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Abstract: We propose a joint map-matching for estimating unobservable paths from GPS traces. Our method is the
first to maximize the posterior probability of stochastic generative model, in which traces are emitted as vehicles drive
the roads. We employed the EM algorithm to find the parameters of the generative model, as well as to evaluate the
expectations of the latent variable, which is indeed the estimated unobservable path. The EM algorithm is reduced to
the exploratory search of the route graph, which is the geometric graph that is most likely emitting the traces and cor-
responds to the parameters of the model. Due to this stochastic formulation, our method works well with the presence
of sampling noises in the traces. We report that the residual degradation of the estimated paths was no more than 7.0%
even when they are sampled at a rate as low as 40%.
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1. Introduction

The ability to obtain spatio-temporal information is now com-
monplace as vehicles and smartphones are equipped with GPS
devices. On the other hand, governments, dedicated private com-
panies, and social communities have been providing and main-
taining digital road maps (DRM). Among the various informa-
tion services enabled by these technologies, the analyses of the
flows of cars and people have enjoyed the most commercial suc-
cess. For instance, analyzing traffic demands provides feedback
for urban traffic design and the identification of typical routes im-
proves the efficiency of distribution services [4], [10], [13], [20],
[21], [25], [30].

GPS observations are collected from individual cars indepen-
dently and asynchronously. Further more, they also contain ob-
servation noises, especially in urban areas with tall and large
buildings. Before analyzing such irregular and unreliable GPS
observations, a map-matching technique is commonly used to
attach the observed trajectories on to a DRM. The authors of
Ref. [5] surveyed the range of map-matching techniques, and
those in Ref. [28] discussed recent developments and remaining
problems.

Earlier proposals for on-line map-matching algorithms attach
each observation to one of the neighboring road segments while
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considering the local connectivity of the segments [9], [14], [32].
Then, off-line map-matching algorithms were proposed, which
consider the topological distances between trajectories and paths
on a DRM [1], [2], [7], [12], [15], [23], [24], [29], [33]. Prob-
abilistic map-matching algorithms have also been proposed for
estimating the road links from which observations are made [3],
[26], [27]. Due to the limited network bandwidth or the con-
straint on power consumption, map-matching low-sample trajec-
tories has attracted recent interest. One advanced algorithm uti-
lizes observations from other trajectories to map a trajectory onto
a DRM [16], [17]. Another maps trajectories to the segments em-
bedded in a DRM all at once by formalizing map-matching as an
optimization problem [22].

Most of these preceding approaches, however, mainly focused
on assigning trajectories to the routes that seem natural on a
DRM. By contrast, less attention has been paid to estimating un-
observable paths, which are unaccessible in practical situations.
In addition, we must pay more attention to identifying major
streams in the trajectories to provide useful insight for realizing
applications such as demand analysis and urban design, as men-
tioned above. In this paper, we propose a joint map-matching
method, which is formulated to maximize the posterior probabil-
ity of a stochastic generative model. This model represents a pro-
cess in which GPS devices on vehicles generate observations as
they drive along the paths, which are actually unobservable. Us-
ing this stochastic model whose latent random variable represents
an occurrence of a drive on a path, our method is able to directly
estimate the unobservable paths from the observed trajectories.
Our contributions are as follows: first, we present the process
that generates GPS observations and formulate it as a stochas-
tic generative model whose latent random variable represents the
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occurrence of a drive on a path, and whose observed random vari-
able represents the distance between the path and the trajectory.
Second, we formulate an EM algorithm that maximizes the pos-
terior probability of the generative model. Then, we show that the
log-likelihood of the posterior probability should be reduced to an
object function consisting of the residual of the trajectories from
their maximizing paths and the description length of the DRM.
Finally, we present our algorithm, which iteratively explores the
subgraphs likely to emit the observations. The experimental re-
sults show that the residual degradation was within 7.0% even if
we map-match trajectories sparsified at a rate of 40%.

The remainder of this paper is organized as follows. After pro-
viding a brief review of related works in Section 2, we propose the
new map-matching problem and describe its key features along
with a few preliminaries in Section 3. Next, we present our ex-
perimental results in Section 4. Finally, we conclude the paper
and suggest future work in Section 5.

