
情報処理学会研究報告
IPSJ SIG Technical Report

コールドスタート問題を考慮した
スマートフォンアプリケーションの利用推定に関する検討

陳　成1 前川　卓也1 天方　大地1 原　隆浩1

概要：スマートフォンの普及とともに、アプリケーションストアに登録されているスマートフォン向けア
プリケーションの数が大幅に増加している。それに伴い、ユーザのスマートフォンにインストールされて

いるアプリケーションの数も増加しており、ユーザによる起動アプリケーション選択の手間を軽減するた

めに、ユーザが次に利用するアプリケーションを推定する研究が盛んに行われている。本研究ではユーザ

の利用履歴を利用し、再帰的ニューラルネットワークを用いてユーザの利用アプリケーションの推定を行

う。特にコールドスタート問題に着目し、他のユーザ（ソースユーザ）のデータを利用して利用履歴が存

在しないユーザ（ターゲットユーザ）の利用アプリケーションを推定する手法を提案する。本研究では、

ソースユーザのスマートフォンにインストールされているアプリケーションとターゲットユーザのスマー

トフォンにインストールされているアプリケーションの間の意味的な類似性を利用し、利用履歴が存在し

ないユーザとアプリケーションを予測する。

1. Introduction

Because of the recent proliferation of smartphones, the

number of available smartphone Apps in App stores is

rapidly increasing. This huge number and diversity of

Apps enable the installation of a large number of Apps

on a user’s smartphone. Although the large number of

available Apps makes our lives more convenient, it also

introduces a new challenge because selecting a particular

App from all the installed Apps can be a time-consuming

task. To assist a user in selecting Apps in an efficient

manner, methods for predicting a next-use App that rec-

ommend probable candidates to the user have been stud-

ied in the mobile computing, pervasive computing, and

recommender system research communities [1].

Mobile Apps are often used in conjunction with other

relevant Apps [2]. For instance, when a user uses a smart-

phone for his or her business work, he or she may initially

use a ‘word processor’ App. When he or she wants to

send the edited document to others, the next-used App

is likely to be an ‘e-mail’ App. Considering this feature,

a next-use App can be predicted by supervised learning

methods based on a user’s App usage history.

1 大阪大学大学院情報科学研究科
Graduate School of Information Science and Technology, Os-
aka University

However, supervised learning-based next-use App pre-

diction poses several cold-start problems, the prediction

model cannot be trained immediately after a user firstly

installs the next-use App prediction system or install a

new App from App store, since no usage history of the user

and the App. To alleviate the aforementioned cold-start

problems, some studies consider leveraging other users’

(source users) usage histories to construct a prediction

model for a target user. However, Apps that are installed

on the smartphones of source users are different from those

installed on the smartphones of the target user, making

it difficult to recommend Apps that are not installed on

the smartphones of source users to the target user (espe-

cially for newly released Apps). In our dataset, 26% of

the installed Apps were categorized as unseen Apps.

To cope with the aforementioned problems, we propose

an App recommendation method by combining multi-class

classification and the semantic representations of a smart-

phone App. The proposed method permits us to use the

source users’ usage histories to train a prediction model

tailored to a target user to alleviate the cold-start prob-

lems. Our concept is to obtain training data in the 1-of-K

representations tailored to a target user from the source

users’ usage histories by using App semantic representa-

tions.

1ⓒ 2019 Information Processing Society of Japan

Vol.2019-MBL-90 No.38
Vol.2019-UBI-61 No.38

2019/3/5

情報処理学会研究報告
IPSJ SIG Technical Report

Let us assume that a series of App usages that is ob-

tained from the source users is provided. We obtain a

series of K-dimensional vectors in the 1-of-K representa-

tion tailored to the target user from the series of App

usages, where K is the number of Apps that are installed

on a target user’s smartphone. We calculate the simi-

larity between each pair of an App installed on a target

user’s smartphone and an App in the source users’ us-

age histories based on their semantic representations and

subsequently convert the App usage history of the source

users into a series of the 1-of-K representation of a tar-

get user’s App based on the calculated similarities. The

series of K-dimensional vectors is further used to train a

multi-class classifier (next-use App prediction model) for

the target user.

