ストリーミング時系列データの 効率的なモチーフモニタリングアルゴリズム

加藤 慎也1 天方 大地1 西尾 俊哉1 原 隆浩1

概要:近年,多くの IoT 機器はストリーミング時系列データを生成しており,それらを環境モニタリング やイベント検知に応用することが考えられる.これを実現する一つの技術として,時系列データの中に最 も多く現れるサブシーケンスであるレンジモチーフの発見が注目を集めている.本稿では,カウントベー スのスライディングウィンドウ上でストリーミング時系列データのレンジモチーフをモニタリングする問 題に取り組む.ウィンドウがスライドした際,新たにサブシーケンスが生成され,最も古いサブシーケン スが削除される.生成および削除されるサブシーケンスとウィンドウ内の全てのサブシーケンスを比較す る単純な方法は,多くの類似度の計算を必要とするため効率的でない.そのため,効率的にモチーフを更 新するアルゴリズム SRMM を提案する.SRMM の時間計算量は生成および削除されるサブシーケンスと 類似するサブシーケンスの数にのみ依存し,効率的にレンジモチーフをモニタリングできる.4つの実デー タを用いた実験により,SRMM の有効性を確認した.

1. 序論

モチーフ発見は時系列データを分析する最も重要な技術 の一つである [1]. ある時系列データ t が与えられたとき, tのレンジモチーフとは、tの中で最も多く現れるサブシー ケンスである [2], [3]. つまり, レンジモチーフは頻繁に発 生するサブシーケンスを表す. 例えば図1は, 温室効果ガ スの排出量のストリーミング時系列データ [4] の中で繰り 返し現れているサブシーケンス(赤いサブシーケンス)を 図示しており、最も左の赤いサブシーケンスが現在のレン ジモチーフである.(本稿では、サブシーケンス間の類似 度をz正規化ユークリッド距離を用いて計算するため、こ の図における値のスケールは問題ではない.)近年,多く の IoT 機器はストリーミング時系列データを生成するた め [5],本稿では、ストリーミング時系列データのレンジモ チーフをモニタリングする問題に取り組む. 今後, 特に明 記する必要がない場合、レンジモチーフを単にモチーフと 呼ぶ.

アプリケーション例. センサ機器が定期的にデータを収集 し、サーバに送信すると仮定する. さらに、専門家が時系 列データをモニタリングすると仮定する. このデータをモ ニタリングし、時間の経過とともにモチーフが変化した場

合,様々な潜在的事象を分析したり,センサデータは環境 的な要因だけでなく,時間的な要因と相関があるといった 仮説を立てることができる.また,イベント検知への応用 も考えられる.モチーフをモニタリングし,そのモチーフ を1分ごとに保存すると仮定する.ある時刻におけるモ チーフが前日の同時刻に得られたモチーフと大きく異なる 場合やそれ以前のモチーフと著しく異なる場合,何らかの 異常が発生していることが予測できる.

提案アルゴリズムの概要.上記のようなアプリケーション では、最新のデータのみを考慮し、それらのモチーフをリ アルタイムにモニタリングする必要がある.そのため、カ ウントベースのスライディングウィンドウを用いて最新の w個のデータのみを考慮し、それらのモチーフを効率的に モニタリングするアルゴリズム SRMM(Streaming Range Motif Monitoring)を提案する.ウィンドウがスライドし た際、新たなデータがウィンドウに挿入され、最も古い データがウィンドウから削除される.つまり、新たなデー タを含むサブシーケンス *s_n* が生成され、最も古いデータ を含むサブシーケンス *s_e* が削除される.このとき、モチー

大阪大学 大学院情報科学研究科 Graduate School of Information Science and Technology, Osaka University

^{@~2018} Information Processing Society of Japan

フを更新する単純な手法として、 s_n および s_e とウィンド ウ内の全てのサブシーケンスを比較する手法が考えられ る.この手法は、 s_n および s_e と類似するサブシーケンス の数(類似サブシーケンス数)を正確に取得できるが、多 大な計算コストがかかる.そこで、SRMMは、ウィンドウ がスライドした際、モチーフになり得るサブシーケンスに のみ注目することにより、不要な計算を削減する.SRMM は PAA(Piecewise Aggregate Approximation)[6] および kd 木 [7] を用いて、 s_n の類似サブシーケンス数の上界値を高 速に計算し、正確な類似サブシーケンス数を計算する回数 を削減する.ここで、 s_n の類似サブシーケンス数の上界値 は、 s_n と類似するサブシーケンスの候補の数である.その ため、正確な類似サブシーケンス数を計算する場合におい ても、全てのサブシーケンスの数を計算できる.

貢献.以下に本研究の貢献を示す.

- カウントベースのスライディングウィンドウ上でスト リーミング時系列データのレンジモチーフをモニタリ ングする問題に取り組む.筆者らの知る限り、この問 題はこれまでに取り組まれていない.
- ウィンドウがスライドした際,モチーフを効率的に 更新するアルゴリズム SRMM を提案する. SRMM は効率的にモチーフを更新でき,時間計算量は $O(\log(wl) + m_n + m_e)$ である.ここで,lはモチー フ長, m_n および m_e は新たに生成されるサブシーケ ンスおよび削除されるサブシーケンスの類似サブシー ケンス数の上界値である.
- 4つの実データを用いた実験により、SRMMの有効性 を確認する.

