been
used for training the model and the remaining session for testing.

Out of these settings, the cross-subject typically applied in gen-
eral action classification works do not consider cross-modal set-
tings. For cross-view, self-occlusion (the subject is standing in a
way that the action cannot be seen from the camera) is a typical
challenge to overcome. In cross-scene, normal occlusion as well
as self-occlusion would be typical challenges. The last setting of
cross-session is the easiest one, as no domain transfer takes place,
e.g. same subjection, view, scenes are available during training
and testing.

5.2 Evaluation Method
We evaluated the performance of our method based on the av-

2-precision-recall
precision+recall
we tested the performance of the other four different methods as

erage F-measure ( ). To investigate its effectiveness,
shown in Table.2.

e Student(Baseline):our student network trained with only
RGB modality.
Mutli-Teacher: our teacher networks trained with 3 types of
inertial sensor modality separately with an ensemble testing.
SMD: Single Modality Distillation by using standard knowl-
edge distillation method. Acceleration is used as teacher
modality.
MMD: our proposed Multi Modality Distillation method
without attention mechanism.
MMAD (proposed): our proposed multi modality attention
distillation method.

We used 1D conv ResNet-18[15] as our teacher network, and
TSN with ResNet-18 as our student network.

5.3 Evaluation Results

Evaluation results are presented in Tables 2, 3 and 4. We can
see in Table 2 that the student model with only RGB input can al-
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Table 3: Proposed method compared with the baseline vision modality based
action recognition methods.

Method Precision  Recall = F-measure
SVM+HOG][25] 45.31 47.81 46.52
TSN(RGB)[37] 68.32 70.11 69.20
TSN(Optical-Flow)[37] 71.89 73.27 72.57
TSN(Fusion)[37] 75.68 78.57 77.09
MMAD 73.34 75.67 74.58

Table 4: Top 5 improved action classes by the MMAD model compared to
TSN with RGB input.

= S o 2
- = 15} =} =
g_: o % 5 ~ © 2
o 3 = =
Method S 5 £° g8 £
TSN(RGB)[37] 11.12 28.41 31.57 61.53 48.79
MMAD 64.51 78.67 52.63 81.31 65.30

ready achieve a performance of 57% to 70% across the different
settings. The multi-teachers trained and tested with the sensor
modalities (accelerator, gyroscope and orientation) can signifi-
cantly outperform the student model in general, achieving nearly
10% improvement in the cross-scene setting. It proves that mod-
els with sensor data generalize better over different settings and
are robust against occlusions.

Carry heavy

Carr% ”Tht

Acc (hand)

Acc (leg)

Gyro (leg) | | |

Ori (leg) | | |

Fig. 7: Sample clips with their paired sensors data related to action “carry
heavy luggage” and “carry light luggage”.

Introducing accelerator sensor data to the training process im-
proves the performance of the SMD model in most settings, with
the cross-view seeing the most significant improvement of almost
8%.
even further, still improves the performance, but not as signifi-

Increasing the number of modalities for the MMD model

cantly as with the introduction of the first additional modality. In
the proposed model MMAD with attention, we see a more sig-
nificant improvement in performances while utilizing the same
modalities in training and testing as the MMD model.
Interestingly, the proposed MMAD model trained with RGB
and sensor modalities can outperform the multi-teacher models
with sensor modalities in both training and testing, under all the
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Fig. 8: More sample frames of the MMAct dataset to show the variety of our dataset. Each row shares the same scene setting. Each column shares the same

camera view.

settings except cross-scene. This confirms the significance of in-
troducing additional modalities during the training process. For
the cross-scene setting, still only using sensors data achieves the
best performance. This is not surprising, and confirms the robust-
ness of sensor data against occlusions. The improvements ob-
tained by additional support of multi modalities during training
range from 2% to 8% over various settings.

We further evaluated the proposed method of knowledge distil-
lation compared to other state-of-the-art systems in Table 3 for the
cross-session setting. SVM+HOG](25] is a state-of-the-art hand-
craft approach trained only with RGB modality in our case. The
MMAD model reaches top performance and is only second to a
TSN using RGB and Optical-Flow (Fusion) as input.

In Table 4 we compare the performance of a TSN with RGB
input to the MMAD model split by the most significantly im-
proved action classes. With more than 50% of the improvement
on the class “carry light luggage” is significant. As for in our
dataset, carry” related actions are fine-grained classes, that con-
sist of carrying the luggage owns the same appearance but with
different weight from light to heavy under the same moving route.
Fig. 7 shows the example of “carry” related action clips with their
paired sensors data. Without any further modalities but only with
visual information, it is difficult to distinguish “carry light lug-
gage” with other carry actions, like “carry heavy luggage”. The
visual input of a person moving a luggage does not give enough
mutual information during training. Similar arguments hold for
open, pocket out, talk on phone, etc.

5.4 Conclusion

This paper introduces a new large-scale mutlimodal dataset
MMAct for action understanding. MMAct includes 36,764 ac-
tion video samples collected from 37 action classes performed by
20 distinct subjects. Compared to the current datasets for multi-
modal action understanding, MMAct has the largest multimodal
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dataset that include both vision-based and sensor-based modali-
ties. we also proposed a novel multimodality distillation model
with attention mechanism, which make student network learn
useful information from a teacher network with input of multiple
sensor-based modalities. Experimental results under 4 different
setting show our proposed method significantly improves perfor-
mance of action recognition by up-to 8% compared to models
without using sensor-based modalities.
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