2. Related Works

On-line or local map-matching methods attach a newly ob-
served GPS point to one of the neighboring links in the DRM.
These methods use the coordinates, directions, and speeds lo-
calized to the current point to take into account the connectivi-
ties of these links [9], [14], [32]. By contrast, off-line or global
map-matching methods consider the distance between a trajec-
tory and a path in a DRM in the topological sense, from its origin
to destination [7]. Alt et al. proposed a map-matching algorithm
that utilizes Frechét distance [1], [2]. Algorithms with the relaxed
Frechét distance have also been proposed [7], [12]. All these ap-
proaches simply map individual trajectories to the nearest paths
in accordance with their own policy or distance function.

Due to the constraints on power consumption and transmission
cost, trajectories are very sparse, and the above approaches do not
always work well with low-sampled trajectories. To tackle these
problems, probabilistic methods estimate the link from which
the observation is made [24], [26], [33]. A multi-track map-
matching method exploits the ensemble nature buried in the tra-
jectories. It iteratively estimates the order of observations from
different trajectories and the most likely segments from which
they come [17]. A joint map-matching enumerates fixed-sized
segments from a DRM and, using them as variables of the opti-
mization problem, it discovers the paths to which the trajectories
are assigned such that they seem to be as natural as routes [22].
This method, however, requires hyper parameters to balance the
features such as the distance to the segments, stitching of seg-
ments, and regularity of the solution. Our method falls to this
category that tackles the problem with low-sampled trajectories,
which is not accessed well by single-track, especially on-line,
map-matching methods. Therefore, we would concentrate on
multi-track and off-line map-matching methods hereinafter.

Map-generation algorithms have been proposed for overall
traffic analysis. Although governments, information companies,
and social communities have manually developed DRMs, some-
times roads open or close either permanently or temporarily. To
be adaptable, map-generation techniques maintain DRMs with
less cost by automatically building them from a huge collection of

observed GPS points. Some methods reconstruct DRMs through
a series of dedicated procedures [11], [18], [19], and others do so
based on Morse theory [31]. Their interests are mainly in building
accurate DRMs, not in understanding the traffic flow. A method
that consolidates trajectories to form a map does consider traffic
flows to some extent [8], but it may not work on cases where the
trajectories are sparsely sampled.

Many applications have been proposed for the analysis and
prediction of traces. Some learn the repeated patterns of a
car owner’s history, e.g., commuting routes, the dropping off
and picking up of family members, and visiting relatives or
friends [13]. Turn prediction is another typical application for
predicting which directions a car will take at an intersection,
based on the route taken up to this point by learning others’
traces [21]. These applications, however, are developed to pre-
dict particular purposes.

3. Proposed Method

3.1 Preliminaries
Let i, j be non-negative integers and k, n, p, q, N, K be nat-

ural numbers. We call G = (V, E) a geometric graph, or simply
a graph, where V = {(lon, lat) | lon, lat ∈ R} and E = {(u, v) |
u, v ∈ V and u � v}. Denoting a list as [ ] whose elements are
ordered by i or j, an element α in P is a trajectory of length p,
where α = [α(i) ∈ R2 | i ≤ p ], and an element β in PG is a path in
G of length q, where β = [ β( j) ∈ V | j ≤ q where (β( j−1), β( j)) ∈
E if j ≥ 1 ]. Both trajectory and path in G is also a polyline.
Note that they may contain an element multiple times and that
we have PG ⊂ P. A path can be regarded as a sub-graph of G

and we denoted it as G(β) = (Vβ, Eβ) where Vβ = {β( j) | j ≤ q}
and Eβ = {(β( j−1), β( j)) | 1 ≤ j ≤ q}. To introduce binary set
operators on graphs, we define an edge-induced graph of given
E as G(E) = (V, E) where V =

⋃
(u,v)∈E{u, v}. With this defi-

nition, given two graphs Gi = (Vi, Ei) for i ∈ {1, 2}, we have
G(E1) ◦G(E2) = G(E1 ◦ E2) where ◦ is a binary set operator.
Definition 1. (Distance function): Let d : P × P → R be a dis-

tance function between polylines, where the following inequality

and equalities hold for all α, β ∈ P:

d(α, β) ≥ 0, d(α, α) = 0, d(α, β) = d(β, α).