2. Related work

2.1 Next-use App prediction

There have been some previous studies related to the

next-use App prediction. Zou et al. [3] proposed some

light-weighted Bayesian methods to predict a next-use

App based on the App usage history. Parate et al. [4]

designed an App prediction algorithm that required no

prior training and predicted not only the App that will be

used next but also the time at which it will be used based

on text compression methods. Sun et al. [5] used a predic-

tion model that utilized some App temporal features such

as frequency and duration. Liao et al. [6] designed a time-

based App predictor, extracting some features from the

App usage trace such as an App’s usage count in the en-

tire usage trace, usage count in the temporal bucket, and

the frequency of App usage. In contrast, we attempted

to cope with the cold-start problems in the next-use App

prediction. Further, our method, which is based on deep

learning, does not require handcrafted features.

Some other studies used sensor data, such as the data

from the global positioning system (GPS), for generating

predictions. Shin et al. [7] proposed a context model for

App prediction that used an extensive variety of contex-

tual information from sensors in a smartphone and con-

structed a personalized App-prediction model based on

naive Bayes. Liao et al. [8] proposes an App usage predic-

tion framework that uses both explicit data from mobile

sensors and implicit transitions across App usage. Bazea-

Yates et al. [9] collected multiple sensor data from a home

screen App Aviate and built a parallel tree-augmented

naive Bayes model to generate predictions.

2.2 Cold-start problems in next-use App predic-

tion

Few studies have considered the cold-start problems

that have been mentioned in the introduction. Bazea-

Yates et al. [9] divided the cold-start problems into App

cold-start and user cold-start problems. For the App cold-

start problem, where a user installed a new App on his or

her smartphone, they used the App usage information ob-

tained from other users for generating predictions. For the

user cold-start problem, where a first-time user used the

App recommendation system, they used a similar user’s

model to predict the behavior of the new user. They also

compared the installed Apps of new and other users to

determine similar users. Natarajan et al. [2] also inves-

tigated the App and user cold-start problems. For the

App cold-start problem, they assume that a user is more

likely to prefer an item belonging to the same genre than

an item belonging to a different genre after using a se-

ries of the same type of items. In accordance with that

assumption, they recommended a new App belonging to

the same genre as that of the previously used Apps to a

user. For the user cold-start problem, they created a new

user’s usage history based on uniform distribution over all

the Apps. In contrast to the aforementioned studies, we

use high-level App semantic information to alleviate the

cold-start problem, enabling us to predict the usage pat-

terns of Apps that are not installed on the smartphones

of source users.

3. Method

3.1 Preliminaries

We use source users’ usage histories to train a predic-

tion model and then generate predictions for a target user.

We define an App, source users’ U , and target user’s ut

as follows:

Definition 1 (App).

A set of Apps is installed on a user’s smartphone, i.e.,

A =
{
a1̀, a2̀, a3̀, ..., aǹ, ..., aK̀

}
, where aǹ is the nth App

in the set. In contrast, the ith used App in a user’s us-

age history can be represented as ai. When aǹ is the ith

used App, ai becomes equal to aǹ. The ith used App ai

by a user is represented as a semantic vector vai . The

App is also represented as oKai
in accordance with the 1-

of-K scheme, where K is the number of dimensions of the

vector, i.e., the number of Apps installed on the user’s

smartphone. In addition, we refer to an App that is not

installed on the source users’ smartphones but is installed

2ⓒ 2019 Information Processing Society of Japan

Vol.2019-MBL-90 No.38
Vol.2019-UBI-61 No.38

2019/3/5

情報処理学会研究報告
IPSJ SIG Technical Report

図 1 Overview of the proposed method

on the target user’s smartphone as an “ unseen App.”

Furthermore, we refer to an App that is installed on both

the source users’ smartphones and the target user’s smart-

phone as an “existing App.”

Definition 2 (Source users).