本稿の構成.2章で本稿の問題を定義し、3章で関連研究 について述べる.4章でSRMMについて説明し、5章で実 データを用いた実験の結果を示す.最後に6章で本稿のま とめと今後の課題について述べる.

2. 予備知識

2.1 定義

ストリーミング時系列データtは実数値の系列であり, t = (t[1], t[2], ...)と表現する.まず,tの中に繰り返し現れ る特徴的なパターンを発見するため,tの一部を表すサブ シーケンスを定義する.

定義 1 (サブシーケンス). *t* および長さ*l* が与えられたとき, *p* を始点とするサブシーケンス *s_p* は式 (1) により定義 される.

$$s_p = (t[p], t[p+1], \dots, t[p+l-1])$$
(1)

ここで、 s_p のx番目の値を $s_p[x]$ と表現する.つまり、

 $s_p = (s_p[1], s_p[2], \dots, s_p[l])$ である.次に, t の中で s_p と 類似したサブシーケンスの数を計算するため,本研究では, 時系列データ間の類似度を測る基本的な指標であるピアソ ン相関を用いる [8], [9].

定義 2 (ピアソン相関). 長さlの2つのサブシーケンス s_p および s_q が与えられたとき、これらのピアソン相関 $\rho(s_p, s_q)$ は式 (2) により定義される.

$$\rho(s_p, s_q) = 1 - \frac{\|\hat{s}_p, \hat{s}_q\|^2}{2l}$$
(2)

 $\rho(s_p, s_q) \in [-1, 1]$ であり, $\|\hat{s}_p, \hat{s}_q\|$ は $\hat{s}_p \ge \hat{s}_q$ 間のユーク リッド距離を計算したものである. また, \hat{s}_p は $s_p \ge z$ 正 規化したものであり,

$$\hat{s}_p[i] = \frac{s_p[i] - \mu(s_p)}{\sigma(s_p)}$$

である.ここで, $\mu(s_p)$ および $\sigma(s_p)$ はそれぞれ ($s_p[1], s_p[2], ..., s_p[l]$)の平均および標準偏差である.ピア ソン相関は*z*正規化ユークリッド距離 $d(\cdot, \cdot) = \|\cdot, \cdot\|$ に変 換でき,式(3)で与えられる.

$$d(\hat{s}_p, \hat{s}_q) = \sqrt{2l(1 - \rho(s_p, s_q))}$$
(3)

ピアソン相関の時間計算量はO(l)である.次に,サブシー ケンス s_p と類似するサブシーケンス(類似サブシーケン ス)を定義する.

定義 3 (類似サブシーケンス). s_p , s_q , およびある閾値 θ が与えられたとき, $s_p(s_q)$ が $s_q(s_p)$ と類似しているなら ば,次の条件を満たす.

$$\rho(s_p, s_q) \ge \theta \Leftrightarrow d(\hat{s}_p, \hat{s}_q) \le \sqrt{2l(1-\theta)} \tag{4}$$

 $s_p \ge s_{p+1}$ が互いに類似していることは自明であり、有用 な結果を得るためには、このようなサブシーケンスを考慮 すべきではない、そこで、互いに重なり合うサブシーケン スをトリビアルマッチと定義する [3], [10].

定義 4 (トリビアルマッチ). s_p が与えられたとき, s_p と トリビアルマッチであるサブシーケンスの集合 S_p は次の 条件を満たす.

$$S_p = \{s_q | p - l + 1 \le q \le p + l - 1\}$$
(5)

次に,あるサブシーケンス s_p と類似したサブシーケンス の数をスコアと定義する.

定義 5 (スコア). t, l, および θ が与えられたとき, ある サブシーケンス $s_p \in t$ のスコアは式 (6) により定義される.

$$score(s_p) = |\{s_q \mid s_q \in t, \rho(s_p, s_q) \ge \theta, s_q \notin \overline{S_p}\}| \quad (6)$$

ここで、1章で述べたアプリケーションを含む多くの

アプリケーションでは最新のデータのみを考慮してい る [11], [12]. そのため, ストリーミング時系列データに関 する既存の研究 [13], [14] と同様に, 本研究においてもカウン トベースのスライディングウィンドウを用いて,最新の w 個 の値のみをモニタリングする. つまり, ウィンドウ内のスト リーミング時系列データtはt = (t[i], t[i+1], ..., t[i+w-1])のように表され、t[i+w-1]が最新の値である.また、lが与えられたとき,ウィンドウ内には w-l+1 個のサブ シーケンスが含まれる.ウィンドウがスライドしたとき, 最新の1個の値を含む新たなサブシーケンスが生成される. 同時に,最も古い値がウィンドウから削除されるため,最 も古いサブシーケンスが削除される.本研究では、このよ うな環境においてスコアが最大となるサブシーケンスをモ ニタリングする. つまり, ウィンドウサイズ wのウィンド ウに含まれる全てのサブシーケンスの集合をSとしたと き、本研究の問題は以下のように定義される.

