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I-vector Domain Adaptation
Using Cycle-Consistent Adversarial Networks

for Speaker Recognition

Yi Liu1,a) Takahiro Shinozaki1,b)

Abstract: Speaker recognition systems often suffer from severe performance degradation due to the difference be-
tween training data and evaluation data, which is called domain mismatch problem. In this paper, we apply adversarial
strategies in deep learning techniques and propose a method using cycle-consistent adversarial networks for i-vector
domain adaptation. This method performs an i-vector domain transformation from the source domain to the target
domain to reduce the domain mismatch. It uses a cycle structure that reduces the negative influence of losing speaker
information in i-vector during the transformation and makes it possible to use unpaired datasets for training. The
experimental results show that the proposed adaptation method improves recognition performance of a conventional
i-vector and PLDA based speaker recognition system by reducing the domain mismatch between the training and the
evaluation sets.
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1. Introduction
Speaker recognition researches have obtained a significant im-

provement from the introduction of i-vector [1]. However, i-
vector based speaker recognition systems suffer from severe per-
formance degradation when the training data and the evaluation
utterances come from different domains. This problem is called
domain mismatch. In this paper, we apply cycle-consistent adver-
sarial network based adaptation to i-vector features for speaker
recognition. To reduce the domain mismatch, we investigate the
use of the adversarial strategy and the cycle-consistent architec-
ture to transform i-vectors from the source domain to the target
domain.

2. I-vector and PLDA speaker recognition sys-
tem

Fig. 1 Conventional speaker recognition system.

Figure 1 shows the basic structure of a conventional i-vector [1]
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Fig. 2 GAN and CycleGAN

and PLDA[2] based speaker recognition system. Firstly, Mel Fre-
quency Cepstral Coefficients (MFCC) acoustic features are ex-
tracted from input utterances. The MFCC features serve as the
input of a Gaussian mixture model based universal background
model (GMM-UBM) [3] to compute high-dimensional supervec-
tors. These supervectors are used for i-vector extraction through
a total-variability matrix. Finally, a PLDA model uses i-vectors to
calculate scores to recognize whether the input utterances belong
to specific speakers.

3. CycleGAN based domain adaptation
3.1 Generate Adversarial Networks (GAN)

The basic idea of GAN [4] is making a competition between
two networks that have exactly opposite goals. These two net-
works are called generator and discriminator respectively. The
generator aims at making fake data to cheat the discriminator. On
the contrary, the discriminator aims to distinguish the generated
fake data and real data.
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The left part of Figure 2 shows the a GAN’s structure. The
optimization target is:

min
G

max
D

LGAN(D,G) =Ex∼preal(x)[logD(x)]

+Ey∼p f ake(y)[log(1 − D(G(x)))], (4.1)

where G and D are the generator and discriminator in a GAN,
respectively, and x and yf = G(x) are the real and fake data
generated byG.

By this way, there is an adversarial game betweenG andD in
their training process. Finally, a powerful generator is trained to
make fake data that is similar enough to the real data.

3.2 CycleGAN
If an adaptation is performed using unpaired data, it is use-

ful to reduce the effort to prepare the adaptation data. A variation
of GAN with a cycle structure, called cycle-consistent adversarial
network, or CycleGAN [5] is used for this purpose. The right part
of Figure 2 shows the structure of a CycleGAN. It consists of two
GAN models and combines two transformations by the generator
networks: sc = GT→S(GS→T(s)), tc = GS→T(GT→S(t)), sc
and tc are called cycle data. This is basically an autoencoder-like
structure.

The full objective function of the CycleGAN is :

L(GS→T ,GT→S ,DS ,DT ) =LLS GAN(DT ,GS→T )

+LLS GAN(DS ,GT→S )

+λLcyc(GS→T ,GT→S ), (4.2)

where λ is the coefficient of Lcyc. Least square loss LLSGAN[17]
is used to replace the log likelihood objective in LGAN to sta-
bilize the training of CycleGAN. Lcyc(GS→T ,GT→S ) is the cycle-
consistent loss to ensure that the generated fake data can be highly
recovered to the original data:

Lcyc(GS→T ,GT→S ) =Es∼psource(s)[||GT→S (GS→T (s)) − s||1]

+Et∼ptarget(t)[||GS→T (GT→S (t)) − t||1].
(4.3)

It guarantees that the generated fake data don’t lose some speaker-
relevant information during the domain conversion. It makes an
additional constraint to keep the essential elements in transformed
data unchanged. By this way, paired data are not required to guide
GAN’s training.

3.3 Proposed CycleGAN based i-vector adaptation method

Fig. 3 System using proposed method

We propose a CycleGAN based i-vector domain adaptation

method as shown in Figure 3. Among the two generators, one
generator is used to transform the source-domain i-vector to the
target domain.