A group of N users U = {u1, u2, u3, ..., uN}. Each user ui

(1 ≤ i ≤ N) has an App usage history with length Mi,

i.e., Si = {a1, a2, a3, ..., aMi}.

Definition 3 (Target user).

A user ut /∈ U , who has usage history with length Mt,

i.e., St = {a1, a2, a3, ..., aMt
}. When we wish to pre-

dict a next-use App, we do not use all the usage his-

tories to generate predictions because an App that was

used a long time ago exhibited little relation to the la-

tent next-use App. In this study, we use a sequence of

App usage histories with lengths of k (1 ≤ k ≤ M), i.e.,

s = {ai−k, ai−k+1, ..., ai−2, ai−1}, to predict a next-use

App ai. Further, the next-use App prediction problem

can be defined as follows:

Definition 4 (App prediction).

Given a series of App usage histories with length k (1 ≤
k ≤ M), i.e., s = {aut,i−k, aut,i−k+1, ..., aut,i−2, aut,i−1},
of a target user ut, the probability that each App aǹ that

is installed on this user’s smartphone will be a next-use

App, i.e., P (aǹ|s), is calculated. We further select the

top-N Apps to be the next-use App candidates.

3.2 Overview

An overview of our proposed method is depicted in Fig-

ure 1. The proposed method has two phases, training and

prediction. In the training phase, we initially compute an

App semantic representation, i.e., an App vector, for each

App installed on the source users’ or target user’s smart-

phones. Further, we utilize the sequences of App semantic

vectors from the source users’ usage histories to generate

training data that are tailored to the target user by lever-

aging the App semantics. Subsequently, we train a pre-

diction model for the target user based on a deep neural

network comprising long short-term memory (LSTM) [10]

on the tailored training data. In the prediction phase, we

use the App usage history of the user through i − 1 to

predict the target user’s ith App usage candidates.

3.3 Semantic representation of App

We assume that we obtain a description of each App

from the App store, which is used to build a semantic

App vector. An App description describes the features

of an App and the functions that are to be provided to

users, similar Apps have similar descriptions. Therefore,

we construct semantic App vectors from descriptions to

calculate the similarity between various Apps. Note that

we cannot obtain the descriptions of Apps that are pre-

installed or directly installed from the APK files. The

titles of such Apps are used in place of descriptions.

In our proposed method, we initially perform the mor-

phological analysis of Japanese descriptions based on [11]

because almost all the Apps used in our experiment are

Japanese Apps. Therefore, we tokenize a Japanese de-

scription, i.e., text segmentation, to extract words from

it. Further, we select W keywords of an App that repre-

sent the App well from the extracted words using the im-

portance of the words that are computed based on tf -idf .

The importance of word w is computed using tf -idf as

follows:

tf -idf(w) = Frequency(w) · log N

|d : d ∋ w|+ 1
,

where Frequency(w) indicates the word occurrence fre-

quency of w in the description, and N is the total number

of descriptions of all Apps.

Further, we use a word embedding model word2vec [12]

to obtain a word vector for each keyword representing the

semantics of the keyword. We use an external pre-trained

3ⓒ 2019 Information Processing Society of Japan

Vol.2019-MBL-90 No.38
Vol.2019-UBI-61 No.38

2019/3/5

情報処理学会研究報告
IPSJ SIG Technical Report

20 15 10 5 0 5 10 15

20

10

0

10

20

図 2 Visualization of the App semantic vectors

word2vec model on Japanese Wikipedia*1 to compute a

word vector for each keyword. Finally, we compute the

mean vector of the W keywords and regard it as the App’s

semantic vector. We ignore the keywords that are not

present in the external Japanese Wikipedia corpus. We

use this method to build an App semantic vector for each

App on the source users’ or a target user’s smartphones.

Figure 2 depicts the semantic vectors of approximately

6,000 Apps that are constructed using the aforementioned

method that is projected into two-dimensional space using

t-SNE [13]. Each vector is colored according to the cate-

gory that it belongs to on Google Play. We can observe

that approximately all of the Apps belonging to the same

categories are grouped together and that the distance be-

tween Apps belonging to different categories is larger than

that for those in the same category.

