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Abstract: Recently, an unsupervised outlier detection method based on the reconstruction errors of an autoencoder
(AE), which achieves high detection accuracy, was proposed. This method, however, requires a high calculation cost
because of its ensemble scheme. Therefore, in this paper, we propose a novel AE-based unsupervised method that can
achieve high detection performance at a low calculation cost. Our method introduces the concept of robust estima-
tion to appropriately restrict reconstruction capability and ensure robustness. Experimental results on several public
benchmark datasets show that our method outperforms well-known outlier detection methods and at a low calculation
cost.
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1. Introduction

In real datasets, it often happens that some samples have dif-
ferent values or features from that of the majority (inliers). Such
samples are called outliers, and detecting outliers from the given
data is generally called outlier detection. Since outlier detection
plays an important role in detecting anomalies in target systems,
in creating normal models from real datasets, and so on, outlier
detection methods with high accuracy are required. In particu-
lar, unsupervised outlier detection methods are important because
real datasets are not often labeled. Some common unsupervised
methods include distance-based methods [1], [2], density-based
methods [3], and linear methods [4]. These methods basically cal-
culate outlier scores that indicate the outlierness of each sample,
and detect the outliers using their outlier scores.

Distance-based methods and density-based methods derive
outlier scores using the distance and density ratio between sam-
ples, respectively. Although both methods can obtain outlier
scores by considering the nonlinear features in the data, it is dif-
ficult to achieve highly accurate detection in the case of high-
dimensional data. In linear methods, we regress the high-
dimensional data to a low-dimensional linear model, and calcu-
late the outlier scores from the residuals of the samples. These
methods utilize the property that the squared residuals of outliers
tend to be large because the obtained regression model fits well
to the inliers (majority) rather than the outliers. We could detect
outliers with high accuracy from high-dimensional data. How-
ever, the nonlinear data detection accuracy might be low in some
cases because these methods cannot extract the nonlinear charac-
teristics in the data.
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As a generalization of linear methods, an unsupervised out-
lier detection method based on the reconstruction errors of an
autoencoder (AE) [5], which is a special type of multi-layer neu-
ral network has been proposed. We refer to this unsupervised
method as the AE-based method. In the AE-based method, an AE
is trained by constraining its reconstruction capability in order
to prevent identity mapping, and the reconstruction errors of the
samples are taken as their outlier scores. An encoder is a nonlin-
ear mapping (regression) from an original data space to a feature
space, a decoder is a nonlinear mapping from the feature space to
the original data space, and the reconstruction errors correspond
to the residuals in the linear methods. Therefore, the AE-based
method is regarded as a generalization of linear methods. The
AE-based method is capable of achieving high detection accu-
racy even for data having high dimensionality and nonlinear fea-
tures. However, the reconstruction errors of the outliers as well
as the inliers are small if its reconstruction capability is prop-
erly restricted. This leads to a low detection accuracy or namely
overfitting. Due to this drawback, most of the AE’s reconstruc-
tion error-based methods have been explored with regard to semi-
supervised outlier detection requiring normal labels, and almost
no unsupervised method has been proposed [6].

Recently, RandNet [6], an AE-based method that overcomes
the aforementioned drawback and achieves high detection accu-
racy was proposed. In that study, an ensemble scheme was in-
troduced and various randomly connected AEs (100 AEs were
used in the experiment) with different structures and connection
densities were prepared. In RandNet, each AE is trained inde-
pendently, and then the median of the reconstruction errors of
all the trained AEs are taken as outlier scores of the samples.
This ensemble scheme constrains the reconstruction capability
and improves robustness; therefore, RandNet achieves a high de-
tection accuracy. However, its calculation cost is huge because
it is necessary to train a large number of AEs and pre-train each
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AE layer-wise. In particular, when parallel computational envi-
ronment is not available, the high computational cost needed to
independently train a large number of AEs becomes a significant
problem.

