
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

API Chaser:
Taint-Assisted Sandbox for Evasive Malware Analysis

Yuhei Kawakoya1,a) Eitaro Shioji1,b) Makoto Iwamura1,c) JunMiyoshi1,d)

Received: May 29, 2018, Accepted: December 4, 2018

Abstract: We propose a design and implementation for an Application Programming Interface (API) monitoring sys-
tem called API Chaser, which is resistant to evasion-type anti-analysis techniques, e.g., stolen code and code injection.
The core technique in API Chaser is code tainting, which enables us to identify precisely the execution of monitored
instructions by propagating three types of taint tags added to the codes of API, malware, and benign executables,
respectively. Additionally, we introduce taint-based control transfer interception, which is a technique to capture pre-
cisely API calls invoked from evasive malware. We evaluate API Chaser based on several real-world and synthetic
malware to demonstrate the accuracy of our API hooking technique. We also perform a large-scale malware experi-
ment by analyzing 8,897 malware samples to show the practical capability of API Chaser. These experimental results
show that 701 out of 8,897 malware samples employ hook evasion techniques to hide specific API calls, while 344
malware ones use target evasion techniques to hide the source of API calls.

Keywords: Malware, Taint Analysis, Anti-analysis, Evasion, Windows API

1. Introduction

Malware threats have become a serious problem on the Internet
over the past decade. Malicious activities on the Internet such as
massive spam-emailing and denial-of-service attacks have arisen
from botnets comprising countless malware-infected machines.
To combat malware, analysts utilize various techniques and tools
to reveal details of malware activities.

Dynamic analysis is a major technique for malware analysis.
Application Programming Interface (API) monitoring, which is a
dynamic analysis technique, is especially effective and efficient
for rapidly understanding malware activities because an API has
rich semantic information. Therefore, it is often used in many re-
search and industrial products such as malware detection [17] and
automatic signature generation [44] as an essential component to
fight against rapidly evolving malware attacks. That is, API mon-
itoring has become an important technique for both research and
industrial security communities.

However, since malware developers are now familiar with mal-
ware analysis techniques, they embed anti-analysis functions into
their malware to evade API monitoring [6], [7], [26], [29], [30],
[31], [40], [49], [56]. Various anti-analysis techniques that evade
API monitoring have currently been adopted in malware in the
wild. These techniques are mainly classified into two types: hook
evasion and target evasion. Hook evasion is a technique to evade
hooks added to the entry of APIs for monitoring. Target eva-
sion is used to obfuscate the caller instance of APIs by, for ex-

1 NTT Secure Platform Laboratories, Musashino, Tokyo 180–8585, Japan
a) kawakoya.yuhei@lab.ntt.co.jp
b) shioji.eitaro@lab.ntt.co.jp
c) iwamura.makoto@lab.ntt.co.jp
d) miyoshi.jun@lab.ntt.co.jp

ample, invoking APIs from code injected into a benign process.
These anti-analysis techniques have become a serious issue for
anti-malware research, especially for practical malware analysis
systems. However, this issue has not been extensively discussed.
As a result, existing API monitors yield opportunities for malware
to evade their monitoring.

In this paper, we focus on this issue and present a practical API
monitor called API Chaser, which is resistant to various evasion-
type anti-analysis techniques. API Chaser is built on a whole
system emulator, QEMU [5] (actually Argos [41]), and executes
monitored malware in a guest operating system (OS) running on
it. In API Chaser, we use a code tainting technique to identify
precisely the execution of monitored instructions. The core idea
of code tainting is that we first prepare a taint tag targeted for a
specific analysis purpose and add the tag to the target instructions
before executing them. Then, we begin to run the executable file
containing the monitored instructions. At the virtual CPU of an
emulator, we confirm whether or not a fetched instruction con-
tains the taint tag targeted for analysis. If it does, it is executed
under analysis. If not, it is executed normally, i.e., it is outside
the scope of the monitoring.

The code tainting technique itself is already introduced in
Ref. [23], so it is not a new technique. A new aspect of this paper
is that we apply the code tainting technique to API monitoring.
We call this technique taint-based control transfer interception.
This technique works as follows. We use three types of taint tags
for three different types of instructions: the instructions for APIs,
those for malware, and those for benign programs. First, we add

This is an extended version of a paper published in the Proceedings of
Research in Attacks, Intrusions and Defenses, RAID2013, Lecture Notes
in Computer Science, Vol.8145, Springer, Berlin, Heidelberg.

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

the three types of taint tags to the respective target instructions.
Then, when the CPU fetches an instruction and it has a taint tag
for the API, it confirms which type of taint tag the caller instruc-
tion has. There are three cases: a taint tag for malware, one for
benign, and one for API. Each case respectively corresponds to
the following situations: an API call from malware, that for a
benign process, and that for another API (nested call). Our mon-
itoring target is the call only from malware and we exclude the
others.

Taint-based control transfer interception is resistant to evasion
techniques because it is able to distinguish between the target in-
structions and others at byte granularity even when they exist in
the same process memory space. In addition, this technique is
able to track the movement of monitored instructions by propa-
gating taint tags attached to them when malware injects a mali-
cious code into another process. This technique is independent
of OS semantic information such as virtual addresses, Process ID
(PID) or Thread ID (TID), and file names. Therefore, it is no
longer influenced by the changes in these types of information by
malware for evading analysis systems.

In API Chaser, there are also several unique implementations
for enhancing the resistance against anti-analysis techniques, i.e.,
pre-boot disk tainting and code taint propagation, and for im-
proving the practical capability for large-scale analysis, i.e., hot-

boot and one-time disk image. These techniques contribute to
achieving precise API monitoring and a practical malware analy-
sis sandbox, respectively. In the proposed API Chaser implemen-
tations, we use 32-bit Windows XP and 7 as the guest OS. How-
ever, we do not limit API Chaser to only these two platforms. We
believe that the API Chaser design is neutral and we can apply it
to other platforms such as a 64-bit Windows 8 or 10 as the guest
OS while following the same design.

To show the effectiveness of API Chaser, we conducted sev-
eral experiments using real-world malware with a wide range of
anti-analysis techniques. We evaluated the API monitoring accu-
racy by analyzing some malware on API Chaser and in compar-
ative environments in which APIs are monitored using existing
techniques. Then we compared the logs output by each envi-
ronment. These experimental results indicate that API Chaser
is able to capture precisely the API calls from all sample mal-
ware without being evaded. We also evaluated API Chaser
with several synthetic malware, in which state-of-the-art eva-
sive techniques were implemented. The experimental results
show that API Chaser is sufficiently robust against new emerging
techniques such as Process Hollowing [29], AtomBombing [30],
PowerLoaderEx [6], Shim-based DLL Injection [40], and Stealth
Loader [26].

Moreover, we analyzed 8,879 malware samples collected from
the Internet for a large-scale experiment. The samples were clas-
sified into 421 malware families with AVClass [45]. Through the
analyses, we found 701 hook-evasive ones, which belonged to
36 families, while we found 344 target-evasive malware samples,
which belonged to 84 families. We consider that these numbers
allow us to argue that hook evasion and target evasion techniques
are actually major techniques and widely used among real-world
malware.

The first version of this paper was published in 2013 [25]. We
have mainly two advances with this paper, compared to the first
one. First is that we evaluated API Chaser with five latest code
injection techniques, which emerged after 2013. So, these tech-
niques represent new techniques for API Chaser. Since we suc-
cessfully analyzed them with API Chaser without any updates on
its design from the one proposed in the first paper, we can high-
light that the design of API Chaser is strong enough to withstand
not only existing evasion techniques but also new emerging ones
in the future. Second is that we added two new functions to API
Chaser, i.e., hot-boot and one-time disk image, to improve the
capability of analyzing large-scale malware samples. We evalu-
ated API Chaser with 8,897 real-world malware samples and then
showed that API Chaser is capable of analyzing them successfully
in practical time.

In summary, we make the following contributions in this paper.
• First, we introduce the API monitoring technique taint-

based control transfer interception using code tainting. It
enables correct identification of API calls even from mal-
ware using evasion-type anti-analysis techniques.

• Second, we present the implementation details of API
Chaser. We also describe the considerations behind each
design decision and explain several techniques enabling us
to achieve high practicability of API Chaser, which includes
pre-boot disk tainting, code taint propagation, hot-boot, and
one-time disk image.

• Third, we show the evaluation results of API Chaser using
real-world malware and synthetic malware. These malware
contain various anti-analysis techniques related to evading
API monitoring. The results showed that API Chaser is able
to capture correctly APIs called from these malware.

2. Evasion Techniques

In this section, we describe several anti-analysis techniques
used in malware for evading API monitoring, and we explain
problems facing existing analysis techniques against them. We
categorize evasion-type anti-analysis techniques into two types
depending on their purpose. The first is hook evasion, which is
used for evading API hooks. The second is target evasion, which
is used to obfuscate the API caller instances.

2.1 Hook Evasion
Hook evasion is a technique to evade being monitored by an

analysis system. We explain five hook-evasion techniques: stolen
code, sliding call, copied API obfuscation, name confusion, and
Stealth Loader.

Figure 1 (a) shows the behavior of stolen code. Stolen code
copies some instructions from the entry of an API to allocated
memory areas in the malware process at runtime. When mal-
ware attempts to call the API, it first executes the copied in-
structions and then jumps to the address of the instruction in the
API following the copied instructions. Some existing API moni-
tors [4], [38], [48], [53] identify their target API calls by the ex-
ecution of the instructions at the virtual addresses where these
APIs are expected to be located. The expected addresses are
computed from the base address of the loaded module contain-

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 1 Stolen Code and Sliding Call Mechanism.

ing these APIs and the offsets to them, which are written in the
Portable Executable (PE) header of the module. If the instructions
of these APIs are copied to addresses different from the expected
ones, existing API monitors may miss capturing the execution of
these APIs.

Figure 1 (b) shows the behavior of sliding call. Sliding call be-
haves almost in the same manner as stolen code. The difference
is that malware originally has a few instructions of the entry of
a specific API in its body and calls the API after executing those
instructions. Almost all existing API monitors focus on the en-
try of each API [4], [38], [48], [53], [55] as a place to add a hook.
This allows the monitoring to be evaded because the instruction at
the head of the API is not executed nor even touched by malware
using sliding call.

Copied API Obfuscation [49] is an evolved version of stolen
code. It copies all instructions of an API to an allocated mem-
ory area in the malware process at runtime. Unlike stolen code,
copied API obfuscation does not transfer the execution to the in-
structions of the copied API, i.e., it does not execute them at all.
So, if analysis tools add a hook to the entry of an API, they fail to
capture the API calls since the entry instruction is not executed at
all.