3.4 Generating training data tailored to a target

user

The procedure of generating the training data that is

tailored to a target user is summarized in Algorithm 1.

An input of the algorithm is a sequence with length M of

the App usages of a source user, and an output is a se-

quence of App usages with length M tailored to a target

user. After an App usage history with length M tailored

to the target user is obtained, we extract M − (k + 1) se-

quences of App usages with length k+1 and subsequently

train the next-use App predictor on the sequences. We

initially prepare the conversion matrices that convert the

usage of an App of the source user into the usage of an

App installed on the target user’s smartphone (lines 3-9).

Using the matrices, we probabilistically generate multi-

ple sequences of App usages tailored to the target user

from the sequence of App usages of the source user (lines

*1 http://www.cl.ecei.tohoku.ac.jp/˜m-suzuki/jawiki vector/

Algorithm 1: Generating training data

tailored to a target user

Input: T : a set of Apps from a target user, S: a
sequence of App usages from a source user, θ: a

parameter used to control the quantity of

unseen Apps in training data

1 D ← ∅
2 /* Extract a set of Apps of source user */

3 As ← ExtractAppSet(S)
4 /* Divide target user Apps into 2 groups */

5 Ge ← T ∩As /* A set of existing Apps */

6 Gu ← T ∩ Ḡe /* A set of unseen Apps */

7 /* Creating App conversion matrices */

8 Me ← GenerateConversionMatrix(T ,As,Ge)
9 Mu ← GenerateConversionMatrix(T ,As,Gu)

10 /* Generating P sequences of training data

from S */

11 repeat

12 /* Initialize App conversion table */

13 T ← ∅
14 for ∀as ∈ As do

15 M ← zero matrix

16 x← Uniform(0, 1) /* Randomly generate

x ∈ [0, 1] */

17 if x < θ then

18 M ←Mu

19 else

20 M ←Me

21 /* Generate mapping from a source App to

a target App */

22 at ← ConvertApp(M , as)

23 /* Add mapping from a source App to a

target App */

24 T [as]← at

25 /* Convert S using conversion table T*/

26 Dp ← ConvertSequence(S, T)
27 D ← D ∪ {Dp}

28 until repeat the processing P times

Output: D: a set of training sequences tailored to a

target user

11-28). To generate each output sequence, we probabilis-

tically construct a conversion table that describes a map-

ping from an App of the source user to an App of the tar-

get user (lines 13-24). Because a mapping from an App of

the source user to an App of the target user that is com-

puted from the App semantics is not entirely accurate, we

probabilistically generate a variety of multiple sequences

in accordance with the similarities between Apps to train

4ⓒ 2019 Information Processing Society of Japan

Vol.2019-MBL-90 No.38
Vol.2019-UBI-61 No.38

2019/3/5

情報処理学会研究報告
IPSJ SIG Technical Report

a robust next-App predictor.

3.4.1 Generating conversion matrices

In this study, we generate two conversion matrices that

are used to control the number of usages of unseen Apps

that are included in the training data to be generated, i.e.,

sequences of App usages tailored to the target user, be-

cause the number of usages of unseen Apps to be included

in the training data can be typically less than that of the

existing Apps. A conversion matrix is used to obtain the

candidates for target user Apps converted from an App of

the source user as follows.

p̂|T | = Mo|As|
as

, (1)

where M is the conversion matrix, o
|As|
as is a |As|-

dimensional vector of App as represented using the 1-of-K

scheme, As is a set of Apps installed on the source users’

smartphone, and T is a set of Apps installed on a target

user’s smartphone. In addition, p̂|T | is a |T |-dimensional

vector that depicts the probability of converting each App

of the target user from as. Here, we explain the procedures

for generating the conversion matrices. After obtaining a

set of Apps installed on the source users’ smartphone As

(line 3), we obtain a set of existing Apps Ge (line 5) and

a set of unseen Apps Gu (line 6). Using Ge, we generate a

conversion matrix for the existing Apps Me (line 8). Me

is used to convert an App of the source user that is not

installed on the target user’s smartphone into an existing

App. Further, we generate a conversion matrix for unseen

Apps Mu using Gu (line 9). Mu is used to convert an App

of the source user that is not installed on the target user’s

smartphone into an unseen App. A conversion matrix M ,

which is a |As| × |T | matrix, can be described as follows.