4. Experiments
4.1 Datasets

We use Domain Adaptation Challenge 2013 (DAC13) *1 data
standard for our experiments. The training data consists of two
datasets: source domain data MIXER and target domain data
SWB. The details of these two datasets are shown in Table 4.1.
We evaluate the systems on SRE2010 C5 extended task *2 The
evaluation criteria are equal error rate (EER) and minimum de-
tection cost function (minDCF) .

Table 1 DAC13 datasets

SWB MIXER

# of speakers 3114 3790
Males 1461 1115

Females 1653 2675
Files 33039 36470

Avg. files/spkr 10.6 9.6
Avg. phone num/spkr 3.8 2.8

4.2 Systems design
Two baselines, match and mismatch systems, are built with

the system structure in Figure 1. For the training of the systems
GMM-UBM, i-vector extractor and PLDA parts, the match sys-
tem uses source domain data MIXER, while the mismatch sys-
tems uses target domain data SWB.

The proposed CycleGAN based system uses MIXER as the
source domain data and SWB as the target domain data for train-
ing. The training follows the data flow in right part of Figure 2.
Then, we use the trainedGS→T to obtain domain-adapted SRE10
evaluation i-vectors. Other parts are the same as the mismatch
baseline system.

We design 4 different CycleGAN based systems for compar-
ison, as shown in Table 2. Cyc-basic is the basic CycleGAN
model described in section 4.3. Cyc-ide appends an identity loss
[6] to the full loss of CycleGAN:

L(GS→T ,GT→S ,DS ,DT ) =LLS GAN(DT ,GS→T )

+LLS GAN(DS ,GT→S )

+λLcyc(GS→T ,GT→S )

+γLide(GS→T ,GT→S ), (5.1)

where γ is the coefficient of Lide. Cyc-WGAN-ide uses Wasser-
stein GAN (WGAN) [7], which is a modified GAN structure, to
stabilize the training and avoid inherent problems of GANs train-
ing such as model collapse. Cyc-ide-GRL adds another network
to the CycleGAN model, which is called domain predictor. This
domain predictor is trained to be domain-discriminative, but its
loss is reversely combined to the full loss of CycleGAN through

*1 http://www.clsp.jhu.edu/user_uploads/workshops/ws13/

DAC_description_v2.pdf
*2 https://www.nist.gov/sites/default/files/documents/

itl/iad/mig/NIST_SRE10_evalplan-r6.pdf
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Table 2 CycleGAN based Systems

System description

Cyc-basic System using the basic CycleGAN network

Cyc-ide System using a CycleGAN with an identity loss

Cyc-WGAN-ide System using a CycleGAN with identity loss
and W-GAN design

Cyc-ide-GRL System using a CycleGAN with identity loss
and a GRL [8] based domain predictor

a gradient reversal layer (GRL) [8] between generator and do-
main predictor. As a result, the generated i-vectors tend to be
more domain-confusing so that this strategy has a positive effect
on the training objective of GAN.

4.3 Experimental results

Table 3 Speaker recognition results

EER(%) DCF10−2 DCF10−3

Match 4.46 0.3918 0.5940
Mismatch 12.25 0.6450 0.7706
Cyc-basic 14.44 0.7781 0.9102
Cyc-ide 10.96 0.6531 0.8022

Cyc-WGAN-ide 11.44 0.6376 0.7760
Cyc-ide-GRL 11.06 0.6549 0.7951

Results are shown in Table 3. Compared to the Match system,
speaker recognition performance of the Mismatch system was
significantly worse. This fact shows the noticeable performance
degradation caused by domain mismatch. The Cyc-basic system
didn’t outperform the mismatch baseline system in all evaluation
criteria. Other adapted systems outperformed the baseline system
in EER. The Cyc-ide system performed best in EER (10.3% bet-
ter than mismatch baseline), while the Cyc-WGAN-ide system
performed best in DCF10−2. However, no system outperformed
the baseline system with the DCF10−3 measure. We are currently
investigating the reason for this.

5. Conclusion and Future work
This paper proposed a CycleGAN based i-vector domain adap-

tation method for text-independent speaker recognition system.
It reduces the domain mismatch components in i-vectors and has
the advantage of utilizing unpaired datasets for adaptation. Ex-
perimental results indicate that the proposed method improves
the performance in EER of an i-vector and PLDA based speaker
recognition system.

Future work includes evaluating the proposed i-vector adapta-
tion method in other conditions, and make the adaptation robust
to the difference of the settings. In fact, we observed a decrease
in performance when we applied a normalization step to the i-
vector features. Comparison with other adaptation methods is
also needed.
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