Definition 2. (Single-track map-matching) Let G = (V, E) be a

geometric graph and d(α, β) be a distance function between poly-

lines. Given a trajectory α ∈ P, a single-track map-matching al-

gorithm, or simply a map-matching algorithm,MG : P→ PG ×R
finds its minimizing path and its minimum distance β̂G(α) =
argminβ∈PG

d(α, β) and d̂G(α) = minβ∈PG d(α, β), respectively.

3.2 Stochastic Generative Model
Let b(s) ∈ R2, 0 ≤ s ≤ q be a route, which is also described as

a path β ∈ PG, such that:

b(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v( j) if s = j,

(	s
 − s)v(�s�) + (s − �s�)v(	s
) otherwise.
(1)

Note that, without loss of generality, we attached the origin and
destination of the route to the first and last vertices of the path,
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respectively.
The observations in a trajectory α ∈ P are emitted on the route

b(s) at s ∈ {s(i) | i = 0, · · · , p} such that s(i) < s( j) for all
0 ≤ i < j ≤ p. Additionally, assuming the first and last ob-
servations are made from the origin and destination of the route,
respectively, we have s(0) = 0 and s(p) = q. Each observation has
its observation noise εi ∈ R2 and thus we have:

β(i) = b(s(i)) + εi. (2)

Also note that a trajectory has sampling noises that are induced
by interpolating the finite number of observations comprising the
trajectory.

In summary, although the routes are unobservable, the trajec-
tories are observed and are emitted from one of the routes. We
introduce the stochastic generative model with the observed and
latent random variable X,Z ∈ RK , as follows:
Latent variable Z is a 1-of-K random variable whose realiza-

tion is z = (zk)K
k=1, where zk ∈ {0, 1}. There is a k∗ such

that zk = 1 if k = k∗ and zk = 0 otherwise, which repre-
sents the occurrence of k∗-th route out of K possible routes.
The occurrence follows the prior probability distribution of
P(z) =

∏K
k=1 πk

zk such that
∑K

k=1 πk = 1.
Observed variable X is a random variable whose realization is

x = (xk)K
k=1, which represents the distance between trajectory

and path. This distance follows the probability distribution
of P(x|z) =

∏K
k=1 f (xk |σ)zk where f (xk |σ) = σ exp(−σxk) is

the probability density function of exponential distribution.
The parameter σ is determined in accordance with the vol-
ume of the sampling noise.

3.3 Maximizing Posterior Probability
A generic EM algorithm maximizes the posterior probability

of the stochastic model parameterized by θ. With an initial θold,
it iterates the following E-step and M-step by replacing θold with
θnew until either Q′ or θ converges:
E-step updates the conditional probability P(Z|X, θold), and
M-step finds the parameter θnew that maximizes the log-

likelihood of posterior probability:

Q′(θ, θold) =
∑

Z

P(Z|X, θold) ln P(X,Z|θ) + ln P(θ). (3)

Given a collection of traces T = {αn | n = 1, · · · ,N} and if let
xn = (xnk)K

k=1 and zn = (znk)K
k=1 be the independent realizations

of the random variables X and Z, respectively, we have the con-
crete E-step and M-step for the joint map-matching by applying
the above probability distributions to the generic EM algorithm
in a similar manner as that for a Gaussian mixture model [6]:
E-step evaluates the responsibility γ(znk) with the parameter
πold, and

M-step finds πnew that maximizes the log-likelihood of poste-
rior probability Q′(π, πold) .

The responsibility and the log-likelihood are respectively de-
fined as follows:

γ(znk) =
πk f (xnk |σ)

∑K
k′=1 πk′ f (xnk |σ)

, (4)

Q′(π, πold) = −
N∑

n=1

K∑

k=1

σγ(znk)xnk +

K∑

k=1

zk ln πk. (5)

Although there are too many paths on the graph, it is practically
sufficient to consider the paths that have shorter distances from
each trajectory. This is feasible if we employ an algorithm [29]
that can enumerate all the paths whose distances from the trajec-
tory are within a certain threshold, such as σ. In extreme, consid-
ering just the minimizing path βk∗ = β̂G(α), we have γ(znk) = 1 if
k = k∗ and γ(znk) = 0 otherwise. Assuming that the prior distri-
bution is uniform, namely πk = 1/K for all k, the second term of
Eq. (5) is straightforward and equal to −K. If we accept that K is
proportional to the description length of the geometric graph G,
the joint map-matching is equivalent to the minimization problem
below.
Definition 3. (Route graph discovery) Let a hypothesis space of

a graph be G, a single-track map-matching beMG, and a collec-

tion of trajectories be T . A graph G ∈ G most likely emits the

trajectories T if it minimizes the following loss function:

L(G; T ) =
∑

α∈T
d̂G(α) + λ‖G‖, (6)

where ‖G‖ is the description length of the graph G, such as the

total length of its edges, and λ > 0 is a hyper parameter.