Name confusion involves copying a system dynamic link li-
brary (DLL) to another file path while changing its file name.
The copied DLL exports the same functions as the original DLL,
so the malware loading the copied DLL can still call the same
functions as those in the original DLL. If the name has been
changed, some analysis systems [4], [38], [48], [58] that depend
on the names of the module to identify their target can be evaded.
In addition, name confusion is also often used for target evasion,
e.g., malware changes its name to that of a system executable file
installed as default such as svchost.exe or winlogon.exe.

Stealth Loader was introduced by Kawakoya et al. [26] for
evading existing static and dynamic analysis tools. It is a program
loader that loads Windows system DLLs such as kernel32.dll or
ntdll.dll without leaving any trace to be detected. The program
loader is embedded into a protected executable file and begins
to run before its original code is executed. By loading a system
DLL with Stealth Loader, the loaded DLL is not recognized as
‘loaded’ by Windows OS and even analysis tools because there
is no trace to recognize that the DLL was loaded. Since analy-
sis tools fail to recognize the existence of the loaded DLL, they
also fail to capture API calls of the functions exported from the
unrecognized system DLL.

2.2 Target Evasion
Target evasion is a technique in which malware attempts to

evade being the target of analysis. We explain two target evasion
techniques: code injection and file infection.

Code injection injects a piece of malicious code into an-
other process, and enables that code to be executed in that pro-
cess. If an API monitor distinguishes its monitoring target based
on PID or TID, which is very common in most existing sys-
tems [4], [38], [48], [53], [58], it needs to add hooks to specific
APIs such as WriteProcessMemory or CreateRemoteThread to
extract the destination of the injection. The traceability in exist-
ing systems is tightly bound to injection techniques. That is, they
rely on heuristics to track the movement of their analysis targets.
Even if it succeeds in identifying the injected process as a mon-
itoring target, it would be difficult to distinguish correctly APIs
called from malicious code injected into the process and those
called from the original code in the process.

In this decade, several new code injection techniques such
as Process Hollowing [29], AtomBombing [30], PowerLoad-
erEx [6], and Shim-based DLL Injection [40] have been applied
in real-world malware. These techniques avoid using the APIs
commonly used for code injection, i.e., CreateRemoteThread,
WriteProcessMemory, and VirtualAllocEx. These techniques
may evade detection if these systems rely on these API calls to
detect the code injection behavior for adding the injected pro-
cesses to a target process list.

File infection is another target evasion technique. It basically
adds a piece of code to an executable file and modifies pointers
in its PE header to cause the added code to execute after the pro-
gram begins to run. Similar to code injection, it is difficult to
distinguish between API calls from a malicious code and those
from the original benign code if the API monitor tries to identify
its target using PIDs or TIDs.

3. Proposed Approach

To address the evasion problems that existing API monitors
have, we propose the taint-based control transfer interception

API monitoring technique that uses code tainting to identify pre-
cisely the execution of APIs. First, we define some terms and the
scope of this paper. Second, we present code tainting. Third, we
describe the types of monitored instructions. Fourth, we present
taint-based control transfer interception, i.e., how to capture API
calls invoked from malware and exclude the ones invoked from
benign processes and nested API calls.

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 2 Taint-based control transfer interception.

3.1 Definitions and Scope
We define three important terms used in this paper: API, API

call, and API monitoring.
• API is a function comprising more than one instruction to

conduct a specific purpose and we use it interchangeably
with a user-land Windows API, which is a function provided
from the Windows operating system and libraries.

• API call is a control transfer with valid arguments from an
instruction outside of an API to an instruction within the
API.

• API monitoring is a technique to detect the first execution of
an instruction of monitored APIs immediately after control
has been passed from an instruction outside of the API.

We explain the scope of this paper. The anti-analysis tech-
niques in the scope are those that were mentioned in the previ-
ous section, i.e., those used for hiding API calls that malware
has actually invoked. We exclude the anti-analysis techniques
designed to use conditional execution to evade analysis systems,
e.g., trigger-based ones [8] and stalling code [27], from the scope
of this paper. We also exclude the case that malware invokes
functions of modules, e.g., DLLs, statically linked to the mal-
ware, which do not execute any instructions of system modules
that we prepared in our analysis environment.

3.2 Code Tainting
Code tainting is a taint analysis application and a technique

used to identify the execution of monitored instructions based on
taint tags attached to them. It adds taint tags to the target in-
structions before executing them. Then, when the CPU fetches
an instruction, it confirms if the instruction (actually the opcode
of the instruction) has a taint tag. If the instruction has a taint tag
targeted for analysis, it will be executed under analysis. If not,
it will be executed normally. When monitored instructions are
operated as data, taint tags added to the instructions are propa-
gated in the same way as data tainting. That is, we can track the
movement of monitored instructions based on the taint tags.

There are three advantages of code tainting for monitoring mal-
ware activities. First, it becomes possible to conduct fine-grained
monitoring. This property is effective against malware using tar-
get evasion techniques. Code tainting can distinguish the target
instructions and others at byte granularity based on taint tags,
even though there are both injected malicious instructions and be-
nign ones mixed together in the same process space or the same
executable file. Second, it allows us to track the movement of
the target instruction by propagating taint tags attached to them.
This property is effective against both target evasion and hook

evasion techniques. For example, when malware injects its ma-
licious code into other processes or other executable files, code
tainting can track the injection by propagating taint tags added to
the malicious code. Third, it is no longer influenced by changing
the semantic information of an OS, e.g., virtual addresses, PID
or TID, and file names. This property is also effective against
both target evasion and hook evasion techniques such as name
confusion or Stealth Loader because it does not depend on these
types of semantic information at all for monitoring API calls, and
depends solely on taint tags.

A similar technique to code tainting has been used in previous
research [35], [41] to detect attacks by tainting received data from
the Internet and then monitoring a control transfer to the tainted
data. We leverage the technique for malware analysis on API
monitoring. The difference is that code tainting adds taint tags to
the code with the obvious intention of monitoring its execution,
whereas the previous research taints all received data to detect a
control transfer to it.

3.3 Tag Types and Monitored Instructions
We use the following three types of taint tags to identify the

execution of three types of instructions for API monitoring.
• Api-tags target instructions in each API
• Malware-tag targets instructions in malware
• Benign-tag targets instructions in benign programs

We taint all instructions in each API with api-tags. We use this
type of tag to detect the execution of APIs at the CPU. More-
over, we embed API-identifier information in each api-tag which
we can use to distinguish the execution of each type of API. Re-
garding malware-tag, we taint all bytes in a malware executable
file and dynamically generated code with malware-tags. We use
malware-tags to identify the caller instruction of APIs and detect
the execution of malware instructions. On the other hand, we
taint all bytes in benign programs with benign-tags. By benign
programs, we mean all files that have been installed on Windows
by default, or in other words, all instructions except for those in
malware and APIs. We mainly use this type of taint tag to iden-
tify the caller instruction of APIs and then exclude the API calls
from the monitoring target.

3.4 Taint-Based Control Transfer Interception
We use code tainting with the three types of taint tags to moni-

tor APIs invoked from malware. When a CPU fetches an instruc-
tion and the instruction has an api-tag, it confirms the taint tag at-
tached to the caller instruction. There are three cases as shown in
Fig. 2: the API is called from malware, a benign process, and the

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 3 Taint-based control transfer interception against anti-analysis.

Fig. 4 Analysis process for API Chaser.

internal of other APIs (nested call). As for the first case, shown
in Fig. 2 (1), if the caller instruction has a malware-tag, it deter-
mines that the API call is from malware. Thus, it captures the
API call and collects the information related to the API call such
as its arguments. With regard to the second, shown in Fig. 2 (2), if
caller one has a benign-tag, it determines that the API call is from
a benign process. Thus, it is outside the target monitoring and
does not need to capture this API call. As for the third, shown
in Fig. 2 (3), if the caller has an api-tag, it is a nested API call.
Nested API calls are also excluded from the monitoring target, so
that we can focus only on API calls directly invoked from mal-
ware. This makes the behaviors of malware clearer and easier to
understand.

In Fig. 3, as a running example, we explain the behaviors
of taint-based control transfer interception against the two anti-
analysis techniques: code injection and stolen code. Figure 3 (a)
shows the behavior against code injection. When malware injects
code from malware.exe to benign.exe, the taint tags of the code
are propagated. The API call from the injected code is a control
transfer from an instruction with a malware-tag to an instruction
with an api-tag. Then, we can identify it as our target API call.
On the other hand, Fig. 3 (b) shows the behavior of calling a stolen
API. When few instructions at the entry of the API are copied to
the allocated memory area in malware.exe, the taint tags added to
the instructions are also propagated. The call instruction, call
stolen API, has a malware-tag and the copied instruction, mov
edi, edi, has an api-tag, so we detect the API call and include
it in the monitoring target.

4. System Description

In this section, we present an overview of API Chaser, which
uses taint-based control transfer interception for monitoring API
calls. First, we briefly explain the main components of API
Chaser. Second, we illustrate its malware analysis process. Third,
we present the enabling techniques used in API Chaser: pre-boot

disk tainting and code taint propagation.

4.1 Components
API Chaser is built on a whole system emulator, QEMU (actu-

ally on Argos). API Chaser has the following components: virtual
CPU for API monitoring and taint propagation, shadow memory
to store taint tags for virtual physical memory (hereafter “phys-
ical memory”), and shadow disk to store taint tags for a virtual
disk (hereafter “disk”).

A virtual CPU is the core component of API Chaser. It is a dy-
namic binary translator that translates a guest instruction to host
native instructions. With dynamic binary translation, it conducts
API monitoring as mentioned in the previous section and taint
propagation based on our propagation policy, which is explained
in a later subsection. The shadow memory is a data structure for
storing taint tags added to data on physical memory. When the
virtual CPU fetches an instruction, it retrieves the taint tag added
to the instruction from the shadow memory. The shadow disk
is also a data structure for storing taint tags added to data on a
disk. When data with taint tags are written to a disk, the taint
tags are transferred from the shadow memory to the shadow disk
and stored in the corresponding entries of the shadow disk. When
transferring data with taint tags from a disk to physical memory,
the taint tags are also transferred from the shadow disk to the
shadow memory.

4.2 Analysis Process
Figure 4 shows the analysis process for API Chaser. There are

two steps for API Chaser to analyze malware: taint setting and
analysis.
4.2.1 Taint Setting Step

In the taint setting step, API Chaser conducts pre-boot disk
tainting, which adds taint tags to all the target instructions in a
disk image file before booting a guest OS. The details of pre-
boot disk tainting are given in the following subsection.
4.2.2 Analysis Step

In the analysis step, API Chaser first boots the guest OS in-
stalled on the disk image file. During the boot, target files con-
taining target instructions are loaded onto physical memory. At

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 5 Code taint propagation example.

the same time, the taint tags added to the target instructions are
also transferred from the shadow disk to the shadow memory. Af-
ter completing the boot, API Chaser executes malware and ini-
tiates analysis. During the analysis, API Chaser conducts API
monitoring and taint propagation based on our policy.