問題定義. t, l, θ , および w が与えられたとき,式(7) で 表されるレンジモチーフ s^* をモニタリングする.

$$s^* = \underset{s \in S}{\operatorname{arg\,max}} \ score(s) \tag{7}$$

2.2 ベースラインアルゴリズム

本稿は、本問題に初めて取り組むため、まず、ベースラ インとなるアルゴリズムについて考える。ウィンドウがス ライドした際、新たに生成されるサブシーケンスおよび削 除されるサブシーケンスに対して、ウィンドウ内の全ての サブシーケンスとのピアソン相関を計算し、スコアを更新 する。そして、ウィンドウ内のスコアが最大のサブシーケ ンスをモチーフとする。前述したように、ウィンドウ内に は *w* - *l* + 1 個のサブシーケンスが含まれ、ピアソン相関 の計算には *O*(*l*) の時間計算量がかかる。そのため、ベー スラインアルゴリズムの時間計算量は *O*((*w* - *l*)*l*) である.

ここで,あるサブシーケンスのスコアに影響を与えるの は、そのサブシーケンスと類似したサブシーケンスのみで あるため、全てのサブシーケンスのスコアを更新する必要 はない.そのため、ウィンドウがスライドした際、スコア を更新する必要があるサブシーケンスを効率的に特定する アルゴリズムを提案する.

3. 関連研究

本章では、モチーフ発見に関する既存研究について紹 介する.モチーフという用語は、文献によって2つの異 なる意味で用いられている[2].1つ目のモチーフの定義 は、本稿におけるモチーフの定義と同様である.一方、文 献[8],[9],[12]では、時系列データの中で最も類似するサブ シーケンスのペアをモチーフと定義している.本章では、 最も類似するサブシーケンスのペアを発見する問題をペア モチーフ発見と呼ぶ.

3.1 ペアモチーフ発見

ペアモチーフ発見はサブシーケンスの数の二乗の時間計 算量がかかるため、文献 [9] では、三角不等式を用いて実 践的な計算時間を削減するアルゴリズム MK を提案してい る. MK は, いくつかのサブシーケンスを基準点とし, あ るサブシーケンスのペアが与えられたときに、それらの距 離の上界値を取得する.しかし,時間計算量は依然として サブシーケンスの数の二乗の時間計算量がかかる.より性 能を向上させるため, 文献 [8] では, Quick-Motif と呼ばれ るアルゴリズムを提案している. Quick-Motif はオンライ ンでサブシーケンスのインデックスを作成することで、サ ブシーケンス同士の比較回数を削減する.評価実験では, Quick-Motif は MK よりも優れていることを示している. 文献 [15], [16] では,Matrix Profile と呼ばれるオフライン でインデックスを作成するアプローチを提案している.こ のインデックスは、全てのサブシーケンスに対してそのサ ブシーケンスと最も類似するサブシーケンスとの距離を保 持する. このインデックスを用いることでペアモチーフを 高速に発見できる.

これらの研究は,静的な時系列データを対象としている. 一方,文献 [12] では,ペアモチーフをモニタリングする問 題に初めて取り組んでいる.文献 [12] の提案アルゴリズム では,ペアモチーフを高速に更新するため,各サブシーケ ンスは最近傍と逆最近傍のサブシーケンスのリストを保持 する.また,文献 [11] では,ペアモチーフをモニタリング するためにデータ構造を最適化したアルゴリズムを提案し ており, [12] のアルゴリズムより優れた性能を示している.

3.2 レンジモチーフ発見

Patel らはレンジモチーフを効率的に発見するための近 (似アルゴリズムを提案している [3]. このアルゴリズムで は、各サブシーケンスを SAX[17] を用いて記号列に変換 する. このアルゴリズムと同様に、Castro と Azevedo は iSAX[18] を用いてレンジモチーフを発見するアルゴリズム を提案している [19]. SAX および iSAX は時系列データを 記号列に近似するため、発見されたモチーフが正確である ことが保証されない. また、いくつかの確率的アルゴリズ ムが提案されているが [1]、[10]、これらのアルゴリズムも 発見されたモチーフが正確であることは保証されない. 文 献 [2] では、学習ベースのモチーフ発見アルゴリズムを提 案している. しかし、このアルゴリズムは前処理を行う必 要があるため、ストリーミング時系列データに適用できな い. また、これらの研究は、静的な時系列データを対象と している.

文献 [20] では,ストリーミング時系列データを対象とし ているが,短期間ではモチーフが出現しない場合に取り組 んでいる.さらに,文献 [20] で提案されたアルゴリズム も近似手法 (SAX および Bloom filter)を用いている.文 献 [21] も、ストリーミング時系列データを対象としている が、時系列データを SAX で記号化したサブシーケンス間 の距離に基づいてモチーフをモニタリングする.このよう に、既存の研究では近似的なモチーフをモニタリングする 問題に取り組んでいる.本稿では、正確なモチーフをモニ タリングするための効率的なアルゴリズムを提案する.