The first term is for the residual and the second term is for the
regularization. This problem is equivalent to single-track map-
matchings if λ is zero. Otherwise, some edges are left unused
so that ‖G‖ decreases even though the distance d̂G(α) becomes
longer for some trajectories.

3.4 Graph Exploration Algorithm
To minimize L(G; T ), we employ an exploratory search in the

graph space, and obtain a decreasing series of graphs G(t−1) ⊃ G(t)

for t = 1, 2, . · · · such that their losses also decreases. Let us
denote the output of map-matching MG(t) as β̂(t)

α = β̂G(t) (α) and
d̂(t)
α = d̂G(t) (α) for short.
Before presenting the important property that drives the explo-

ration, we note that d̂(t−1)
α ≤ d̂(t)

α always holds. This is trivial
because if there were a path closer to α in G(t), it must be closer
to α than the minimizing path in G(t−1) and this is contradictory.
We do not care how the map-matching is implemented as long as
it satisfies the inequality above.

The following theorem gives the condition to ensure that de-
creasing series of graphs decrease their losses.
Theorem 1. Given a collection of trajectories T , and two graphs

G(t−1) and G(t), L(G(t); T ) < L(G(t−1); T ) holds iff the following

inequality holds:

λ‖Δ(t)‖ >
∑

α∈T|Δ(t)

{
d̂(t)
α − d̂(t−1)

α

}
, (7)

where Δ(t) = G(t−1) \ G(t) and T|Δ(t) denotes the collection of tra-

jectories whose minimizing paths run through Δ(t).

Proof. By evaluating the difference between losses of the two
consecutive graphs in the series, we have the following:

L(G(t); T ) − L(G(t−1); T )
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

α∈T|Δ(t)

d̂(t)
α +

∑

α�T|Δ(t)

d̂(t)
α + λ‖G(t)‖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

α∈T|Δ(t)

d̂(t−1)
α +

∑

α�T|Δ(t)

d̂(t−1)
α + λ‖G(t−1)‖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∑

α∈T|Δ(t)

(
d̂(t)
α − d̂(t−1)

α

)
− λ‖Δ(t)‖.

Note that d̂(t)
α = d̂(t−1)

α holds for α � T|Δ(t) because both β̂(t)
α and

β̂(t−1)
α are irrelevant with Δ(t). It then follows that, Eq. (7) holds iff

L(G(t); T ) < L(G(t−1); T ) holds. �

Algorithm 1 is the pseudo-code for the route graph discovery.
Given a collection of trajectories T and an initial graph G(0), e.g.,
a DRM, it finds the final graph that minimizes the loss (line 6).
Note that B maintains the minimizing path and the minimum dis-
tance for each trajectory α throughout every t-th stage (line 17).
The main loop (lines 2–5) explores a series of subgraphs with
decreasing losses as explained in Theorem 1. First, an edge e is
selected, for instance, in increasing order of the cardinality, which
is the number of the minimizing paths running through it (line 3),
and a new graph G(t) is obtained by re-routing with the edge e

disabled (line 4). We explain later what re-routing is, as well as
why and how we select a single edge. Then, the graph G(t) is
probabilistically accepted or rejected (line 4). Finally, the main
loop either continues or breaks in accordance with the history of
the obtained graphs (line 5).