4.3 Enabling Techniques
We explain the enabling techniques used in API Chaser to sup-

port the API monitoring: pre-boot disk tainting and code taint
propagation.
4.3.1 Pre-boot Disk Tainting

Pre-boot disk tainting is a technique that adds taint tags to tar-
get instructions on a disk image file before booting a guest OS.
Properly adding taint tags to all target instructions is not an easy
task because they may be copied and widespread over the system
after a guest OS has booted. For example, after booting a guest
OS, an API instruction may be on a disk, loaded onto memory,
swapped out to disk, or swapped into memory. When we add
taint tags to a target instruction, we must identify all the locations
of widespread instructions and add tags to all of them. If we miss
adding a tag to any one of them, it may allow malware to evade
the API monitoring.

To avoid this troublesome task, we use pre-boot disk tainting.
The procedure is given hereafter. First, it parses a disk image file
containing target instructions and identifies the location where the
target instructions are stored. We use disk forensic tools [10] to
identify files containing target instructions, and then, if neces-
sary, we acquire the offsets of the target instructions from the PE
header of the files and identify the locations of each API using
disassemble tools [20], [21]. Second, it adds taint tags to the cor-
responding entries of a shadow disk based on the calculated loca-
tion. Before launching a guest OS, all instructions surely reside
on a disk and they are not widespread yet. Pre-boot disk tainting
simplifies the tainting task because only target instructions on a
disk require attention. We no longer need to care whether or not
target instructions have been loaded.
4.3.2 Our Taint Propagation Policy

API Chaser conducts taint propagation based on pre-defined
rules. The pre-defined rules are mainly composed of two types:
basic rules and rules for code taint propagation.

Basic rules are defined based on each instruction type, such as
data-move, unary arithmetic, or binary arithmetic operations. We
basically use the rules of Argos [41] for API Chaser as they are.
More concretely, when API Chaser handles a data-move opera-
tion, such as mov, it propagates its taint tag to the destination if
the source operand is tainted. When it handles an unary arith-
metic operation, such as inc, it preserves the tag of the operand
as if the operand has a taint tag. When it handles a binary arith-

metic operation, such as add, it propagates the tag of the source
operand to the destination if any one of the source operands is
tainted. If both operands are tainted, it propagates the tag of the
first operand. However, this propagation rule may cause it to dis-
connect a taint propagation with the tag of the second operand
because we have to discard the tag of the second operand even
when the tag plays an important role for tracking a specific data-
flow. Regarding this problem, we discuss it in Section 8.2.

In addition to the above rules, we use our original taint propa-
gation rules for memory-write operations called code taint prop-

agation to prevent malware from avoiding code tainting by gen-
erating a code using implicit-flow-like code extraction. Implicit
flow is a process where a value with a taint tag affects the decision
making of the following code flow. However, there is no direct
dependency between the value and other values operated in the
following code. Thus, a taint tag is not propagated over the im-
plicit flow, even though they are semantically dependent on each
other. It is reported that taint tags are not properly propagated in
some Windows APIs that use implicit-flow-like processing [58].
Actually, we observed some cases in which malware-tags added
to the code of malware were not propagated to its dynamically
generated code. This is because most obfuscated malware has
encrypted or compressed original code in its data section and it
uses implicit-flow-like data-processing to unfold compressed or
encrypted code and extract its original code. If we fail to propa-
gate malware-tags properly, we miss identifying the execution of
malware instructions.

To address this, we use code taint propagation for code dy-
namically generated by malware. Code taint propagation has the
following rules.
• Rule1: If an executed instruction is tainted with a malware-

tag and its source operand is not tainted, the taint tag of
the instruction, i.e., malware-tag, is added to the destination
operand.

• Rule2: If an executed instruction is not tainted or tainted
with the other tags, it does not propagate the taint tag of the
instruction to its destination.

• Rule3: If an instruction calling an API is tainted with a
malware-tag, the taint tag of the instruction, i.e., malware-
tag, is added to the written data by the API.

The bottom-left pseudocode in Fig. 5 is an example of Rule1
and Rule2, illustrating the case of mov [edi], eax. If the
source operand of the target instruction, eax, does not have
any taint tags and the opcode, mov, has a malware-tag, we add
malware-tags to the destination operand, [edi]. Consequently,
it appears as if it propagates taint tags of opcode to the des-
tination operand of the opcode. The bottom-right pseudocode
in Fig. 5 is an example of Rule3, illustrating the case of call

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 6 Taint tag format.

Fig. 7 Examples of dynamic binary translation.

CryptEncrypt whose prototype is shown below. The call in-
struction has a malware-tag and it calls CryptEncrypt API, which
is a function that encrypts the passed data and writes its output
to the memory area pointed to by the argument, pbData. The
argument, pdwDataLen, indicates the size of the output data.
BOOL WINAPI

CryptEncrypt(

_In_ HCRYPTKEY hKey,

_In_ HCRYPTHASH hHash,

_In_ BOOL Final,

_In_ DWORD dwFlags,

_Inout_ BYTE *pbData,

_Inout_ DWORD *pdwDataLen,

_In_ DWORD dwBufLen);

We detect the moment when execution is returned from the
API by monitoring a control transfer from an instruction with the
api-tag to one with the malware-tag, and then add malware-tags
to the written bytes by acquiring the location of the written bytes
from pbData. It seems as if the taint tag of the call instruction is
propagated to the written bytes of the API called from the instruc-
tion. Owing to code taint propagation, we can taint all generated
codes with malware-tags and identify the execution of the code
based on its taint tags. We will discuss the side-effects of code
taint propagation in Section 8.3.4.

5. Implementation

In this section, we explain the details of the API Chaser im-
plementation focusing on extensions from Argos [41] and tech-
niques for making API Chaser practical for industrial use-cases.
We present the taint tag format, virtual CPU, shadow memory,
shadow disk, virtual direct memory access (DMA) controller,
API argument handlers, hot-boot, and one-time disk image.

5.1 Taint Tag Format
We introduce the format of a taint tag stored in the shadow

memory and shadow disk. The size of a taint tag is eight bytes.
There are three format types, as shown in Fig. 6: immediate for-
mat type for malware-tags and benign-tags, pointer format type
for api-tags, and not-tainted type. The format is chosen depend-
ing on the type of taint tag. We distinguish the format type based
on the highest bit of a tag. In the case of the immediate type,
we distinguish malware tags from benign tags based on the sec-
ond highest bit. API Chaser uses only the highest two bits, and
the other bits are unused. On the other hand, in the case of the
pointer type, a taint tag is a pointer to an API tag data structure.
An API tag structure is a data structure that stores information
related to an API such as the API name, DLL name, and API ar-
gument handling functions. We create an API tag data structure
for each API, and all instructions in each API have a taint tag with
a pointer to the same API tag data structure.

5.2 Virtual CPU
The virtual CPU of QEMU (Argos) achieves virtualization

with dynamic binary translation. It translates instructions from
a guest OS to instructions for a host OS to emulate consistently
the guest OS on the host OS. Argos adds a taint tracking mech-
anism to the dynamic binary translation. That is, it propagates
taint tags from source operands to the destination based on its
taint propagation policy after executing each instruction. In API
Chaser, we added two new functions to the virtual CPU: an API
monitoring mechanism and code taint propagation.

Figure 7 (a) shows the API monitoring mechanism of API
Chaser in the virtual CPU. When an API call is invoked from
malware, i.e., the execution transferring the instruction with a
malware-tag to that with an api-tag, the virtual CPU retrieves the
information related to the API through its API tag data structure
pointed to by the taint tag, and generates host native instructions
for handling the API, i.e., invoking the API handler function. An
API handler outputs the API name and DLL name, and internally
invokes argument handling functions.

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

As for code taint propagation, Figs. 7 (b) and 7 (c) show the
difference in the behaviors between Argos and API Chaser. In
the case of Argos, when it reads a guest OS instruction for writ-
ing memory, it generates a taint handling function as host native
code. The function propagates taint tags from source operands to
the destination if the source has any taint tags. In the case of API
Chaser, it generates its original taint handling function for code
taint propagation. The function adds malware-tags to the writing
destination if the source operand does not have any taint tags and
the opcode has a malware-tag.

5.3 Shadow Memory, Disk, and Virtual DMA Controller
Shadow memory is an array of eight-byte entries where each

entry corresponds to a byte on physical memory. Argos originally
has shadow memory, but it has only a one-byte taint tag space for
one byte on the physical memory, which is only used for deter-
mining the taint state. We extend it to an eight-byte taint tag space
for one byte to store a pointer to the API tag data structure. There-
fore, we need memory space eight times as large as the physical
memory for the shadow memory. For example, if the size of the
physical memory is 256 Mbytes, the size of the shadow mem-
ory is 2 Gbytes. Considering large-scale analysis, we design the
shadow memory to be dynamically allocatable at the time when
it becomes necessary in order to suppress the increase in simulta-
neous memory consumption when running multiple API Chaser
instances at the same time.

The shadow disk is a binary-tree data structure for storing taint
tags added to data on a disk. The entries for the structure contain
information related to tainted data on a disk such as the sector
number, offset, size, taint tag buffer, and pointers represented by
the nodes of the binary tree. A taint tag entry for one-byte data on
a disk takes eight bytes of space, so we need eight times as large a
memory space as a disk for the shadow disk. However, the size of
the disk is much larger than that of the physical memory, so it is
difficult to allocate sufficient memory space to store the taint tags
of all data on a disk beforehand. Thus, we design the memory
space for the shadow disk to be dynamically allocated as needed.
Argos does not have a shadow disk, so we newly implemented it
for API Chaser.

In API Chaser, the virtual DMA controller transfers taint tags
between the shadow memory and a shadow disk. API Chaser
monitors DMA commands at the virtual DMA controller, and
when it finds a request for transferring data, it acquires the data
location from the request and confirms whether or not the trans-
ferred data has taint tags. If it does, the virtual DMA controller
transfers the taint tags between the shadow memory and shadow
disk. Argos does not have this mechanism either, so we newly
implemented it for API Chaser as well.

5.4 API Argument Handler
To obtain more detailed information of API calls, we extract

argument information passed to them when they are called and
when the execution is returned from them. To do this, we prepare
an API argument handler for each API. We extract the argument
information such as the number of arguments, variable types,
size, and whether it is an input or output argument from the Win-

dows header files provided by the Windows software develop-
ment kit (SDK). For undocumented APIs, we extract their infor-
mation from the web site [37] and source code of React OS [43].
We register an API argument handler to an API tag data structure
when we create the data structure for adding api-tags to the in-
structions of each API. The handler is invoked from the virtual
CPU when it detects an API call invoked from malware and out-
puts detailed argument information related to the API into a log
file.