M =


m11 m12 . . . m1|As|

m21 m22 . . . m2|As|
...

...
. . .

...

m|T |1 m|T |2 . . . m|T ||As|


Using G (Ge or Gu), a value of each element mij in the

matrix is calculated according to Algorithm 2.

When an App of the source user aj is also installed

on the smartphone of the target user, the mapping from

aj to an App of the target user ai is calculated deter-

ministically (lines 4-8) (For example, when ai is equal

to aj , aj is definitely converted into ai (line 6)). Oth-

erwise, the mapping is calculated based on the similar-

ity between ai and aj (lines 10-15). After ai and aj

are converted into semantic word vectors (lines 11-12),

Algorithm 2: GenerateConversionMatrix

Input: T : a set of Apps from a target user, A: a set of

Apps from a source user, G: a set of unseen

Apps or existing Apps

1 M ← |A| × |T | zero matrix

2 for i = 1 to |T | do
3 for j = 1 to |A| do
4 if aj ∈ T then

5 if ai = aj then

6 mij ← 1

7 else

8 mij ← 0

9 else

10 if ai ∈ G then

11 vai ← Word-Embedding(ai)

12 vaj ← Word-Embedding(aj)

13 mij ← NormalizedSimilarity(vai , vaj)

14 else

15 mij ← 0

Output: Conversion matrix M

NormalizedSimilarity(vai
, vaj

) in the 13th line calcu-

lates the semantic similarity between ai and aj based on

cosine similarity as follows:

NormalizedSimilarity(vai
, vaj

) =
Similarity(vai , vaj)

S
,

where

Similarity(vai
, vaj

) =
vai · vaj

||vai || · ||vaj ||

and S =
∑

n Similarity(van
, vaj). Note that we calculate

M for existing and unseen Apps as Me and Mu, respec-

tively. For Me, mij is zero when ai is an unseen App (line

15). This indicates that aj (that is not installed on the

target user’s smartphone) is converted only into existing

Apps. In contrast, for Mu, mij is zero when ai is an ex-

isting App (line 15). This indicates that aj is converted

only into unseen Apps.

3.4.2 Generating a conversion table

We probabilistically generate a conversion table (dic-

tionary) T using Me and Mu for each iteration, which

enables us to create a variety of training sequences to-

ward robust next-App estimation. T describes a mapping

from each App of the source user to an App of the target

user. For each App of the source user as, we randomly

select a conversion matrix M : Me or Mu (lines 16-20

in Algorithm 1). In this study, we use a large θ value to

increase the number of usages of unseen Apps that are to

5ⓒ 2019 Information Processing Society of Japan

Vol.2019-MBL-90 No.38
Vol.2019-UBI-61 No.38

2019/3/5

情報処理学会研究報告
IPSJ SIG Technical Report

be included in the training sequences. Using M , we de-

termine a mapping from as to an App of the target user

(line 22 in Algorithm 1) in accordance with Algorithm 3.

Algorithm 3: ConvertApp

Input: M : a conversion matrix, a: an App from a

source user

1 oa ← 1-of-K(a) /* 1-of-K representation of a */

2 /* Compute conversion probabilities according

to Equation 1 */

3 p̂←Moa

4 ât ← Roulette-Wheel-Selection(p̂)

Output: an App ât similar to a

First, an App installed on the source users’ smartphone

a is represented using the 1-of-K scheme (line 1). Further,

we compute the probability with which each App of the

target user is converted from a according to Equation 1

(line 3). Finally, an App of the target user that is simi-

lar to a is probabilistically chosen based on roulette wheel

selection (line 4). In the roulette wheel selection, an item

is randomly selected according to the probability that is

associated with each item. In this study, the probability

of the ith App (similarity between a and the ith App) is

stored in the ith element of p̂. A mapping from as to at

obtained by ConvertApp() is further added to T (line

24 in Algorithm 1).