Next, we explain how to obtain the new graph G(t) by finding
Δ(t). The re-routing technique serves this by map-matching with
some edges of graph G(t) disabled (line 12). Note that trajectories
not in Δ(t) are irrelevant to Δ(t) and that any edge e in Δ(t) satisfies
the following inequality:

g ⊆ Δ(t) ⊆ Δ(t)
g

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g = G({e}),
Δ

(t)
g = G(t−1) \⋃α�T|g G(β̂(t−1)

α ),

and T|gis the collection of trajectories whose minimizing paths
run through g. Thus, the following strategy works: first conserva-
tively select an edge e from G(t) and optimistically initialize Δ(t)

with Δ
(t)
g (line 8), as well as the cumulative differential residual

ε with 0 (line 9). Then, as we re-route a trajectory in T|g, Δ(t) is
subtracted by G(β̂(t)

α ), and ε is added by the differential residual
before and after the re-routing (lines 12–14). In this implementa-
tion, we employed Zeheng et al.’s algorithm [33] for re-routing.

The procedure terminates as soon as it becomes obvious that
Eq. (7) will never be satisfied (lines 15, 16). This is safe because
of Theorem 1 and, notably, this saves much computation by skip-
ping unnecessary map-matchings. If no early termination has oc-
curred, the procedure returns with the new reduced graph as G(t)

(line 18). We describe four implementation issues in the follow-
ing sections.
3.4.1 Meta-heuristic Optimization in Main Loop

The reason we probabilistically accept the graph at line 4 is to
escape local minima. For simplicity, however, the current imple-
mentation always accepts the returned graph G(t). Other meta-

Algorithm 1 Building route graph
Require: trajectories T , minimizing paths B

1: procedure main(G(0))

2: for all t = 1, 2, 3, · · · do

3: select e from edges in G(t−1)

4: G(t) ← apply(G({e}), G(t−1)) with some probability

5: break by history · · · ,G(t−1),G(t)

6: report G(t)

7: function apply(g, G(t−1))

8: let Δ(t) be subgraph only T|grun

9: ε ← 0

10: for all α ∈ T|g do

11: β̂(t−1)
α , d̂(t−1)

α ← B[α]

12: β̂(t)
α , d̂

(t)
α ←MG\g(α)

13: Δ(t) ← Δ(t) \G(β̂(t)
α )

14: ε ← ε + (d̂(t)
α − d̂(t−1)

α )

15: if ‖Δ(t)‖ < ε then

16: return G(t−1)

17: update B[α] with β̂(t)
α , d̂

(t)
α for α ∈ T|g

18: return G(t−1) \ Δ(t)

heuristic algorithms are also applicable, in addition to this imple-
mentation.
3.4.2 Initial Graph

A DRM is one candidate of the initial graph G(0). A Delauney
graph whose vertices are GPS observations is another. In the for-
mer case, Algorithm 1 performs a joint map-matching. If it is
certain that the GPS traces are from objects moving on a DRM,
this is the reasonable option. We chose this option for the sake
of experimentation in Section 4. In the latter case, Algorithm 1
performs a map-generation. This is useful when no DRM is avail-
able, although GPS observations should be carefully sampled if
the density differs from place to place over the two-dimensional
space. This is because too many observations increase the com-
putation whereas too few observations decrease the accuracy of
the route graph.
3.4.3 Map-matching Algorithm

As mentioned at the beginning of Section 3.4, the route
graph discovery employs a map-matching algorithm that follows
Definition 2. The current implementation employed Zeheng
et al. [33] because it is easy to implement. Simply introducing
their algorithm, it performs the A* algorithm to find the shortest
path between two vertices in the graph. Considering the com-
binations of vertices, each of which is one of the neighbors of
consecutive observations within a window of size w, their algo-
rithm finds the route that minimizes the cost function of the A*
algorithm so long as w is large enough. Thus, this algorithm satis-
fies the requirement of Definition 2. Notably, any map-matching
algorithm could be used as long as it follows Definition 2.
3.4.4 Selection of Edges

There can be several priorities when selecting a disabled edge:
( 1 ) by the length of edge,
( 2 ) by the cardinality of edge,
( 3 ) by both the length and cardinality,
( 4 ) by the size of Δ(t) for the edge, and
( 5 ) at random.

Except for the fifth option, these share the idea of first select-
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ing an edge that is most unlikely to remain in the final graph.
Although the fourth option is an exact greedy method, too much
computation is needed because it requires roughly as many re-
routings as the average cardinality times the number of edges in
just one iteration. The first to the third options approximate the
preference of edges without the eager computation of Δ(t). Let us
consider the case where a DRM is the initial graph. Intuitively,
the length of the edge seems irrelevant to the likelihood that it
will remain in the final graph. For this reason, the second one
is the option we take because the first and the third employ the
length of the edge. Note that, whether an edge is selected with
or without replacement is another option. This implementation
never replaces edges, but only selects an edge once because the
reduced graph is always accepted at line 4.