5.5 Hot-boot
We use the snapshot capability of QEMU for hot-boot, which

skips the boot process of a guest OS and enables quick initializa-
tion of analysis. Taint analysis provides deep insight into malware
behavior by adding data-flow analysis. However, one drawback
to taint analysis is performance degradation as measured in Sec-
tion 6.5. In our brief experiment, it took more than 10 mins to
boot a guest OS on API Chaser from the cold disk image, i.e.,
cold-boot, and be ready for analysis. This performance penalty
may become a bottleneck for API Chaser for use in industrial
use-cases considering that an anti-virus company reportedly col-
lects a plethora of large-scale malware samples per day from the
Internet or their customers.

To compensate for such a performance penalty, we imple-
mented a hot-boot capability using savevm and loadvm QEMU
Monitor Protocol (QMP) commands, which save the state of a
guest OS running on QEMU and restore that state, respectively.
We extended these two commands with a capability for han-
dling shadow memory. That is, the hot-boot capability stores the
state of the shadow memory when savevm is executed by tak-
ing a snapshot and restores the state when loadvm is issued for
a guest OS to restart running from the taken snapshot. With the
extended savevm and loadvm commands, we achieve hot-boot
in API Chaser. This capability allows us to initiate an analysis
immediately after launching API Chaser and makes it practical
when analyzing large-scale malware.

We can use hot-boot and pre-boot tainting at the same time
without compromising any advantages from pre-boot disk taint-
ing. When the savevm command is issued after a guest OS has
been booted and ready for analysis, the API code, which is tainted
with api-tags, may exist in both the memory and disk. To handle
this situation, when we take a snapshot, we can save the status
of the shadow memory using the extended savevm. When we
load the taken snapshot, we can restore the status of the shadow
memory with the extended loadvm command for the API code
on memory and perform pre-boot disk tainting to taint the API
code on the disk.

5.6 Parallel Analyses
To analyze large-scale malware samples, it is natural to run

multiple instances in parallel. For that purpose, we must reduce
the simultaneous consumption of memory and disks because the
physical resources such as memory or disks are limited on a ma-
chine. To reduce the memory consumption, we developed dy-
namic shadow memory and disk allocations as explained in Sec-
tion 5.3. Additionally, to reduce disk space consumption, we de-

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

veloped a one-time disk image. We explain this in this subsection.
5.6.1 One-time Disk Image

Disk space is a physically-limited resource. So, one require-
ment for API Chaser as a practical analysis environment is to re-
duce the consumption of disk space to run multiple API Chaser
instances concurrently. Another requirement for API Chaser is
that it must have a capability for returning to a clean state af-
ter one analysis has completed because the environment may be
destroyed or compromised by the malware under analysis. One
option for this requirement with QEMU is to use a -snapshot
option, which keeps the original disk read-only and redirects all
disk-writes to a temporal disk. However, unfortunately, QEMU
version 1.1.50 on which Argos was built does not support this
-snapshot option for a guest OS booted with loadvm [15].

To satisfy these two requirements at the same time, we devel-
oped a one-time disk image for API Chaser. The one-time disk
image is an extended qcow2 image file format [34]. We leverage
the backing file capability of the qcow2 image format to retain
the clean state. The one-time disk image works as follows. First,
we cold-boot a guest OS with the -snapshot option and take
a snapshot with savevm after the booting has completed and is
ready for analysis. Due to the snapshot option, QEMU creates
a temporal disk image in the tmp directory. Second, we config-
ure the backing file option of the temporal disk image with the
original disk image. This configuration allows read-access to the
data that do not exist in the temporal disk image to be redirected
to the original disk image. In addition, this configuration allows
write-access to be routed to the temporal disk image.

Using this capability, we retain the read-only nature of the orig-
inal disk image and redirect all write access to the temporal disk
image even after a guest OS is restarted with the loadvm com-
mand. When we begin analysis, we simply copy the configured
temporal disk image, rename it, and boot a guest OS from the
copied temporal disk image as an analysis environment of API
Chaser. After analysis is complete, we simply discard the copied
temporal disk image and restart a new analysis by copying a new
temporal disk image from its original. This approach allows us to
prepare only one original disk image and multiple copies of the
temporal disk image for multiple analysis environments. Since
the size of a temporal disk image is much less than that of the
original disk image, we can reduce the consumption of disk space
for preparing multiple disks for multiple instances. Additionally,
we can retain the clean environment state for each analysis.

6. Experiments

To show the effectiveness of API Chaser, we conducted four
experiments to evaluate the accuracy, the analysis capability for
new emerging anti-analysis techniques, the capability for large-
scale analysis, and the performance of API Chaser.

6.1 Experimental Environment
All experiments were conducted on a computer with Intel Xeon

CPU E5-1650 v4 3.6 GHz, 64 G memory and 360 G SSD. API
Chaser runs on Ubuntu Linux 14.14, and the guest OS was Win-
dows XP Service Pack 3 (WinXPsp3) or Windows 7 Service Pack
1 (Win7sp1). The guest OS was allocated 256 Mbytes for its

physical memory in the case of WinXPsp3 and 1 Gbyte in that
of Win7sp1. We targeted 6,862 APIs in major Windows system
DLLs for monitoring.

6.2 Accuracy Experiments
We evaluated API Chaser from the viewpoint of its resistance

against hook evasion and target evasion. We prepared several
malware executable files that have various anti-analysis functions
and we used them to evaluate the resistance of API Chaser against
hook evasion and target evasion. As a comparative environment,
we prepared two different implementations of API Chaser that re-
spectively use existing techniques to detect API calls (Type I) or
identify target code (Type II). In each experiment, we executed
some malware on API Chaser and one of these comparative en-
vironments for five minutes, acquired API logs that were respec-
tively output by the two environments, and then compared them.
When there were some differences between the logs, we revealed
the causes of the differences by manually analyzing malware and
investigating the infected environment using IDA [20] and The
Volatility Framework [50] to determine whether the fault was in
API Chaser or in the comparative environments. We used WinX-
Psp3 as a guest OS of API Chaser for the experiments.
6.2.1 Hook Evasion Resistance Experiment

We used four real-world malware samples which have hook
evasion functions with stolen code, sliding call, or API hooking.
We include malware using API hooking into the samples for this
experiment because the behavior of API hooking is similar with
the one of stolen code and it is also able to evade API monitoring
as stolen code does. Regarding the other two hook evasion tech-
niques introduced in Section 2, i.e., name confusion and copied
API obfuscation, we could not find any malware sample using
them in the wild. So, we qualitatively discuss the resistance capa-
bility of API Chaser against these two techniques in Section 8.1.

With the four malware samples, we executed them on both API
Chaser and a comparative environment (Type I). Type I is another
implementation of API Chaser with a different technique to detect
API calls. It detects API calls by comparing an address pointed to
by an instruction pointer to addresses where APIs should reside,
which is a common existing technique. The other components of
Type I are the same as API Chaser.
6.2.1.1 Results

Table 1 lists the results of this experiment. We manually in-
vestigated the causes of the differences in captured API calls and
revealed that all of them were caused by false negatives of Type

I. We explain the details of the two cases, Themida and Mys-
tic!gen2, although the others also had the same reason for their
differences. In the case of Themida, API Chaser captured 2,966
more API calls than Type I. All the unmatched API calls were
detected in the dynamically allocated and writable memory area.
On the other hand, all the matched API calls were detected in
the memory area where system DLLs were mapped. We man-
ually confirmed that all API calls, except for API calls with no
arguments that API Chaser detected, had valid argument infor-
mation. Thus, these were not false positives of API Chaser, but
false negatives of Type I. As we mentioned, API Chaser can de-
tect the stolen API call by propagating taint tags added to an API

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Table 1 Results of Hook Evasion Resistance Experiment.

Virus Name API Chaser Type I Unmatched Reason Anti-analysis
Win32.Virut.B 6,361 4,852 1,509 F.N. of Type I API Hook

Themida 43,994 41,028 2,966 F.N. of Type I Stolen Code
Infostealer.Gampass 38,382 1,397 37,485 F.N. of Type I Sliding Call
Packed.Mystic!gen2 97,364 97,363 1 F.N. of Type I Sliding Call

Themida: calc.exe packed by Themida [51]. F.N.: False Negative.

Table 2 Results of Target Evasion Resistance Experiment (Tracking).

Virus Name Description of Anti-analysis Behavior Result

Win32.Virut.B
Infecting files with CreateFileMapping �

Injecting code with WriteProcessMemory �
Trojan.FakeAV

Injecting code with WriteProcessMemory �
Changing the name of rundll32.exe to jahjah06.exe �

Infostealer.Gampass
Injecting code with WriteProcessMemory �
and the injected code loads a dropped DLL

Changing its name to svchost.exe �
Spyware.perfect Injecting a dropped DLL with SetWindowsHookEx �

Trojan.Gen Injecting a dropped DLL via AppInit DLLs registry key �
Backdoor.Sdbot Executing a dropped EXE as a service �

�indicates that API Chaser can correctly track and identify anti-analysis behaviors without being evaded.

to the stolen instructions, while Type I cannot because it does
not track the movement of the stolen instructions. This capability
contributes to the resistance of API Chaser against hook evasion
techniques. In the case of Packed.Mystic!gen2, we confirmed that
it used the sliding call technique. The following code snippet is
from a sliding call in this malware.
0x00408175 push ebp

0x00408176 mov ebp, esp

0x00408178 sub esp, 20h

0x0040817B cmp dword ptr [eax], 8B55FF8Bh

0x00408181 jnz loc_40818C

0x00408187 add eax, 2

0x0040818C add eax, 6

0x00408191 jmp eax ;to API+2 or API+6

The cmp instruction at 0x0040817B confirms the existence of
the following four bytes, 0x8B, 0xFF, 0x55, and 0x8B at the ad-
dress stored in eax, which points to the head of an API. These
four bytes may indicate the assembler instructions, mov edi,
edi; push ebp; mov ebp, esp;, which is a prologue for a
hotpatch-enabled API, which has sufficient space for hooking be-
fore the first instruction of the API. In fact, the total size of the
three assembler instructions is a total of six bytes. If the malware
finds these four bytes at the entry of the API, it jumps to a loca-
tion at six bytes after the entry of the API to avoid monitoring.
API Chaser adds taint tags to all instructions in each API, so it
was able to detect the execution of the instruction at API entry +
0x6 and identified it as an API call from malware.
6.2.2 Target Evasion Resistance Experiment

We prepared six real-world malware with target evasion func-
tions. Using these malware, we evaluated the following two ca-
pabilities of API Chaser: tracking the movement of target code
and identifying the target code in a code-injected process or ex-
ecutable file. As for the tracking capability, we confirmed that
API Chaser can capture API calls from a process or executable
code-injected file by the six malware. In regard to the identi-
fying capability, we prepared another comparative environment
(Type II). The Type II environment is different from API Chaser

in identifying target code and tracking code injection. It identifies
its target depending on the PID and tracks code-injection based
on invocation of specific API calls and DLL loading events. For
example, Type II hooks the invocations of WriteProcessMemory
API calls and extracts the PID of the destination process of the
writing from its arguments. Then, it includes the PID into its
monitoring targets. The Type II components except for those for
identifying and tracking target code are the same as API Chaser.
6.2.2.1 Results

Table 2 lists the results of the tracking experiment. API Chaser
successfully tracked all the behaviors of the injected code with-
out being evaded. We consider that Type II can also track them
if it knows how target malware evades monitoring and it prepares
mechanisms for tracking the behaviors beforehand. However, it
is practically difficult to know all code injection methods and pre-
pare for them before executing target malware because there are
many unpublished functions in Windows and third party software.
On the other hand, API Chaser can track code injection by propa-
gating taint tags added to target malware. Since API Chaser does
not depend on individual code injection mechanisms, we can say
that it is more generic than the existing approach depending on
each injection method for tracking them.