4. SRMM: Streaming Range Motif Monitoring

ウィンドウがスライドした際,ウィンドウ内の各サブ シーケンスのスコアは最大で1増加する.これは,定義5 およびカウントベースのスライディングウィンドウの特 性から明らかである.そのため,モチーフは頻繁に変化せ ず,新たに生成されるサブシーケンスのスコアが頻繁に score(s*)を超えることは非常にまれである.

ここで、新たに生成されるサブシーケンスを s_n とした とき、高速に $score(s_n) < score(s^*)$ であることが分かれ ば、正確なモチーフを効率的にモニタリングできる. これ を実現するため、4.1 節において $score(s_n)$ の上界値を効率 的に取得し、不要なスコアの計算を枝刈りするアルゴリズ ムを提案する. また、ウィンドウがスライドした際、ウィ ンドウからサブシーケンスが削除され、そのサブシーケン スと類似したサブシーケンスのスコアが 1 だけ減少するた め、 s^* が変化する可能性がある. そこで、4.2 節において、 スコアが減少する可能性のあるサブシーケンスを効率的に 特定するアルゴリズムを紹介する. 最後に、4.3 節におい て SRMM の全体的なアルゴリズムを紹介し、SRMM の時 間計算量について述べる.

4.1 スコアの上界値の取得

まず, $s_n \ge s \in S$ のピアソン相関の上界値, つまり z 正 規化ユークリッド距離の下界値を取得するため, 次元削減 アルゴリズム PAA[6] を用いる.このとき,長さ l のサブ シーケンス $s_p = (s_p[1], s_p[2], ..., s_p[l])$ は l 次元上の点とし て表現できる.

ある次元 $\phi < l$ が与えられたとき,PAA によりl次元上の点を ϕ 次元上の点に変換できる.このとき、 \hat{s}_p を ϕ 次元上の点に変換したものを \hat{s}_p^{ϕ} とすると、 \hat{s}_p^{ϕ} の各値は以下の式で表される.

$$\hat{s}_p^{\phi}[i] = \frac{\phi}{l} \sum_{j=\frac{l}{\phi}i}^{\frac{l}{\phi}(i+1)-1} \hat{s}_p[j$$

また、PAAでは以下の補題が成り立つ[6].

補題 1.2 つのサブシーケンス \hat{s}_p および \hat{s}_q が与えられた とき、以下の関係が成り立つ.

$$\sqrt{\frac{l}{\phi}dist(\hat{s}_p^{\phi}, \hat{s}_q^{\phi})} \le dist(\hat{s}_p, \hat{s}_q) \tag{8}$$

図 2: *score*(*s_n*)の上界値を求める例

PAA により, $\hat{s}_p \geq \hat{s}_q$ の z 正規化ユークリッド距離の下 界値, つまり $\rho(s_p, s_q)$ の上界値を $O(\phi)$ で得ることができ る. $\sqrt{\frac{l}{\phi}} dist(\hat{s}_p^{\phi}, \hat{s}_q^{\phi}) > \sqrt{2l(1-\theta)}$ ならば, 定義 3 より s_q は $s_p \geq$ 類似しないため, 正確性を失うことなく $s_p \geq s_q$ の 正確な距離の計算を枝刈りできる. \hat{s}_n が与えられたとき, $\forall s_p \in S \setminus \overline{S}_n$ に対して, $\sqrt{\frac{l}{\phi}} dist(\hat{s}_n^{\phi}, \hat{s}_p^{\phi})$ を計算することで, \hat{s}_n のスコアの上界値を取得できるが, これには $O(\phi(w-l))$ の時間計算量がかかる. ここで, s_n のスコアの上界値を求 めるためには, $\sqrt{\frac{l}{\phi}} dist(\hat{s}_n^{\phi}, \hat{s}_p^{\phi}) \leq \sqrt{2l(1-\theta)}$ を満たす s_p のみに注目すればよい. そこで, このような s_p を効率的 に取得するために kd 木 [7] を用いる. kd 木は k 次元上の 点を二分木で管理するデータ構造であり, データの削除, 挿入および範囲検索を効率的に実行できる.

ウィンドウ内の PAA により変換されたサブシーケンス を kd 木で管理した場合, $\sqrt{\frac{l}{\phi}} dist(\hat{s}_n^{\phi}, \hat{s}_p^{\phi}) \leq \sqrt{2l(1-\theta)}$ を 満たす s_p は, \hat{s}_n^{ϕ} を中心とする半径 $\sqrt{2\phi(1-\theta)}$ の範囲検 索により取得できる.このとき,以下の定理が成り立つ.

定理 1. 新たに生成されるサブシーケンス s_n ,距離の閾値 $\sqrt{2l(1-\theta)}$,および最新の l 個のサブシーケンスを除くウィ ンドウ内の全てのサブシーケンスを管理する kd 木が与えら れたとする.このとき、 \hat{s}_n^{ϕ} を中心とする半径 $\sqrt{2\phi(1-\theta)}$ の範囲検索は、 $\sqrt{\frac{l}{\phi}} dist(\hat{s}_n^{\phi}, \hat{s}_p^{\phi}) \leq \sqrt{2l(1-\theta)}$ を満たす s_p の集合 S_n^{in} を返し、 $|S_n^{in}| = m_n$ とすると、 $m_n \geq score(s_n)$ である.