4. Experiments

In this section, we examine whether our algorithm is able to
estimate unobservable paths from sampled trajectories using the
benchmark datasets. First, we explain the experimental configu-
rations and then present the results.

We implemented the algorithm with Python and run it on
an Ubuntu 16.04 box equipped with Intel Xeon E5-2623 v3
3.00 GHz and 256 GB memory. The process employed 16 cores
managed by multiprocessing module that comes with Python
such that each re-routing runs concurrently for computational ef-
ficiency.

4.1 Experimental configurations
We use the benchmark datasets of GPS traces, which are col-

lected and shared by various research groups or volunteers. The
DRM should be contemporary with the GPS traces, although we
utilized the Open Street Map (OSM) of 2017. Table 1 shows de-
scriptions of the datasets and their corresponding DRMs. Note
that they might differ from those in other reports because those
datasets were preprocessed differently.

The goal of this experiments was to examine the accuracy of
the algorithms in estimating unobservable paths from sparsified
trajectories. These paths, however, are never available because
the traces have been originally sampled. As such, we must make
some assumptions to evaluate the accuracy even in the following
settings:
• an unobservable path is a series of connected links in the

DRM, indicating that a car drives on the roads,
• both the observation and sampling noises of the traces are

sufficiently small,
• a certain algorithm, such as those using the Frechét dis-

tance [1], [29], can map a trace to its unobservable path if
it contains sufficiently little noise.

The first setting is acceptable because the trajectories in the
datasets we are using are all from those of cars or bikes. The

Table 1 Popular GPS trace datasets.

GPS OSM
name #pts #trace #nodes #edges
icdm 2859950 4257 18716 35170
bikely 549920 3150 262699 540017
chicago 118360 889 46533 88942

third setting is also acceptable because map-matching is trivial in
that unrealistic case. Even though the second setting depends on
datasets, for the sake of experimentation, we decided to accept it.

In the experiments, we sampled observations in a trajectory-
wise manner with variable rates, and compared the residuals of
the following:
( 1 ) unsampled trajectory from DRM (lower bound),
( 2 ) unsampled trajectory from route graph (proposed),
( 3 ) sampled trajectory from DRM (upper bound).

The first situation gives the lower bounding residual, in that
no algorithm can do better than this method, as we had accepted
the three above assumptions. The second method is our proposed
method. To evaluate how well the route graph represents the ma-
jor streams in the GPS traces compared to the DRM, we evaluated
the residual of the unsampled trajectory from the route graph. The
third method evaluates the residual arising from the injection of
sampling noises. This gives the upper bounding residual in the
sense that no off-the-shelf single-track map-matching does worth
than this.

4.2 Experimental results
Figure 1 shows example results of a single-track and the pro-

posed map-matching algorithms with variable sampling rates.
Note that the unobservable path is identical to the result of single-
track map-matching in the bottom picture. As the sampling rate
increases, the results get similar with each other and they finally
become almost identical. The estimated routes by the single-
track map-matching cling to the traces because they minimize the
Frechét distances. Especially with the lowest sampling rate, the
route unnaturally comes and goes across the river. On the other
hand, the estimated routes by the proposed method are less de-
pendent on the sampling rates than those by the single-track map-
matching. Furthermore, with the unsampled trace, the proposed
method estimates the even natural route because of the regular-
ization term as we will mention later.

Figure 2 describes the residuals of the three methods with vari-
able sampling rates. Note that the lower bound is constant be-
cause the first method is irrelevant with the sampling rates. We
can see that the upper bound curve steeply increases as the sam-
pling rate decreases. This is what we expected, as the lower is the
sampling rate, the more the residual experiences injected sam-
pling noises.

In contrast, the curve for the proposed method increases mod-
erately. For instance, in the icdm and chicago datasets, the pro-
posed method reduced the residual by more than 70% and 40%,
respectively, for the upper bound at sampling rate of 40%. The
reduction rate tends to increase when the dataset has a larger num-
ber of trajectories, which means that the proposed method lever-
ages the residual using the other trajectories. Indeed, we can see
that the icdmwas able to decrease the sampling rate to 40% while
the degradation of residual remained nearly constant at 7.0%.