Table 3 lists the results of the identifying experiment. We man-
ually investigated the causes of the unmatched API calls and re-
vealed that all the unmatched API calls were caused from false
positives of Type II. That is, API Chaser successfully identified
all API calls invoked from an injected code in a benign process
and eliminated API calls invoked from the benign part of code
in the process. We explain the details of the two specific cases,
Trojan.FakeAV and Infostealer.Gampass, although the others also
yield the same results. In the case of Trojan.FakeAV, all the
matched API calls were invoked from the dynamically allocated
memory area which was allocated and written by Trojan.FakeAV,
while unmatched API calls were invoked from the memory area
where explorer.exe was mapped. This indicates that API Chaser
captured the API calls invoked from the code injected by Tro-
jan.FakeAV and Type II additionally captured API calls invoked

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Table 3 Results of Target Evasion Resistance Experiment (Code identification).

Virus Name Injected Process API Chaser Type II Unmatched Reason
Win32.Virut.B notepad.exe 315 3,020 2,705 F.P. of Type II
Win32.Virut.B winlogon.exe 184 783 599 F.P. of Type II
Trojan.FakeAV explorer.exe 20 1,782 1,762 F.P. of Type II

Infostealer.Gampass explorer.exe 147,646 149,408 1,762 F.P. of Type II
Spyware.perfect notepad.exe 4,792 7,511 2,719 F.P. of Type II

Trojan.Gen notepad.exe 230 3,222 2,992 F.P. of Type II

F.P.: False Positive. We filtered nested API calls by white-listing the memory address ranges where known system DLLs were mapped.

from original code in the code-injected benign process. In the
case of Trojan.Gen, all the matched API calls were invoked from
tzdfjhm.dll, while all the unmatched calls were from the memory
area where notepad.exe was mapped. Library tzdfjhm.dll was
registered to the registry key, AppInit DLLs, which is used by
malware for injecting a registered DLL into a process. The DLL
was dropped and registered to the key by Trojan.Gen.

6.3 Synthetic Malware Experiment
The purpose of this experiment is to show the feasibility of

API Chaser against state-of-the-art evasion techniques includ-
ing those introduced in academic studies. For that purpose, we
collected proof-of-concept (PoC) codes of the following tech-
niques, Process Hollowing [29], [31], AtomBombing [7], [30],
PowerLoaderEx [6], Shim-based DLL Injection [40], and Stealth
Loader [26]. Then, we generated synthetic malware samples
based on the PoC codes and analyzed them with API Chaser. We
used Win7sp1 as a guest OS of API Chaser for this experiment.
The reason why we focus on these five techniques is that they
appeared or became major after our paper was first published in
2013 [25]. So, these techniques represent new techniques for API
Chaser and if we can precisely analyze the malware with these
techniques with API Chaser, we can demonstrate that the design
of API Chaser is possibly strong enough for analyzing future-
emerging techniques.
6.3.1 Process Hollowing

Process Hollowing is a technique that hides the presence of a
malware process. First, it creates a benign executable file pro-
cess that is suspended. Next, it overwrites the contents of the sus-
pended process with those of a malicious executable file, and then
resumes execution of the process after overwriting is completed.
The PoC code for this technique, Ref. [31] creates a process of sv-
chost.exe that is suspended and overwrites its contents with that
of the specified (malicious) executable file.
6.3.1.1 Result

API Chaser successfully captured the APIs invoked from the
specified executable file overwritten in the process of svchost.exe.
API Chaser kept tracking the movement of the overwritten code
of the specified executable code by propagating tags added to the
code so that APIs invoked from the code were the control trans-
fers from tainted code to API code.
6.3.2 AtomBombing

AtomBombing is a technique that injects a (malicious) code
snippet into explorer.exe and executes it without using the APIs
commonly used for code injection: WriteProcessMemory, Virtu-
alAllocEx, and CreateRemoteThread. AtomBombing takes ad-
vantage of the atom table which is a shared data structure already

mapped into explorer.exe. AtomBombing maps a code snippet
into the virtual memory space of explorer.exe by writing it in the
atom table. After the code mapping is completed, AtomBomb-
ing invokes the NtQueueApcThread API to hijack a thread with
sleeping status in explorer.exe. Then, when the sleeping thread
wakes up, the thread starts executing the mapped code. Atom-
Bombing uses the return-oriented-programing (ROP) technique
to avoid the issue in which the memory areas of the atom table do
not have the executable permission.
6.3.2.1 Result

API Chaser successfully captured the API calls invoked from
the code injected into explorer.exe since the caller instructions of
these APIs were written by this synthetic malware, i.e., they were
tainted. However, API Chaser missed capturing the API calls
invoked from the ROP gadgets. The reason for this was that the
caller instructions of these API calls in the ROP gadgets belonged
to a benign code. So, these caller instructions have the benign-tag
and control transfer of this API call is from benign-tag to api-tag.
We discuss this issue in more depth in Section 8.3.3.
6.3.3 PowerLoaderEx

PowerLoaderEx is an evolved version of PowerLoader [6].
This is also a technique that injects a code snippet into a benign
process and executes it without using the three APIs. Power-
LoaderEx first writes code in a desktop heap memory, which is
a shared area among GUI applications. Second, it overwrites the
function pointer that handles a specific type of window message
using the SetWindowLongPtr API. Then, it intentionally gener-
ates the window message to kick the handler with the SendNo-
tifyMessage API. Since the desktop heap is basically not exe-
cutable, PowerLoaderEx employs the ROP technique to add ex-
ecutable permission to the injected code in a manner similar to
AtomBombing.
6.3.3.1 Result

Similar to the AtomBombing case, API Chaser could capture
the API calls invoked from the injected code, while it failed to
capture the ones from ROP gadgets. This is also discussed more
in Section 8.3.3.
6.3.4 Shim-Based DLL Injection

Shim-based DLL Injection is a technique that injects a DLL
into a benign process by taking advantage of the application com-
patibility mechanism of Windows; Microsoft officially prepares a
mechanism that ensures backward compatibility in most of their
products. This is currently implemented by the Application Com-
patibility Framework (ACF). The ACF is capable of intercepting
API calls, controlling the loading process of DLLs, and patch-
ing memory. The PoC code for this technique [13] generates an
sdb file while configuring its inject-target program, an injecting

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 8 Top 30 malware families in 6,722 samples. X-axis is malware family, while y-axis is the number
of samples in each family with logarithmic scale.

DLL installs the sdb file with the sdbinst command, and the
PoC code kicks the target program. When the target program is
executed, the ACF injects the configured DLL into the process of
the target program.
6.3.4.1 Result

API Chaser can track the injection of the DLL if the DLL is
tainted. Taint analysis allows API Chaser to track the movement
of its target code with taint tags without being affected by the in-
jection manner. In real-world malware, since an injecting DLL
is downloaded or dropped by the malware, the DLL becomes
tainted on API Chaser. So, we do not miss capturing API calls
invoked from the DLL injected into a process.
6.3.5 Stealth Loader

Stealth Loader is a program loader that loads Windows system
DLLs such as kernel32.dll and ntdll.dll without leaving any trace
to be detected. By loading a system DLL with Stealth Loader, the
loaded DLL is not recognized as being ‘loaded’ by the Windows
OS or even analysis tools. Since analysis tools fail to recognize
the existence of the loaded DLL, they also fail to capture API calls
of the functions exported from the unrecognized system DLL.
6.3.5.1 Result

API Chaser recognizes the calls of the function exported from
stealth-loaded system DLLs as ‘API calls’. This is because API
Chaser identifies an API call based on taint tags added to the API
before initiating an analysis (pre-boot disk tainting), and it does
not rely on any metadata managed by the Windows OS, which
is the portion Stealth Loader attacks. So, if Stealth Loader de-
ceives the Windows OS by not leaving any trace identifying the
existence of loaded DLLs, API Chaser is not affected by that.

6.4 Large-Scale Malware Analysis Experiment
The goal of this experiment is to show how much major hook

and target evasion techniques are among real-world malware
samples. To achieve this goal, we collected a certain number

of malware from various sources and analyzed them with API
Chaser to find malware using these techniques. We call malware
using hook evasion techniques hook-evasive malware, whereas
we call malware using target evasion techniques target-evasive

one in this experiment.
6.4.1 Dataset

As the dataset for this experiment, we totally collected 8,979
malware samples from various data sources including malware
exchange with an industrial vendor and our own honeypots. Then,
we filtered out 100 samples whose hash value was duplicated.
We used the 8,879 samples for this experiment. Next, we down-
loaded the anti-virus scan reports of 6,722 samples from Virus-
Total [54] because we needed them for classification with AV-
Class [45]. The other 2,157 samples did not have any report in
VirusTotal, which means they had never been uploaded for scan-
ning onto VirusTotal, so we made None family for them. As a
result, we classified the 6,722 samples into 420 families with AV-
Class and thus we classified 8,879 samples into 421 families in-
cluding None.

Figure 8 shows the major top 30 malware families in the sam-
ples. Sality is the most major family in them and it has 3,131 sam-
ples, which occupies about 28% of the dataset. None is the sec-
ond major family and it has 2,157 samples, which occupies about
24%. Since with only the two families, we can occupy about 60%
of the total dataset. So, this dataset has a certain amount of bias.
Thus, when we show the results of this experiment, we show not
only the number of samples, but also the number of the families
to mitigate this bias.
6.4.2 Procedure

As an analysis environment, we prepared three API Chaser in-
stances to analyze the samples in parallel and we configured the
analysis time to be 5 mins per analysis. After 5 mins elapsed, we
forcibly terminated the API Chaser process even though the mal-
ware under analysis was still running. We used Win7sp1 as the

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

guest OS of API Chaser for this experiment.
After all analyses had been done, we found malware samples

using hook evasion or target evasion techniques by parsing each
analysis log. We found hook-evasive malware samples from API
call logs as follows. We first calculated the virtual addresses of
each API from the base address of a loaded DLL and its export
function table. Next, we compared the address logged in a log
file as an API call destination to the calculated address, and then
if the addresses were not matched, we identified the malware as
hook-evasive.