3.4.3 Converting a sequence of App usages

Using the conversion table T , we convert the sequence

of App usages by a source user S into a training sequence

tailored to the target user (line 26 in Algorithm 1) accord-

ing to Algorithm 4.

Algorithm 4: ConvertSequence

Input: S: a sequence of App usages from a source

user, T : a conversion table

1 St ← array with length |S|
2 for s = 1 to |S| do
3 /* Obtain mapping from as */

4 at ← T [as]

5 St[s]← at

Output: a sequence of App usages tailored to a target

user St

We convert the sth usage of an App of the source user

as into an App of the target user at using the conversion

table T (line 4).

3.5 Predicting the next-use App using a neural

network

In accordance with the procedure described in Section

3.4, we obtain multiple training sequences with length

k+1 of App usages in which the k+1th usage is an answer,

i.e., the next-use App. Thus, we train a neural network

to output the k+1th used App when a sequence of usages

from 1 to k is provided as input. Note that each App us-

age is represented in the 1-of-K scheme with the number

of dimensions being the number of Apps installed on the

target user’s smartphone. Because the App usage history

is the time-series data, we choose the LSTM model to

generate predictions. In accordance with the data struc-

ture of the training data, we adopt a two-layer many-to-

one multilabel classification LSTMmodel [14] whose input

and output are a sequence and a fixed-size vector, respec-

tively. In our case, the input of the network is a series

of App usage histories represented in the 1-of-K scheme,

and the output is a vector consisting of the class prob-

ability of each App. The network comprises two LSTM

layers with 300 nodes using a rectified linear units (ReLU)

activation function and an output softmax layer. To re-

duce overfitting, we use dropout, a simple regularization

technique where randomly selected nodes are ignored dur-

ing training. We train the network using backpropagation

based on Adam to minimize the categorical cross-entropy

between estimates and the ground truth. In the predic-

tion phase, an App usage sequence with length k obtained

from the target user is provided as input to the network,

and the network outputs the probability with which each

App of the target user will be a next-use App. Finally,

the Apps with the top-N probabilities are chosen as the

next-use App candidates.

4. Evaluation

4.1 Dataset

We collected an App usage dataset from 20 participants

using our developed Android App that was installed on

their smartphones. Each participant in the dataset has

9,430 usage history data items on an average collected for

approximately one hundred days. The average duration

of the participants’ data collection period was 82.5 days.

The average number of installed Apps is 52.8. To obtain

the App semantic representations, we retrieved a descrip-

tion of each App from Google Play. For Apps that were

not available on Google Play, we used the titles of the

Apps instead of descriptions. Table 1 presents the total

number of unseen Apps and existing Apps and their usage

6ⓒ 2019 Information Processing Society of Japan

Vol.2019-MBL-90 No.38
Vol.2019-UBI-61 No.38

2019/3/5

情報処理学会研究報告
IPSJ SIG Technical Report

表 1 Statistics of our dataset

total # of Apps total # of usage sequences

Unseen Apps 383 14,052

Existing Apps 1,064 174,549

All Apps 1,447 188,601

sequences. The usage sequence of an unseen App is the

usage sequence with length k whose next-use App, i.e.,

answer, is an unseen App (k = 5). In contrast, the usage

sequence of an existing App is the usage sequence whose

next-use App, i.e., answer, is an existing App.

4.2 Evaluation methodology

4.2.1 Evaluation measure

To evaluate the App prediction methods, we employ a

top-N prediction accuracy metric in our experiment. If

the any App in a set of N candidate Apps is actually the

next-use App, we regard the next-use App to be accu-

rately predicted. The prediction accuracy metric can be

defined as Accuracy@N =
∑T

i=1 HN
i∑T

i=1 Ai
, where HN

i is the

number of accurately predicted next-use Apps for a test

user i when N candidates are provided, Ai is the total

number of test data for test user i, and T is the number

of test users.