The residual is slightly larger than the upper bound at a sam-
pling rate of 100%, this is because our algorithm accepts a slight
increase in the residuals to reduce the route graph. The behavior
of the residual as well as the empirical loss is well understood in
the regularization technique. The results may accordingly indi-
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Fig. 1 Estimated routes by single-track (chain), proposed (solid) map-matching, and sampled trace
(dashed) from bikely with rate 20% (top), 40% (middle), and 100% (bottom).

cate that our algorithm may further exploit the observation and
sampling noises.

Figure 3 describes the description length of graph with vari-
able sampling rates, which corresponds to the regularization term
that we introduced to the loss function. In all three datasets, the
description length monotonically and asymptotically increases as
the sampling rate increases. By contrast, the residual monotoni-
cally and asymptotically decreases in Fig. 2, which shows that our
algorithm reasonably favors these contradictory terms depending
on the sampling rate.

4.3 Discussions
In this section, we discuss the differences between the exist-

ing methods and our method. Recall that we have been trying
to estimate unobservable paths from traces with sample noise
by proposing a new joint map-matching method. Therefore, we
would discuss the relation between a joint map-matching [22] and
our proposal, as well as the expected advantage of our method to
the proceeding stochastic method [26].

Li et al. [22] formalized a joint map-matching as an optimiza-
tion problem whose objective function contains residual, stitch-
ing, and regularization terms. Their method is essentially similar
to our method as these two methods share two terms in their ob-

jective functions, although the proceeding method requires the
stitching term to penalize the fragmentations introduced by its
formalization. They differ, however, in terms of algorithms. The
proceeding method requires three hyper-parameters while ours
requires a single hyper-parameter which can be fixed as λ = 1
with a good reason. And we remarkably disclosed that the resid-
ual and regularization terms are obtained as we formalize the joint
map-matching as a generative stochastic process. Concretely, the
residual term is caused by the assumption that the distance be-
tween trace and unobservable path follows the exponential prob-
ability distribution, and that the regularization term is from the
other assumption that the paths are equally likely.

Then, we compare our method to another stochastic method
that employs HMM [26]. They has two major differences. One
is that the latent variables of the HMM-based method correspond
to the vertices from which the observations come, while those of
our method correspond to the paths from which the traces come.
The other is that the HMM-based method maximizes likelihood
estimator (MLE), while ours maximizes a posterior (MAP). Thus,
we suppose that the HMM-based method likely overfits without
restricting the number of hidden states by manually tuning the
complexity of the graph. On the other hand, our method automat-
ically determines the complexity of the graph depending on the
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Fig. 2 Residuals of icdm (top), bikely (middle), and chicago (bottom).

number of GPS observations. Because of these differences, we
believe that the proposed method has advantages especially with
a low sampling rate or less traces.

5. Conclusion

In this paper, we proposed a joint map-matching method based
on the generative model for estimating unobservable paths by
maximizing the posterior probability. Maximization is achieved
by the EM algorithm whose object function consists of residual
and regularization terms. We presented an iterative algorithm for
exploring the route graph, which avoids as many map-matchings
as possible by taking advantage of the proven property holding
of the residual and the regularization terms. The experimental re-
sults showed that the residual degradations from the lower bound
were no more than 7.0% when the sampling rate was reduced to

Fig. 3 ‖G‖ of icdm (top), bikely (middle), and chicago (bottom).

40%. This means that this algorithm reduces the volume of sam-
pling noises and identifies the major streams in the trajectories.

In the future, we plan to continue this work in three directions:
first, by realizing performance enhancements by further reducing
the costly map-matching. One idea is to localize the re-routing
to the disabled links without performing map-matching from the
origin to destination of the trajectories. The other idea is to ex-
tend our algorithm to the incremental one that updates the route
graph as trajectories arrive in sequence. The second direction is
to develop more sophisticated formulations of the EM algorithm
without considering the extreme case, or applying another gen-
erative model such as the Hidden Markov Model. The third and
final direction is to apply our method to demand analysis, urban
design, and other applications.
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