We also found target-evasive malware samples as follows. We
first created a list of processes which were in parent-child re-
lationship with monitored malware based on specific API calls,
such as CreateProcessA/W. When we found an API call invoked
from a process which was not on the list, we identified the mal-
ware sample as target-evasive because the API call possibly came
from a injected code with target evasion.
6.4.3 Result

We found 701 hook-evasive malware samples in the dataset.
476 samples out of 701 belonged to miuref malware family and
this was the most popular one in the dataset. 104 samples be-
longed to None family and this is the second popular one. The
others belonged to any one of 34 families. The top 5 families were
miuref(476), None(104), ramnit(66), sality(3), and dynamer(3)
whose numbers in the parentheses express the number of samples
belonging to these families. Regarding target-evasive malware,
we found 344 target-evasive malware samples. 56 samples out of
344 belonged to None family and this was the most popular one
in the dataset, while the others belonged to any one of 83 fam-
ilies. The top 5 families were None(56), bayrob(32), sality(31),
gamarue(21), and parite(19). Since hook evasion techniques were
used in 8.5% families of all dataset families and target evasion
techniques are used in 19.9%, we argue that these evasion tech-
niques are major and often used among malware to intensionally
hide API calls.

Through these analyses, we collected a total of 5,133,292,748
API call logs. 4,771,863 out of 5,133,292,748 API calls, which
were about 0.09% of the total API calls, were intentionally hid-
den with hook evasion techniques, while 172,859,468 API calls,
which were about 30% of the total API calls, came from a in-
jected code with target evasion techniques. As we showed in the
accuracy experiments, API Chaser was able to capture these API
calls without being evaded and then we could collect the argu-
ments passed to these API calls correctly, which possibly contain
useful information as an indicator for detecting malware, i.e., in-
dicator of compromise (IOC). However, if you analyze these eva-
sive malware with an analysis environment whose architecture
for API monitoring is based on the ones of Type I or Type II, you
may miss capturing some of these API calls or excessively cap-
ture them, respectively, if the analysis environment does not care
about evasion techniques at all. These inaccuracies of API call
monitoring possibly lead to both false negatives and positives.

Lastly, regarding analysis times, we started the analysis at
2017/2/7 19:50:59 and finished at 2017/2/23 1:35:33. We spent
approximately 382 hours to analyze the 8,879 samples. On aver-
age, we spent 7.75 minutes (= (382*60)/(8,879/3)) to analyze one

sample with one API Chaser instance, even though we configured
the analysis time to be set to 5 mins for the analysis. This time
difference comes from the time for preparing the analysis envi-
ronment before initializing the analysis and that for compressing
logs after analysis.

6.5 Performance Experiment
The goals of this experiment are to show how much of per-

formance degradation API Chaser has, compared to a vanilla
QEMU, and where the degradation mainly comes from. Perfor-
mance is an important factor to consider for a malware analysis
system because a large delay in execution in a specific code block
may expose the existence of an analysis environment to malware.
To avoid being detected with the delay in execution, a practical
malware analysis environment needs to achieve a reasonable level
of performance. However, as we explained until here, we put a
higher priority on precision for API monitoring rather than per-
formance as the fundamental design of API Chaser. This design
choice may impose on performance penalties. To know the im-
pact of the penalties, we conduct this experiment and clarify the
most influential part in API Chaser.

We used five Windows standard commands for this experiment.
With these commands, we could cover APIs of major behaviors
which we should focus on, such as file, registry, network, process,
or memory-related behaviors.

As comparative environments, we prepared three environ-
ments: vanilla QEMU (Qemu), API Chaser without API monitor-
ing (w/o API monitoring), and API Chaser without argument
handlers (w/o argument hander). The reason why we pre-
pared these comparative environments was to clarify which func-
tionality of API Chaser mainly causes performance degradation.
As we explained, we added several functionalities to QEMU to
implement API Chaser; we could roughly classify the added func-
tionalities into three groups: functionality related to taint analy-
sis, API hooking (API monitoring), or argument handling. API
Chaser, of course, has the three functionalities, i.e., taint analy-
sis, API monitoring, and argument handling. The w/o argument
handler environment has taint analysis and API monitoring but
it does not have argument handing. The w/o API monitoring
environment has only taint analysis and it does not have both API
monitoring and argument handling. Qemu does not have any of
them. By comparing the performances of them, we could iden-
tify the most influential functionality in the three ones to the per-
formance of API Chaser. In addition, we used WinXPsp3 as the
guest OS of API Chaser for this experiment.
6.5.1 Result

Figure 9 shows the relative run duration of these five com-
mands on each environment compared to relative QEMU, which
is set to 1. The results show that the degradation in perfor-
mance of API Chaser was approximately 3 to 10 fold compared
to that for Qemu. As you can see, the performance degrada-
tion mainly came from the taint analysis functionality because
the difference between Qemu and w/o API monitoring was
larger than the others, i.e., difference between w/o argument
handler and w/o API monitoring or one between API Chaser
and w/o argument hander.

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Fig. 9 Results of performance experiment: Number of captured API calls during the execution of each
command is as follows: compact is 28,464, xcopy is 1,222, reg is 44,059, tasklist is 8,271, and
netstat is 103.

We consider that the degradation is not a severe limitation to
API Chaser because the current version of API Chaser has not
been optimized to reduce its overhead. We consider that there
is much room for improvement, for example, applying the work
done in Ref. [18] to API Chaser. In addition, we discuss in Sec-
tion 8.3.1 an issue that arises from the performance degradation
when we analyze malware in terms of checking the delay of exe-
cution.

7. Related Work

In this section, we discuss several studies related to API
Chaser. We categorize them into dynamic analysis sandbox, tar-
get evasion, and hook evasion.

7.1 Dynamic Analysis Sandbox
Several approaches have been proposed that precisely monitor

malware activities based on API monitoring. We describe these
approaches based on three categories: binary rewriting, binary-
instrumentation, and simulation.

Binary rewriting approaches involve implanting hooks at the
entries of APIs by modifying a function table for APIs or instruc-
tions of system DLLs in the analysis environment. CWSand-
box [55] and Cuckoo Sandbox [38] employ an in-line hooking
technique that replaces instructions at the entry of an API with a
jmp instruction pointed to a function for monitoring. JoeBox [9]
hooks APIs or system calls using a data rewriting technique, i.e.,
export address table hooking, that replaces a function pointer in
the export address table of the PE header with the address to a
function for monitoring.

Binary rewriting possibly exposes artifacts that allow malware
to realize that it is running under analysis, and stop its execution
or change its behavior. This drawback causes us to fail to grasp
the actual activities of malware. We have not considered rewrit-
ing approaches in API Chaser because we want to avoid such
exposure to malware.

Binary instrumentation involves comparing the address of in-
structions being executed with those where the API is located.
Stealth Breakpoint [52] performs code instrumentation for user-
land processes at the OS layer and determines the execution of
the target address, i.e., the addresses where APIs reside, based on
address comparison. Cobra [53] is a malware analysis environ-
ment that uses stealth breakpoints for hooking API calls. TTAna-
lyze [4] (ancestor of Anubis [3]) monitors APIs and system calls
from malware in the virtual machine monitor (VMM) layer us-
ing address comparison. TTAnalyze determines target processes

using Control Register number 3 (CR3), which is passed from
a probe module running on the guest OS. Panorama [58] is a
malware analysis environment established on the whole-system
emulator TEMU [48]. Panorama is designed to analyze and de-
tect malware based on taint tracking. It does not hook any APIs
or system calls for malware analysis, although we found in its
source code that TEMU has functions for hooking APIs based on
address comparison.

These systems detect the execution of APIs by comparing the
address pointed by an instruction pointer to addresses where APIs
should reside. In addition, they identify the caller of an API based
on PID, CR3 or TID. The anti-analysis techniques mentioned in
Section 2 can possibly be used to evade these approaches. To
address these evasion issues, we proposed the API monitoring
mechanism with code tainting in API Chaser.

An approach that is similar to that proposed herein for monitor-
ing API calls is the one applied in IntroLib [16] and CXPInspec-
tor [11]. Their approach defines an API call as a control transfer
between different memory regions, i.e., one for malicious code
and the other for API code. IntroLib relies on shadow page ta-
bles for interception, while CXPInspector relies on a hardware-
assisted virtualization support feature such as Extended Page Ta-
bles (EPT) or Nested Page Tables (NPT). On the other hand, API
Chaser relies on taint tags to intercept the control transfer between
malicious code and API code. As we mentioned previously, taint
analysis allows us to track the movement of both malicious codes
and API codes. So, we can handle both hook evasion and target
evasion in the same way.

Norman Sandbox [36] simulates the Windows OS and local
area networks. It simulates almost all APIs that the Windows sys-
tem library provides. However, it can also possibly be detected
by malware because it does not perfectly simulate the behaviors
of all Windows APIs.

7.2 Target Evasion
Another category of research related to this paper is code in-

jection defense. Quincy [1] and Membrane [39] are designed to
detect code injection for forensics use-cases. Quincy relies on
a machine-learning approach with 38 features of code injection,
while Membrane focuses on the anomalies caused by code load-
ing. On the other hand, our primary use-case is dynamic analysis
and we focus on tracking malicious code and capturing API calls
invoked from injected malicious code. Bee Master [2] prepares
decoy processes in an analysis environment and detects injections
into processes. Bee Master primarily focuses on detecting code

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

injection, while we mainly focus on analyzing the injected code.
Korczynski et al. [28] proposed an approach for tracking mali-
cious code injection with taint analysis, which is similar to code
tainting. The difference is that we mainly focus on API monitor-
ing and applying code tainting to API monitoring, i.e., not only
for tracking injected code.

7.3 Hook Evasion
Yin et al. introduced HookFinder [57] to identify and analyze

malware hooking behavior. Their study mainly focuses on de-
tecting malware hook behavior and clarifying how they hook. On
the other hand, we mainly focus on maintaining precise analysis
even in a situation where malware adds hooks to API codes, i.e.,
stolen code. Sharif et al. proposed an approach for static anal-
ysis to analyze the control flow from a call site to the API code
via junk instructions for static analysis [46], while our approach
is mainly for dynamic analysis. Choi proposed an approach to
track the movement of API codes with stolen code by tracing all
memory access [14]. The proposed approach herein is similar to
his, but the difference is that we track the movement with taint
analysis, while he tracks using memory access trace.