4.2.2 Methods

We evaluate the following methods.

• MFU (most frequently used): The top-N candidates

are the most frequently used N Apps in the training data.

• RankSVM: A ranking method proposed in [15], which

is a learning-to-rank algorithm for query-based docu-

ment search, is used to obtain the top-N next-use Apps.

RankSVM is a pair-wise ranking algorithm that computes

a ranking list based on a pair of candidate items.

• One-hot: The neural network architecture is identical

to that of the proposed method. However, the training

data are not tailored to a target user. Each App is repre-

sented in the 1-of-K scheme where K is the size of the set

of all Apps installed on the smartphones of source/target

users.

• Word2vec: The neural network architecture is similar

to that of the proposed method. Each App that is used

in the input and output of the network is represented by

a semantic App vector. In the prediction phase, we calcu-

late the cosine similarity between an output vector and a

semantic vector for each of the Apps installed on a target

user’s smartphone. The top-N candidates are the N Apps

of the target user with the top-N cosine similarities. The

loss function that is used to train the network is the mean

squared error.

• Proposed: This is the proposed method.

We use “leave-one-participant-out” cross validation to

evaluate the aforementioned methods. Therefore, we con-

sider one participant to be a target user and the remaining

participants as source users.

4.3 Results

Figure 3 depicts the transitions of the Accuracy@N for

the five methods when N is varied. The poor performance

of MFU indicates the difficulties associated with next-use

App prediction. Because the Apps used by the partic-

ipants are diverse, it is difficult to predict the next-use

Apps using only information related to the frequency of

usage. The performance of RankSVM is poor because

the model cannot deal with the time-series data. In ad-

dition, the considerably high dimensionality of the input

vectors of the model can also degrade the performance.

The Accuracy@N for Word2vec does not exhibit a sub-

stantial alteration when N is varied. This result indicates

that the candidate Apps provided by Word2vec are not

diverse. Word2vec outputs a semantic vector and selects

candidate Apps according to the similarity between a se-

mantic vector of an App and the output vector, resulting

in the low diversity of the App candidates, i.e., including

only Apps similar to the output vector.

Proposed achieved the optimal performance and outper-

formed One-hot by approximately 3%. Figure 4 depicts

the Accuracy@N of the five methods for the existing Apps.

The figure exhibits that the performances of Proposed

and One-hot are nearly identical. This is because the

neural network architectures of these methods are identi-

cal. In contrast, as depicted in Figure 5, with respect to

the Accuracy@N of unseen Apps, Proposed considerably

outperformed the other methods. Surprisingly, Proposed

achieved 56% accuracy when N = 10 even though the us-

age history of these unseen Apps by source users is not

available at all. One-hot and MFU could not predict the

use of unseen Apps at all because of their architectures.

While their accuracies are poor, RankSVM and Word2vec

could also predict the usage of these unseen Apps. This is

because these methods compute the App candidates based

on the semantics of Apps. However, Proposed, the archi-

tecture based on the 1-of-K scheme, works effectively for

this multi-class classification task.

5. Conclusion

This study proposed a new method for predicting the

7ⓒ 2019 Information Processing Society of Japan

Vol.2019-MBL-90 No.38
Vol.2019-UBI-61 No.38

2019/3/5

情報処理学会研究報告
IPSJ SIG Technical Report

2 4 6 8 10

top N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a
cc
u
ra
cy

MFU

RankSVM

One-hot

Word2vec

Proposed

図 3 Transitions of Accuracy@N

when N is varied

2 4 6 8 10

top N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a
cc
u
ra
cy

MFU

RankSVM

One-hot

Word2vec

Proposed

図 4 Transitions of Accuracy@N

for existing Apps when N is varied

2 4 6 8 10

top N

0.0

0.1

0.2

0.3

0.4

0.5

a
cc
u
ra
cy

MFU

RankSVM

One-hot

Word2vec

Proposed

図 5 Transitions of Accuracy@N

for unseen Apps when N is varied

next-use mobile Apps based on the App usage history of

a target user using the training data collected from other

users (source users). The proposed method makes use of

the semantic representations of Apps to predict the us-

age of Apps that are not installed on the smartphones of

source users by a target user. Our experiment that was

conducted using the actual App usage data revealed that

the proposed method achieved an accuracy of 56% (Accu-

racy@N; N = 10) while predicting the usage of Apps that

were not installed on the smartphones of source users.