Robust Deep Autoencoders (RDAs) [7] have also been pro-
posed in recent years as an AE-based method with a similar pur-
pose. Since RDA learns not to reconstruct samples considered as
outliers it is more robust than a normal AE. RDA decomposes
a data matrix X nonlinearly into a matrix LD which is easy to
reconstruct and a sparse error matrix S which is difficult to re-
construct by an AE, subject to X = LD + S . Then, S can be
identified with outliers by outlier detection. In order to perform
this decomposition, RDA optimizes parameters of AE and S in a
alternating manner. However, there is a drawback that the opti-
mization phase of S does not always optimize the whole objec-
tive function. Therefore, it could take long time to converge or in
other words impose a high computational cost. Additionally, the
experimental results in Ref. [7] show that RDA highly depends
on its parameter choice. This is another drawback. Owing to
these drawbacks, RDA is hard to use as an unsupervised anomaly
detection method for real datasets.

Therefore, in this paper, we propose a novel AE-based method
that can achieve high detection performance at a low calculation
cost. Our method introduces the concept of robust estimation [8]
to restrict the reconstruction capability and ensure robustness. An
outline of the AEs and robust estimation is provided in Section 2.
Section 3 discusses our proposed method, and Section 4 discusses
the experimental results using real datasets.

2. Autoencoders and Robust Estimation

An AE is a special type of multi-layer neural network in which
the number of nodes in the output layer is the same as that in the
input layer. Generally, the model parameters are trained to mini-
mize the reconstruction error (loss function) L, which is defined
by the following equation.

L =
1
N

N∑

i=1

‖xi − x̄i‖22. (1)

In this Eq. (1), {xi}(i = 1, . . . ,N), {x̄i}(i = 1, . . . ,N), and N re-
spectively denote the training data, the outputs from the AE cor-
responding to each training data, and the number of samples.

Robust estimation is a technique for regressing inliers to the
model, avoiding the strong adverse effect of outliers present in
the data. Robust estimation has been studied for a long time, and
it is capable of overcoming the low robustness against outliers of
the least squares method, which is the most commonly used in
regression. Some of the most common estimators include M es-
timator [9], least median of squares estimator (LMS) [10], least
trimmed squares estimator (LTS) [10], and so on. In this paper,
we focus on the LTS estimator. The LTS estimator is defined as

β̂LTS = arg min
β

m∑

i=1

r2
i (β), (2)

which minimizes the sum up to the m-th order statistic. β and
r2

1(β) ≤ r2
2(β) ≤ . . . r2

N(β) denote a regression parameter vector
and the ordered squared residuals with β, respectively. That is,

the LTS estimator avoids the adverse effects of outliers by not us-
ing samples with higher squared residuals in the regression for
parameter estimation.

3. Proposed Method

Our proposed method uses a loss function that incorporates
concepts of the LTS estimator in order to restrict the reconstruc-
tion capability and ensure robustness of AEs. Specifically, our
method utilizes a mini-batch learning approach to minimize the
loss function Lprop defined by the following equation.

Lprop =
1
B

B∑

i=1

wi · ei, (3)

where B denotes the mini-batch size, ei = ‖xi − x̄i‖22 holds, and wi

satisfies the following equation.

wi =

⎧⎪⎪⎨⎪⎪⎩
1 (ei ≤ c)
0 (ei > c).

(4)

Here, c denotes the αp-th percentile value of e = {e1, . . . , eB}, αp

is a parameter, and wi is updated in every mini-batch learning.
Namely, in our proposed method, samples with higher recon-

struction error are not used for updating the parameters during
batch learning since their losses are forced to 0. The final out-
lier scores of the samples in our method are ei obtained from the
trained model. The additional calculation cost of our proposed
method compared to normal AE, due to this update process, is
only a derivation of the αp percentile value.

The use of the proposed loss function results in the following
effects. First, the reconstruction errors of the inliers with wi = 0
tend to be small since the inliers with wi = 1 are trained to be
reconstructed. This is because the inliers exist close to each other
and make up a majority regardless of the values of wi = 0 and
wi = 1. Second, even if several outliers with wi = 1 are obtained
in a training step, such outliers are less likely to be reconstructed
than the inliers. This is because, in general, there are few similar
samples around the outliers. The wi of outliers is set to 0 in the
successive steps. As a result, the outliers are not reconstructed as
the training progresses, and finally only the reconstruction errors
(i.e. outlier scores) of the outliers will be large.