8. Discussion

In this section, we discuss the resistance capability of API
Chaser against hook evasion techniques which we did not have
experiments in Section 6.2, multiple operands handing for taint
propagation, and the limitations of API Chaser.

8.1 Other Hook Evasions
In the accuracy experiment in Section 6.2, API Chaser was not

affected by hook evasion techniques used in real-world malware.
However, we could not find any malware in the wild using name
confusion or copied API obfuscation. So, we qualitatively dis-
cuss the resistance capability of API Chaser against these two
techniques.

We consider that API Chaser is not affected by name confusion
because of the following considerations. When a DLL is copied,
the taint tags set on the DLL are propagated to the copied DLL.
Even if the name of the DLL is changed, it does not affect taint
propagation at all because taint propagation is conducted at (vir-
tual) hardware layer without depending on the semantics of an
OS or a file system and the change of file names is a matter of OS
or file system layers. Thus, when API code in the copied DLL
is executed, we can capture the execution of the API correctly
because the propagated taint tag has existed on the code of the
API.

We also consider that API Chaser is not affected by copied API
obfuscation. As we explained in Section 2, copied API obfusca-
tion is similar with stolen code. Copied API obfuscation copies
all instructions of an API, while stolen code does the first few in-
structions of the API. Considering a case that a copied or stolen
API is invoked from a malicious code, there is no difference in
control transfers between them. That is, an execution control is
transferred from the malicious code to the first instruction of the
copied or stolen API. Since we have already demonstrated that
API Chaser handles stolen code properly, we believe that it could

do copied API obfuscation as well.

8.2 Multiple Operands for Taint Propagation
When API Chaser handles an instruction which has more than

two operands and both of them have different taint tags, a taint
propagation depending on one of the tags is disconnected. This is
because, in our implementation of API Chaser, we simply prop-
agate the taint tag of the first operand and discard the one of the
second operand when we encounter this situation.

To mitigate this issue, an approach is to make a priority based
on the types of taint tags for propagation. When we encounter
this situation, we decide which tag should be propagated to the
destination operand based on the priority. Another one is to gen-
erate a new tag and make a relationship between the new tag and
the tags of each operand to construct the data-flow with them
in an offline analysis. In either case, we need to add a code to
the handlers for these types of instructions, i.e., instructions with
multiple operands. Since these instructions often appear during
an analysis, the impact of the additional code is not so small.
We need to achieve a balance between performance and precision
when we adopt one of these approaches to API Chaser.

8.3 Limitation
We discuss limitations of API Chaser from viewpoints

of detection-type anti-analyses, scripts, return-oriented-
programming, and implicit flow.
8.3.1 Detection-Type Anti-analysis

With the exception of evasion-type anti-analysis, malware of-
ten uses detection-type anti-analysis techniques [56]. Regarding
this type of anti-analysis, API Chaser performs well except for
VM detection and timing attacks because API Chaser does not
modify the guest OS environment, does not install any modules,
and does not simulate any APIs. So, we discuss the two excep-
tions below.

Several methods for detecting QEMU have been studied and
proposed [19], [32], [33], [42]. To avoid these detections, we in-
dividually managed to let QEMU-specific artifacts become invis-
ible to malware. For example, we changed the product names
of virtual hardware in QEMU for detection techniques that de-
pends on these names. We also changed the behaviors of specific
instructions by finding the execution of these instructions and dy-
namically patching them at runtime.

Timing attacks are a technique that checks the delay in execut-
ing a specific code block. We designed API Chaser to focus on
accuracy rather than performance; therefore, it takes several more
seconds to execute part of a code block than in real hardware en-
vironments. As for this technique, we can overcome this with
the same approach as that used in our previous study [24], which
controls the clock in a guest OS on API Chaser by adjusting the
tick counts in the emulator to remove the delay.
8.3.2 Scripts

API Chaser has a limitation for analyzing script-type malware,
e.g., a visual basic script or a command script. These scripts are
executed on some platforms such as an interpreter or a virtual ma-
chine. Although these scripts have the taint tags of malware, API
Chaser cannot detect their execution because the instructions exe-

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

cuted on the virtual CPU are those of their platform and not those
of the tainted script. To address this problem, we are currently
considering a way to identify the target code with both taint tags
and semantic information such as PID and TID.
8.3.3 Return Oriented Programming

API Chaser faces a limitation when an API is called in a man-
ner similar to ROP [12]. For example, when an attacker con-
structs a ROP chain by pushing the address of a specific API and
executing the ret instruction in a benign code region to jump to
the API, the control transfer in this case is from a benign-tag to
an api-tag. So, API Chaser fails to identify this control transfer
as a monitoring target.

We may be able to handle this case by extending taint-based
control transfer interception using the approach that Korczynski
et al. [28] proposed. That is, when a control transfer instruction
such as ret, call, or jmp is executed and the destination address
of the instruction is tainted, we identify such a control transfer
and the first basic block at the destination address as a part of
malicious code.

Another option is to detect the ROP code. If we can detect
the ROP code, we may be able to identify the execution of APIs
called from malware via the detected ROP code. Detection of
ROP is outside the scope of this paper and we leave it for other
studies. Many studies leverage the unique behavioral character-
istics of the ROP code such as its use of many ret instructions,
jumps to the middle of an API, or jumps to an instruction of non-
exported functions.
8.3.4 Implicit Flow

Another limitation of API Chaser is due to feasibility issues of
taint propagation, e.g., implicit flow. If malware authors know the
internal architecture of API Chaser, especially code taint propaga-
tion, it may be possible to cause intentionally API Chaser to yield
false positives or false negatives using implicit flow. For example,
malware reads a piece of code in a benign program and processes
the code through implicit flow which does not change its value.
Then it writes the code back to the same position. As a result, the
taint tags on the code are changed from benign to malware. Due
to this, if malware executes the written code, API Chaser identi-
fies the execution as the one of malware, even though the code is
truly equivalent to benign code. On the other hand, if malware
reads a piece of code in an API and conducts the same process,
it overwrites the taint tags for API with those for malware. Thus,
API Chaser deals with the execution of the code as one of mal-
ware. To address this problem, we must improve the strength of
the taint propagation, for example, as done in Refs. [22], [47]. We
consider this as our future work.

9. Conclusion

The anti-analysis feature of malware is a challenging problem
for anti-malware research especially in developing practical mal-
ware analysis environments. We focused on this problem and
provided a solution by using API Chaser, which is a prototype
system of our API monitoring approach. API Chaser was de-
signed and implemented to prevent malware from evading API
monitoring. We conducted experiments using actual malicious
code with various types of anti-analysis to show that API Chaser

correctly works according to its design of being difficult to evade.
We believe that API Chaser will be able to assist malware ana-
lysts in understanding malware activities more correctly without
spending a large amount of effort in reverse engineering and con-
tribute to improving the effectiveness of anti-malware research
based on API monitoring.

References

[1] Barabosch, T., Bergmann, N., Dombeck, A. and Padilla, E.: Quincy:
Detecting Host-Based Code Injection Attacks in Memory Dumps,
Detection of Intrusions and Malware, and Vulnerability Assessment,
Polychronakis, M. and Meier, M. (Eds.), Cham, Springer International
Publishing, pp.209–229 (2017).

[2] Barabosch, T., Eschweiler, S. and Gerhards-Padilla, E.: Bee Master:
Detecting Host-Based Code Injection Attacks, Detection of Intrusions
and Malware, and Vulnerability Assessment, Dietrich, S. (Ed.), Cham,
Springer International Publishing, pp.235–254 (2014).

[3] Bayer, U., Habibi, I., Balzarotti, D., Kirda, E. and Kruegel, C.: A
View on Current Malware Behaviors, Proc. 2nd USENIX Confer-
ence on Large-scale Exploits and Emergent Threats: Botnets, Spy-
ware, Worms, and More, LEET’09, p.8, USENIX Association (online),
available from 〈http://dl.acm.org/citation.cfm?id=1855676.1855684〉
(2009).

[4] Bayer, U., Kruegel, C. and Kirda, E.: TTAnalyze: A Tool for Ana-
lyzing Malware, Proc. European Institute for Computer Antivirus Re-
search Annual Conference (2006).

[5] Bellard, F.: QEMU, a Fast and Portable Dynamic Translator, USENIX
Annual Technical Conference, FREENIX Track, pp.41–46, USENIX
(2005).

[6] BreakingMalware.com: PowerLoaderEx, enSilo (online), avail-
able from 〈https://github.com/BreakingMalware/PowerLoaderEx〉
(accessed 2018-10-01).

[7] BreakingMalwareResearch: atom-bombing, enSilo (online), available
from 〈https://github.com/BreakingMalwareResearch/atom-bombing〉
(accessed 2018-10-01).

[8] Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D.X. and
Yin, H.: Automatically Identifying Trigger-based Behavior in Mal-
ware, Botnet Detection, pp.65–88 (2008).

[9] Buhlmann, S.: Joebox Sandbox, Joe Security LLC (online), available
from 〈http://www.joesecurity.org/〉 (accessed 2018-10-01).

[10] Carrier, B.: The Sleuth Kit (TSK), http://www.sleuthkit.org/ (online),
available from 〈http://www.sleuthkit.org/〉 (accessed 2017-08-17).

[11] Carsten Willems, Ralf Hund, T.H.: CXPInspector: Hypervisor-Based,
Hardware-Assisted System Monitoring, Technical Report Technical
Report TR-HGI-2012-002, Ruhr University Bochum (2012).

[12] Chen, P., Xiao, H., Shen, X., Yin, X., Mao, B. and Xie, L.: DROP:
Detecting Return-Oriented Programming Malicious Code, Proc. 5th
International Conference on Information Systems Security, ICISS ’09,
pp.163–177, Springer-Verlag (2009).

[13] Chevet, S.: dllinjshim.cpp, github.com (online), available from
〈https://gist.github.com/w4kfu/95a87764db7029e03f09d78f7273c4f4〉
(accessed 2018-10-01).

[14] Choi, S.: API Deobfuscator: Identifying Runtime-obfuscated API
calls via Memory Access Analysis, Black Hat Asia (2015).

[15] Coppola, M.: Loadvm snapshot as read-only, Qemu Mailing
List (online), available from 〈https://bugs.launchpad.net/qemu/+bug/
1184089〉 (accessed 2018-10-01).

[16] Deng, Z., Xu, D., Zhang, X. and Jiang, X.: IntroLib: Effi-
cient and transparent library call introspection for malware foren-
sics, Digital Investigation, Vol.9, pp.S13–S23 (online), DOI:
https://doi.org/10.1016/j.diin.2012.05.013 (2012).

[17] Egele, M., Scholte, T., Kirda, E. and Kruegel, C.: A Survey
on Automated Dynamic Malware-analysis Techniques and Tools,
ACM Comput. Surv., Vol.44, No.2, pp.6:1–6:42 (online), DOI:
10.1145/2089125.2089126 (2008).