証明.補題1より, s_p は $\sqrt{\frac{l}{\phi}}dist(\hat{s}_n^{\phi}, \hat{s}_p^{\phi}) \leq \sqrt{2l(1-\theta)}$ を満たす必要がある.この不等式から, $dist(\hat{s}_n^{\phi}, \hat{s}_p^{\phi}) \leq \sqrt{2\phi(1-\theta)}$ が導かれる.次に,最新のl個のサブシーケンスは s_n とトリビアルマッチであるため $score(s_n)$ には影響しない.以上より,定理1が成り立つ.

例 1. 図 2 は、2 次元に次元削減されたサブシーケンスを 2 次元上の点として表現している. *score*(s_n)の上界値を求 める場合、 \hat{s}_n^{ϕ} (赤い点)を中心とする半径 $\sqrt{2\phi(1-\theta)}$ の 範囲検索を実行すると、範囲内に3 個のサブシーケンスが 存在するため、 $m_n = 3$ となり、これが *score*(s_n)の上界値 となる.

定理1より,以下の系が成り立つ.

系 1. $s \in S \setminus \{s_n\}$ に対して $score(s) \ge m_n$ ならば, s_n は

モチーフになり得ない.つまり,正確な *score*(*s_n*) の計算 を枝刈りできる.

定理1を用いるため,SRMMでは最新のl個のサブシー ケンスは kd 木で管理しない.ここで, $n \in kd$ 木で管理す るデータの数, $m \in 範囲内に存在するデータの数とした$ とき,kd 木による範囲検索の時間計算量は $O(\log n + m)$ である.つまり,スコアの上界値を取得する時間計算量は $O(\log(w-l) + m_n)$ であり,さらに, $\log(w-l) + m_n \ll w$ である.

4.2 スコアが減少するサブシーケンスの特定

ウィンドウがスライドした際,サブシーケンスが削除され,そのサブシーケンスと類似したサブシーケンスのスコ アが減少する.スコアが減少するサブシーケンスを特定す るため,削除されるサブシーケンスに対して範囲検索を実 行することが考えられるが,これは効率的ではない.そこ で,スコアが減少するサブシーケンスを効率的に特定する ため,2つのリスト SL および PL を定義する.

定義 6 (SL). s_p の SL SL_p は、サブシーケンスの識別子 $q \ge \rho(s_p, s_q)$ のタプルの集合であり、以下の条件を満たす.

$$SL_p = \{ \langle q, \rho(s_p, s_q) \rangle \, | \, s_q \in S \backslash S_p, \rho(s_p, s_q) \ge \theta \}$$
(9)

定義 7 (PL). s_p の PL PL_p は、以下の条件を満たすサブ シーケンス s_q の集合である.

$$dist(\hat{s}_p^{\phi}, \hat{s}_q^{\phi}) \le \sqrt{2\phi(1-\theta)}, s_q \notin S_p, \langle q, \cdot \rangle \notin SL_p \quad (10)$$

つまり,範囲検索により s_p のスコアの上界値を求めると き, $dist(\hat{s}_p^{\phi}, \hat{s}_q^{\phi}) \leq \sqrt{2\phi(1-\theta)}$ を満たす $q \in PL_p$ に, $p \in PL_q$ に追加する. さらに, $\rho(s_p, s_q)$ を計算するとき, q(p)を $PL_p(PL_q)$ から取り除き, $\rho(s_p, s_q) \geq \theta$ ならば $q(p) \in SL_p(SL_q)$ に追加する. ここで, 2つの補題が成り立つ.

補題 2. $|SL_p| + |PL_p| \ge score(s_p)$

補題 3. サブシーケンス s_e の削除によりスコアが減少す る可能性のあるサブシーケンス s_q は, $q \in PL_e$ または $\langle q, \cdot \rangle \in SL_e$ を満たす.

補題 2 および 3 は,定義 7 および 8 から導かれる.また, 補題 3 より, SL_p および PL_p の更新の時間計算量は O(1)であるため,サブシーケンスの削除に対する時間計算量の 合計は $O(|SL_e| + |PL_e|)$ である.

4.3 アルゴリズム

本節では SRMM の詳細を紹介する.ウィンドウがスラ イドした際,まず,削除されるサブシーケンス s_e に対する 処理を行い,暫定のモチーフ s^*_{temp} を取得する.その後, 新たに生成されるサブシーケンス s_n に対する処理を行い,

Algorithm 1: SRIVIVI (expiration case)			
Input: s_e : the expired subsequence			
Output: s^*_{temp} : a temporal motif			
1 Delete \hat{s}_e^{ϕ} from kd-tree, $f \leftarrow 0$			
2 for $\forall p \in SL_e$ do			
$3 \qquad SL_p \leftarrow SL_p \backslash \langle e, \cdot \rangle$			
4 if $s_p = s^*$ then			
$5 \qquad \qquad$			
6 for $\forall p \in PL_e$ do			
$7 \left[\begin{array}{c} PL_p \leftarrow PL_p \backslash \{e\} \end{array} \right]$			
$\mathbf{s} \ \mathbf{if} \ s^* = s_e \ \mathbf{then}$			
$9 \left[\begin{array}{c} f \leftarrow 1, \ s^* \leftarrow \varnothing \end{array} \right]$			
10 $s^*_{temp} \leftarrow s^*$			
11 if $f = 1$ then			
12 for $\forall s_p \in S$ such that $ SL_p + PL_p \ge score(s^*_{temp})$			
do			
13 $\begin{bmatrix} s_{temp}^* \leftarrow Motif-Update(s_p, s_{temp}^*) \end{bmatrix}$			

s* を取得する.