4. Evaluations

4.1 Experimental Settings
In this paper, we utilize 15 types of datasets published in Out-

lier Detection DataSets (ODDS) [11], which is usually used as
the benchmark for outlier detection methods. The summary of
the datasets is shown in Table 1. We normalize the values of all
the datasets into the range from -1 to +1 for each dimension. We
use the following common network structure and parameters of
our proposed method over all the datasets in order to consider un-
supervised learning. We apply a fully connected network for the
network structure, in which the number of hidden layers is three
and the numbers of the neurons are [D,

2√
D,

4√
D,

2√
D,D] from the

input to the output, respectively. The decimal points of the neu-
rons are rounded up. We apply activation functions {relu, none,
relu, none} from the input to the output, and utilize a Glorot nor-
mal distribution [13] as an initial parameter for the network. The
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Table 1 Summary of the datasets.

Dataset Dims. Samples Outlier ratio [%]
Arrhythmia 274 452 14.60
Cardio 21 1,831 9.61
Cover 10 286,048 0.96
KDDCUP-Rev [12] 118 121,597 20.00
Mnist 100 7,603 9.21
Musk 166 3,062 3.17
Optdigits 64 5,216 2.88
Satelite 36 6,435 31.64
Satimage-2 36 5,803 1.22
Seismic 28 2,584 6.58
Shuttle 9 49,097 7.15
Smtp 3 95,156 0.03
Speech 400 3,686 1.65
Thyroid 6 3,772 2.47
Vowels 12 1,456 3.43

batch size is N/50. We apply adam [14] (α = 0.001) as an opti-
mization function to train the network, and complete the training
when the total number of epochs reaches 400.

We utilize Chainer [15] (ver. 1.21.0) for the network implemen-
tation. The value of αp is 70 for the proposed method. We uti-
lize the AUC (area under the ROC curve) computed using outlier
scores as the evaluation indices. Because AUC depends on the
initial parameters of the networks, we generate 20 types of initial
parameters in each dataset and derive the averaged AUC as the
evaluation index.

In this paper, we also apply the following five methods for
comparison.
Normal autoencoder (N-AE)

This is a normal AE which utilizes (1) as a loss function. We
derive the outlier scores from the reconstruction error ei, which is
obtained from the model after training. We apply network param-
eters that are equivalent to our proposed method. Incidentally, the
parameters of our method in the above are empirically derived so
that N-AE achieves a high AUC on average.
RandNet

The number of ensembles is 100, and the other parameters are
set to the ones equivalent to the parameters stated in Ref. [6], for
example, the structure parameter is 0.5. We evaluate the perfor-
mance with the averaged AUC over 20 trials.
One-class support vector machine (OC-SVM) [16]

We utilize the OC-SVM implemented in scikit-learn, which is
a machine learning library for Python, and use the default values
for the parameters.
Local outlier factor (LOF) [3]

We utilize the LOF implemented in scikit-learn, set k to 20 for
the k-nearest neighbors and use the default values for the rest of
the parameters.
Isolation Forest (IForest) [17]

We utilize the IForest implemented for outlier detection li-
braries in Python pyod [18], and apply the parameters recom-
mended in Ref. [17] for this evaluation. The performance is eval-
uated with AUC averaged over 20 trials.

4.2 Experimental Results
We show the experimental results in Table 2. Here, “Prop.”

denotes the proposed method, and “Avg. rank” denotes the rank-
ing averaged over all the datasets. In each dataset, each method is

Table 2 AUC from our proposed method and the well-known methods.

Dataset Prop. N-AE OC-SVM LOF IForest
Arrhythmia 77.60 75.78 78.74 75.86 81.17
Cardio 94.94 84.64 92.98 63.72 93.26
Cover 83.74 86.03 91.81 52.62 87.73
KDD-Rev 95.87 13.56 81.39 35.34 77.52
Mnist 84.33 82.38 81.99 71.53 81.01
Musk 100.00 60.91 93.11 42.71 99.89
Optdigits 79.58 73.70 53.39 58.69 75.21
Satelite 76.81 63.50 59.94 54.36 69.34
Satimage-2 99.92 78.25 98.01 55.14 99.21
Seismic 67.21 69.99 59.30 59.05 67.11
Shuttle 98.74 75.42 98.26 52.39 99.72
Smtp 88.06 79.58 76.91 90.23 90.54
Speech 46.96 46.84 46.39 50.68 47.14
Thyroid 92.59 88.37 85.01 80.74 98.08
Vowels 90.46 86.03 57.32 94.42 75.58
Avg. AUC 85.15 71.00 76.97 62.50 82.83
Avg. rank 1.87 3.47 3.47 4.07 2.13