[18] Ermolinskiy, A., Katti, S., Shenker, S., Fowler, L.L. and McCauley,
M.: Towards Practical Taint Tracking, Technical Report UCB/EECS-
2010-92, EECS Department, University of California, Berkeley
(2010).

[19] Ferrie, P.: Attacks on Virtual Machine Emulators, Symantec Security
Response (2006).

[20] Hex-Rays: Hex-Rays Home, Hex-Rays (online), available from
〈https://www.hex-rays.com/〉 (accessed 2018-09-30).

[21] Iwamura, M., Itoh, M. and Muraoka, Y.: Towards Efficient Analy-
sis for Malware in the Wild, Proc. IEEE International Conference on
Communications, ICC ’11 (2011).

[22] Kang, M.G., McCamant, S., Poosankam, P. and Song, D.: DTA++:

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Dynamic Taint Analysis with Targeted Control-Flow Propagation,
NDSS (2011).

[23] Kawakoya, Y., Iwamura, M. and Hariu, T.: Tracing Malicious Code
with Taint Propagation, Journal of Information Processing Society of
Japan, Vol.54, No.8, pp.2079–2089 (2013).

[24] Kawakoya, Y., Iwamura, M. and Itoh, M.: Memory Behavior-Based
Automatic Malware Unpacking in Stealth Debugging Environment,
Proc. 5th IEEE International Conference on Malicious and Unwanted
Software (2010).

[25] Kawakoya, Y., Iwamura, M., Shioji, E. and Hariu, T.: API Chaser:
Anti-analysis Resistant Malware Analyzer, Research in Attacks, Proc.
Intrusions, and Defenses: 16th International Symposium, RAID 2013,
pp.123–143 (2013).

[26] Kawakoya, Y., Shioji, E., Otsuki, Y., Iwamura, M. and Yada, T.:
Stealth Loader: Trace-free Program Loading for API Obfuscation, Re-
search in Attacks, Proc. Intrusions, and Defenses: 20th International
Symposium, RAID 2017 (2017).

[27] Kolbitsch, C., Kirda, E. and Kruegel, C.: The Power of Pro-
crastination: Detection and Mitigation of Execution-stalling Mali-
cious Code, Proc. 18th ACM Conference on Computer and Com-
munications Security, CCS ’11, pp.285–296, ACM (online), DOI:
10.1145/2046707.2046740 (2011).

[28] Korczynski, D. and Yin, H.: Capturing Malware Propagations
with Code Injections and Code-Reuse Attacks, Proc. 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’17, pp.1691–1708, ACM (online), DOI: 10.1145/3133956.3134099
(2017).

[29] Leitch, J.: Process Hollowing, AutoSec Tools (online), avail-
able from 〈https://www.autosectools.com/Process-Hollowing.html〉
(accessed 2018-10-01).

[30] Liberman, T.: ATOMBOMBING: BRAND NEW CODE IN-
JECTION FOR WINDOWS, enSilo (online), available from
〈https://blog.ensilo.com/atombombing-brand-new-code-injection-for-
windows〉 (accessed 2018-03-30).

[31] m0n0ph1: Process-Hollowing, autosectools.com (online), available
from 〈https://github.com/m0n0ph1/Process-Hollowing〉 (accessed
2018-10-01).

[32] Martignoni, L., Paleari, R., Fresi Roglia, G. and Bruschi, D.: Test-
ing System Virtual Machines, Proc. 19th International Symposium on
Software Testing and Analysis, ISSTA ’10, pp.171–182, ACM (online),
DOI: 10.1145/1831708.1831730 (2010).

[33] Martignoni, L., Paleari, R., Roglia, G.F. and Bruschi, D.: Testing
CPU Emulators, Proc. 18th International Symposium on Software
Testing and Analysis, ISSTA ’09, pp.261–272, ACM (online), DOI:
10.1145/1572272.1572303 (2009).

[34] McLoughlin, M.: The QCOW2 Image Format, people.gnome.org (on-
line), available from 〈https://people.gnome.org/markmc/qcow-image-
format.html〉 (accessed 2018-10-01).

[35] Newsome, J. and Song, D.: Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Com-
modity Software (2005).

[36] Norman: Norman Sandbox Analyzer, Norman.com (online),
available from 〈http://download01.norman.no/product sheets/eng/
SandBox analyzer.pdf〉 (accessed 2018-10-01).

[37] Nowak, T. and Sawicki, A.: The Undocumented Functions, undocu-
mented.ntinternals.net (online), available from 〈http://undocumented.
ntinternals.net/〉 (accessed 2018-03-13).

[38] Oktavianto, D. and Muhardianto, I.: Cuckoo Malware Analysis, Packt
Publishing (2013).

[39] Pék, G., Lázár, Z., Várnagy, Z., Félegyházi, M. and Buttyán, L.: Mem-
brane: A Posteriori Detection of Malicious Code Loading by Memory
Paging Analysis, Computer Security – ESORICS 2016, Askoxylakis,
I., Ioannidis, S., Katsikas, S. and Meadows, C. (Eds.), Cham, Springer
International Publishing, pp.199–216 (2016).

[40] Pierce, S.: Defending Against Malicious Application Compatibility
Shims, Black Hat Europe Briefings (2015).

[41] Portokalidis, G., Slowinska, A. and Bos, H.: Argos: An emulator
for fingerprinting zero-day attacks for advertised honeypots with auto-
matic signature generation, Proc. 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006, EuroSys ’06, pp.15–27, ACM
(2006).

[42] Raffetseder, T., Kruegel, C. and Kirda, E.: Detecting System Emu-
lators, Information Security, Garay, J.A., Lenstra, A.K., Mambo, M.
and Peralta, R. (Eds.), Berlin, Heidelberg, Springer Berlin Heidelberg,
pp.1–18 (2007).

[43] React OS Project: ReactOS, React OS Project (online), available from
〈http://www.reactos.org/〉 (accessed 2012-12-13).

[44] Sathyanarayan, V.S., Kohli, P. and Bruhadeshwar, B.: Signature
Generation and Detection of Malware Families, ACISP, pp.336–349
(2008).

[45] Sebastián, M., Rivera, R., Kotzias, P. and Caballero, J.: AVclass: A

Tool for Massive Malware Labeling, Research in Attacks, Intrusions,
and Defenses, Monrose, F., Dacier, M., Blanc, G. and Garcia-Alfaro, J.
(Eds.), Cham, Springer International Publishing, pp.230–253 (2016).

[46] Sharif, M., Yegneswaran, V., Saidi, H., Porras, P. and Lee, W.: Eu-
reka: A Framework for Enabling Static Malware Analysis, Computer
Security - ESORICS 2008, Jajodia, S. and Lopez, J. (Eds.), Berlin,
Heidelberg, Springer Berlin Heidelberg, pp.481–500 (2008).

[47] Slowinska, A. and Bos, H.: Pointless tainting?: Evaluating the prac-
ticality of pointer tainting, Proc. 4th ACM European Conference on
Computer Systems, EuroSys ’09, pp.61–74, ACM (2009).

[48] Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G.,
Liang, Z., Newsome, J., Poosankam, P. and Saxena, P.: BitBlaze: A
New Approach to Computer Security via Binary Analysis, Proc. 4th
International Conference on Information Systems Security, ICISS ’08,
pp.1–25, Springer-Verlag (2008).

[49] Suenaga, M.: A Museum of API Obfuscation on Win32, Symantec
Security Response (2009).

[50] The Volatility Framework: The Volatility Founda-
tion, The Volatility Foundation (online), available from
〈https://www.volatilityfoundation.org/〉 (accessed 2018-10-01).

[51] Themida: Temida — Overview, Oreans Technologies (online), avail-
able from 〈http://www.oreans.com/themida.php〉 (accessed 2018-10-
01).

[52] Vasudevan, A. and Yerraballi, R.: Stealth breakpoints, 21st Annual
Computer Security Applications Conference, pp.381–392 (2005).

[53] Vasudevan, A. and Yerraballi, R.: Cobra: Fine-grained Malware Anal-
ysis using Stealth Localized-Executions, Proc. 2006 IEEE Symposium
on Security and Privacy, Oakland’06 (2006).

[54] VirusTotal: VirusTotal, virustotal.com (online), available from
〈https://www.virustotal.com/〉 (accessed 2018-09-28).

[55] Willems, C., Holz, T. and Freiling, F.: Toward Automated Dynamic
Malware Analysis Using CWSandbox, IEEE Security and Privacy,
Vol.5, No.2, pp.32–39 (online), DOI: 10.1109/MSP.2007.45 (2007).

[56] Yason, M.V.: The Art of Unpacking, Black Hat USA Briefings (2007).
[57] Yin, H., Liang, Z. and Song, D.: HookFinder: Identifying and Under-

standing Malware Hooking Behaviors, Proc. Network and Distributed
System Security Symposium, NDSS 2008 (2008).

[58] Yin, H., Song, D., Egele, M., Kruegel, C. and Kirda, E.: Panorama:
Capturing system-wide information flow for malware detection and
analysis, Proc. 14th ACM Conference on Computer and Communica-
tions Security, CCS ’07, pp.116–127, ACM (2007).

Yuhei Kawakoya received his B.E. and
M.S. degrees in science and engineer-
ing from Waseda University in 2003 and
2005, respectively. He has been engaged
in R&D since 2005 on computer security.
From 2013 to 2016, he was engaged in
R&D at NTT Innovation Institute, Inc. as
a software engineer. He is a member of

IPSJ and IEICE.

Eitaro Shioji received his B.E. degree in
computer science and M.E. degree in
communications and integrated systems
from Tokyo Institute of Technology in
2008 and 2010, respectively. Since join-
ing NTT in 2010, he has been engaged in
R&D on computer security. He is a mem-
ber of IEICE.

c© 2019 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.27

Makoto Iwamura received his B.E.,
M.E., and D.Eng. degrees in science
and engineering from Waseda Univer-
sity, Tokyo, in 2000, 2002, and 2012,
respectively. He joined NTT in 2002. He
is currently with NTT Secure Platform
Laboratories where he is engaged in the
Cyber Security Project. His research

interests include reverse engineering, vulnerability discovery,
and malware analysis.

Jun Miyoshi received his B.E. and M.E.
degrees in system science from Kyoto
University in 1993 and 1995, respectively.
Since joining NTT in 1995, he has been
researching and developing network se-
curity technologies. From 2011 to 2016,
he was engaged in R&D strategy manage-
ment at NTT Secure Platform Laborato-

ries. Now he is a research group leader of the Cyber Security
Project in the NTT Secure Platform Laboratories. He is a mem-
ber of IEICE.

c© 2019 Information Processing Society of Japan