• / 1

1 CDMMA /

 s_e に対する処理. アルゴリズム1は, SRMMの s_e に対す る処理を行うアルゴリズムを示している. s_e が与えられ たとき,kd木から \hat{s}_e^{ϕ} を削除し,フラグfを0とする(1 行).このときの時間計算量は $O(\log(w-l))$ である.次 に,補題3より, $p \in PL_e$ または $\langle p, \cdot \rangle \in SL_e$ を満たす全 ての SL_p および PL_p からeを削除する(2–9行).ただ し,score(s*)が減少する場合,または $s^* = s_e$ である場合, f = 1とする.最後に,f = 1の場合,モチーフが変化する 可能性がある.補題2より, $|SL_p| + |PL_p| \ge score(s_{temp})$ を満たす場合, s_p がモチーフになる可能性があるため, Motif-Update(s_p, s_{temp})を用いて, s_p の正確なスコアを計 算し, s_{temp} を得る(13行).Motif-Update(s_p, s_{temp})の詳 細は後述する.

次に, s^*_{temp} が現在のモチーフであるか,または新たに 生成されるサブシーケンス s_n がモチーフとなるかを確認 する.

 s_n に対する処理. アルゴリズム2は, SRMMの s_n に対する処理を行うアルゴリズムを示している.まず, PAAにより \hat{s}_n^{ϕ} を計算し, \hat{s}_{n-l}^{ϕ} をkd木に挿入する(1-2行).ここで, s_{n-l} は s_n とトリビアルマッチでない最新のサブシーケンスである.(前述した通り,最新のl個のサブシーケンスはkd木で管理しない.)次に, $SL_n = \emptyset$ とし, \hat{s}_n^{ϕ} を中心とする半径 $\sqrt{2\phi(1-\theta)}$ の範囲検索を実行することにより PL_n を取得する(3-4行).その後, $\forall p \in PL_n$ に対して, PL_p を更新する. $s_p = s_{temp}^*$ の場合, $\rho(s_p, s_n)$ を計算して, $score(s_p)$ を取得し, SL_p , SL_n ,および PL_n を更新する(6-10行).一方, $s_p \neq s_{temp}^*$ の場合, PL_p を

Algorithm 2: SRMM (insertion case)

_	- , ,		
	Input: s_n : the new subsequence, s^*_{temp} : a temporal		
	motif		
	Output: s^* : the current motif		
1	Compute \hat{s}^{ϕ}_n by PAA		
2	2 Insert \hat{s}^{ϕ}_{n-l} to kd-tree		
3	$s SL_n \leftarrow \emptyset$		
4	4 $PL_n \leftarrow Range-Search(\hat{s}^{\phi}_n, \sqrt{2\phi(1-\theta)})$		
5	5 for $\forall p \in PL_n$ do		
6	$\mathbf{if} s_p = s^*_{temp} \mathbf{then}$		
7	Compute $\rho(s_p, s_n)$		
8	$\mathbf{if} \ \rho(s_p, s_n) \geq \theta \ \mathbf{then}$		
9	$SL_p \leftarrow SL_p \cup \langle n, \rho(s_p, s_n) \rangle,$		
	$ \qquad \qquad$		
10	$PL_n \leftarrow PL_n \setminus \{p\}$		
11	else		
12	$PL_p \leftarrow PL_p \cup \{n\}$		
13	if $ SL_p + PL_p \ge score(s^*_{temp})$ then		
14			
15	if $ SL_n + PL_n \ge score(s_{temp}^*)$ then		
16	$\mathbf{s} s^* \leftarrow Motif-Update(s_p, s^*_{temp})$		
17	7 else		
18	$s^* = s^*_{temp}$		

更新し, $|SL_p| + |PL_p| \ge score(s^*_{temp})$ を満たすかどうか を確認する. $|SL_p| + |PL_p| \ge score(s^*_{temp})$ を満たす場合, Motif-Update (s_p, s^*_{temp}) を実行し,必要ならばモチーフを 更新する (14行). 最後に, $|SL_n| + |PL_n| \ge score(s^*_{temp})$ を満たす場合, Motif-Update (s_n, s^*_{temp}) を実行し, s_n がモ チーフになるかを確認する (15–16行). そうでない場合, s^*_{temp} が現在のモチーフであることが保証される (18行).