given a rank from one to five. In this paper, we refrain from dis-
cussing the results of RandNet due to the computational complex-
ity. We utilize the computational environment *1 for this evalua-
tion. Under this computational environment, the entire evaluation
process of RandNet is estimated to takes 40 days *2. This process
takes much longer than the proposed method and N-AE, which
take 415 minutes and 324 minutes, respectively. We can readily
say that our proposed method outperforms RandNet in terms of
the computational complexity.

From Table 2, we can see that our proposed method outper-
forms N-AE in terms of AUC over almost all the datasets. Here,
we discuss the reason. First, we focus on one of the datasets,
namely “musk”, in which our proposed method outperforms N-
AE considerably, and show a comparison of their training transi-
tions (epoch = [1, 20, 400]) in Fig. 1. The vertical axis and hor-
izontal axis in each figure denote a dimensional value in a bot-
tleneck layer and an unweighted reconstruction error ei, respec-
tively. The blue cross and the red circle denote an inlier sample
and an outliner sample, respectively. The figures on the left-hand
side show the transitions of N-AE, and the ones on the right-hand
side show the transitions of our proposed method.

Next, we focus on the transitions of the reconstruction errors
over all the samples on N-AE, where overfitting occurs in the
middle of the training process. Although the performance is ex-
pected to improve by making the network more robust, it is dif-
ficult to identify the structure in the case of unsupervised outlier
detection. On the other hand, we can see that the reconstruction
errors, which are expressed by ei of the outlier samples, steadily
increase over all the samples as the training step progresses in the
proposed method. We can say that our proposed method avoids
overfitting by not utilizing highly ranked samples on the recon-
struction errors and estimates the outliers with high accuracy even
though we utilize the same network as that for N-AE. We can also
say that our proposed method avoids overfitting and improves the
detection performance for almost all other datasets.

Finally, we focus on the results of “cover” and “seismic”
datasets where our method is less accurate than N-AE. These

*1 OS: ubuntu14.04 64 bit, Memory: 31.3 GB, CPU: 3.50 GHz*12, GPU:
GeForce GTX TITAN X, no parallelization.

*2 = 2 minutes (trianing time for each AE training process) * 100 (the num-
ber of ensenbles) * 20 (the number of trials) * 15 (the number of datasets)
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Fig. 1 Training transitions of N-AE and our method.

results are thought to be due to a drawback of our method de-
scribed below. Since our method considers those samples dif-
ferent from the majority as outliers, if some inliers form a small
cluster and differ from the majority, our method seemingly iden-
tifies them as minority and learns them as outliers which causes
false positives. These two datasets seemingly have such a data
characteristic. However, the accuracy deterioration is not signif-
icant compared to the other methods, and we can say that our
proposed method is generally superior in practical uses.

Besides the above, we can also show that our method out-
performs the well-known conventional non AE-based methods.
This is because we can retain the extraction performance of high-
dimensional features, which AE inherently possesses, by apply-
ing the concepts of robust estimation. As already mentioned,
there is a small difference in the computational duration between
N-AE and the proposed method. The proposed method could de-
tect outliers at a lower calculation cost than RandNet, which is
also an AE-based method.

5. Summary

In this paper, we propose a novel unsupervised outlier detec-
tion method in which we combine an AE-based unsupervised out-
lier detection method with the concepts of robust estimation. We
show that our method requires lower computational cost com-
pared to a conventional AE-based method and achieves a more
accurate detection performance than some of the well-known non
AE-based outlier detection methods. In the future we will intro-
duce estimation values other than the LTS estimator, and conduct
a theoretical analysis of the LTS estimator and a comparison with
other AE-based methods.
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