参考文献

[1] H. Cao and M. Lin, “Mining smartphone data for app
usage prediction and recommendations: A survey,” Per-
vasive and Mobile Computing, vol. 37, pp. 1 – 22, 2017.

[2] N. Natarajan, D. Shin, and I. S. Dhillon, “Which app will
you use next?: Collaborative filtering with interactional
context,” in the 7th ACM Conference on Recommender
Systems (RecSys ’13), 2013, pp. 201–208.

[3] X. Zou, W. Zhang, S. Li, and G. Pan, “Prophet: What
app you wish to use next,” in the 2013 ACM Confer-
ence on Pervasive and Ubiquitous Computing Adjunct
Publication (UbiComp ’13), 2013, pp. 167–170.

[4] A. Parate, M. Böhmer, D. Chu, D. Ganesan, and B. M.
Marlin, “Practical prediction and prefetch for faster ac-
cess to applications on mobile phones,” in the 2013 ACM
International Joint Conference on Pervasive and Ubiq-
uitous Computing (UbiComp ’13), 2013, pp. 275–284.

[5] C. Sun, J. Zheng, H. Yao, Y. Wang, and D. F. Hsu, “Ap-
prush: Using dynamic shortcuts to facilitate application
launching on mobile devices,” in ANT/SEIT, 2013.

[6] Z.-X. Liao, Y.-C. Pan, W.-C. Peng, and P.-R. Lei, “On
mining mobile apps usage behavior for predicting apps
usage in smartphones,” in the 22Nd ACM International
Conference on Information & Knowledge Management
(CIKM ’13), 2013, pp. 609–618.

[7] C. Shin, J.-H. Hong, and A. K. Dey, “Understanding and
prediction of mobile application usage for smart phones,”
in the 2012 ACM Conference on Ubiquitous Computing
(UbiComp ’12), 2012, pp. 173–182.

[8] Z. X. Liao, S. C. Li, W. C. Peng, P. S. Yu, and T. C.
Liu, “On the feature discovery for app usage prediction
in smartphones,” in 2013 IEEE 13th International Con-
ference on Data Mining (ICDM ’13), 2013, pp. 1127–
1132.

[9] R. Baeza-Yates, D. Jiang, F. Silvestri, and B. Harrison,

“Predicting the next app that you are going to use,”
in the Eighth ACM International Conference on Web
Search and Data Mining (WSDM ’15), 2015, pp. 285–
294.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780,
Nov. 1997.

[11] T. Kudo, K. Yamamoto, and Y. Matsumoto, “Apply-
ing conditional random fields to Japanese morphological
analysis,” in the 2004 Conference on Empirical Methods
in Natural Language Processing (EMNLP ’04), 2004,
pp. 230–237.

[12] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,
and J. Dean, “Distributed representations of words and
phrases and their compositionality,” inAdvances in Neu-
ral Information Processing Systems 26, 2013, pp. 3111–
3119.

[13] L. v. d. Maaten and G. Hinton, “Visualizing data using
t-sne,” Journal of machine learning research, vol. 9, no.
Nov, pp. 2579–2605, 2008.

[14] Z. C. Lipton, D. C. Kale, C. Elkan, and R. C. Wetzel,
“Learning to diagnose with LSTM recurrent neural
networks,” CoRR, vol. abs/1511.03677, 2015. [Online].
Available: http://arxiv.org/abs/1511.03677

[15] T. Joachims, “Optimizing search engines using click-
through data,” in the Eighth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining (KDD ’02), 2002, pp. 133–142.

8ⓒ 2019 Information Processing Society of Japan

Vol.2019-MBL-90 No.38
Vol.2019-UBI-61 No.38

2019/3/5