三角不等式による高速化. Motif-Update (s_n, s^*_{temp}) におい て, $\rho(s_n, s^*_{temp}) \ge \theta$ を満たすかどうかを確認し, SL お よび PL を更新する.また,必要に応じて s^*_{temp} を更新す る. SL および PL の更新の時間計算量は O(1) であるが, $\rho(s_n, s^*_{temp}) \ge \theta$ の確認には O(l) 時間必要であるため,以 下の定理を用いて高速化を実現する.

定理 2. s_n , $s_p(p \in PL_n)$, $s_q(q \in PL_n \land \langle q, \rho(s_p, s_q) \rangle \in SL_p)$, および閾値 θ が与えらえれたとき, $dist(\hat{s}_n, \hat{s}_p) + dist(\hat{s}_p, \hat{s}_q) \leq \sqrt{2l(1-\theta)}$ ならば, $\rho(s_n, s_q) \geq \theta$ である.

証明. *dist*(·, ·) は *z* 正規化ユークリッド距離であるため, 三角不等式および式 (4) が成り立つ.以上より,定理2が 成り立つ. □

 $|SL_n| + |PL_n| \ge score(s^*_{temp})$ であるとき, $score(s_n)$ を計算する必要がある.定理2を用いて,これを高速化する.三角不等式の基準となるサブシーケンスとして, $p' \in PL_n$ および $SL_{p'} \ne \emptyset$ を満たす $s_{p'}$ の集合の

表 1: パラメータ設定

パラメータ	値
モチーフ長, l	50, 100 , 150, 200
ウィンドウサイズ, w[×1000]	5, 10 , 15, 20
閾値, <i>θ</i>	0.75, 0.8, 0.85, 0.9 , 0.95

中で、 ϕ 次元上で s_n の最近傍である s_p を用いる. s_p は Range-Search $(\hat{s}_n^{\phi}, \sqrt{2\phi(1-\theta)})$ の実行と同時に取得できる. まず, $dist(\hat{s}_n, \hat{s}_p)$ を計算する. 次に、 $\forall q \in PL_n$ に対し て、 $\langle q, \cdot \rangle \in SL_p$ ならば $dist(\hat{s}_n, \hat{s}_p) + dist(\hat{s}_p, \hat{s}_q)$ を計算 する. そして、 $dist(\hat{s}_n, \hat{s}_p) + dist(\hat{s}_p, \hat{s}_q) \leq \sqrt{2l(1-\theta)}$ が 成り立つ場合、 $dist(\hat{s}_n, \hat{s}_q) \approx$ 計算する必要はないため、 $dist(\hat{s}_n, \hat{s}_p) + dist(\hat{s}_p, \hat{s}_q) > \sqrt{2l(1-\theta)}$ または $\langle q, \cdot \rangle \notin SL_p$ を満たす場合のみ $dist(\hat{s}_n, \hat{s}_q)$ を計算する.

時間計算量.前述したとおり,kd木へのサブシーケンス の挿入および削除には $O(\log(w-l))$ かかる.アルゴリズ ム1には, $m_e = |SL_e| + |PL_e|$ としたとき,少なくとも $O(\log(w-l)+m_e)$ 時間かかる.アルゴリズム2には,少なく とも $O(\log(w-l)+m_n)$ 時間かかる.ここで, m_n はRange-Search $(\hat{s}_n^{\phi}, \sqrt{2\phi(1-\theta)})$ によって返されるサブシーケンス の数である. s_p のスコアを正確に計算する場合, $|PL_p|$ 回 ピアソン相関の計算が必要となるため, $O(l|PL_p|)$ 時間かか る.よって,ウィンドウがスライドした際,正確なスコア計 算が必要なサブシーケンスの集合をS'としたとき,SRMM の時間計算量は, $O(\log(w-l) + m_e + m_n + \sum_{S'} l|PL_p|)$ となる.実践的には,|S'|は非常に小さい値であり,本稿 で行った実験では平均で $|S'| \leq 1$ であった. $\log(w-l)$ は 定数とみなすと,SRMMの時間計算量は、削除および生成 されるサブシーケンスのスコアの上界値にのみ依存する.

5. 性能評価

本章では,SRMM およびベースラインアルゴリズムの 性能評価のために行った実験の結果を紹介する.

5.1 実験環境

本実験は, Windows10, 3.40GHz Core i7 および 16GB RAM を搭載した計算機で行い,全てのアルゴリズムを C++で実装した.

データセット.以下の4つの実データを用いた.

- Google-CPU [22]: Google のデータセンタの CPU 使 用率の時系列データ(長さ 133,902)
- Google-Memory [22]: Google のデータセンタのメモ リ使用率の時系列データ(長さ133,269)
- GreenHouseGas [4]: カリフォルニア州の温室効果ガスの排出量の時系列データ(長さ100,062)
- RefrigerationDevices^{*1}: 冷蔵庫の2分ごとの消費電力

 $^{^{*1} \ \, {\}rm http://timeseriesclassification.com/index.php}$

図 4: wの影響

の時系列データ(長さ270,000)

パラメータ.本実験で用いたパラメータを表1に示す.太 字で表されている値はデフォルトの値である.また, $\phi = \frac{l}{2}$ とし,あるパラメータの影響を調べるとき,他のパラメー タは固定する.

5.2 評価結果

本節では,各アルゴリズムにおける1スライド当たりの 平均更新時間の結果を示す.

lの影響. 図 3 に lを変化させたときの結果を示す. ベース ラインアルゴリズムにおける更新時間は, lの増加に伴い, 線形に増加する. これは, ベースラインアルゴリズムの時 間計算量が O((w - l)l) であるからである. 一方, SRMM は l によらずほぼ一定値となる. ここで, lの増加に伴い, ピアソン相関の計算時間は増加する. しかし, θ を固定し た場合, lの増加に伴い, 2 つのサブシーケンス間の距離が 大きくなる傾向があり, サブシーケンス間のピアソン相関 は小さくなりやすいため, m_e および m_n が減少する. 以 上の理由から, SRMM は l によらず高速にモチーフを更新 できる. SRMM はベースラインアルゴリズムよりも最大 で 24.5 倍高速である.

*w*の影響.図4に*w*を変化させたときの結果を示す.図4 に示す通り,図3と同様の結果が得られていることがわか る.ベースラインアルゴリズムの時間計算量は*w*に対して 線形であるため,この結果は妥当である.一方,*l*を変化さ せたときの結果と異なり, *w* の増加に伴い SRMM の更新 時間が増加する.これは, *w* の増加に伴って,各サブシー ケンスのスコアが大きくなりやすく, *m_e* および *m_n* が大 きくなりやすいためである.

 θ の影響.図5に θ を変化させたときの結果を示す.ベー スラインアルゴリズムでは、がスライドした際、新しく生 成されるサブシーケンスおよび削除されるサブシーケンス とウィンドウ内の全てのサブシーケンスとのピアソン相関 を計算するため、更新時間は θ によらず一定である.一方 で、SRMM は θ の増加に伴って更新時間は減少する.式 (4) より、 θ が大きくなるに伴って距離の閾値は小さくな り、SRMM において範囲検索を実行する際、範囲内に存 在するサブシーケンス数が減少する.つまり、 m_e および m_n が減少するため、SRMM の更新時間は減少する.

図 5(d) において θ = 0.75 のとき, SRMM の更新時間 はベースラインアルゴリズムよりも大きい. ここで, RefrigerationDevices では, θ が小さいとき, 多くのサブシー ケンスが互いに類似している. このような場合, 正確なス コアの計算回数が削減できず, 更新時間が大きくなる. し かし, 多くのアプリケーションでは, 大きく相関したサブ シーケンスを発見することが求められる. 図 5 で示す通 り, SRMM は θ が大きいとき, 非常に高速にモチーフを 更新できる.

6. 結論

近年注目されている IoT 機器では、ストリーミング時系

列データを生成するため、時系列データをリアルタイムに 解析することがより重要になっている.本稿では、レンジ モチーフ(時系列データの中で最も多く現れるサブシーケ ンス)をモニタリングする問題に初めて取り組んだ.効率 的にモチーフをモニタリングするため、SRMMを提案し た.SRMM は PAA および kd 木を用いることにより、不 要なスコアの計算を削減することができる.4つの実デー タを用いた実験により、SRMM の有効性を確認した.

本稿では、1次元の時系列データのみを対象とした.し かし、近年、機器は複数のセンサをもち、多次元の時系列 データを生成する.今後は、多次元のストリーミング時系 列データのレンジモチーフを効率的にモニタリングする手 法を検討している.

謝辞.本研究の一部は,基盤研究(A)(JP26240013),基盤研究(B)(JP17KT0082),および若手研究(B)(JP16K16056) の研究助成によるものである.ここに記して謝意を表す.

参考文献

- Yankov, D., Keogh, E., Medina, J., Chiu, B. and Zordan, V.: Detecting time series motifs under uniform scaling, *KDD*, pp. 844–853 (2007).
- [2] Grabocka, J., Schilling, N. and Schmidt-Thieme, L.: Latent time-series motifs, *TKDD*, Vol. 11, No. 1, p. 6 (2016).
- [3] Patel, P., Keogh, E., Lin, J. and Lonardi, S.: Mining motifs in massive time series databases, *ICDM*, pp. 370–377 (2002).
- [4] Lucas, D., Kwok, C. Y., Cameron-Smith, P., Graven, H., Bergmann, D., Guilderson, T., Weiss, R. and Keeling, R.: Designing optimal greenhouse gas observing networks that consider performance and cost, *Geoscientific Instrumentation, Methods and Data Systems*, Vol. 4, No. 1, p. 121 (2015).
- [5] Moshtaghi, M., Leckie, C. and Bezdek, J. C.: Online Clustering of Multivariate Time-series, *SDM*, pp. 360– 368 (2016).
- [6] Keogh, E., Chakrabarti, K., Pazzani, M. and Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases, *KIS*, Vol. 3, No. 3, pp. 263–286 (2001).
- [7] Bentley, J. L.: Multidimensional binary search trees used for associative searching, *Communications of the ACM*, Vol. 18, No. 9, pp. 509–517 (1975).

- [8] Li, Y., Yiu, M. L., Gong, Z. et al.: Quick-motif: An efficient and scalable framework for exact motif discovery, *ICDE*, pp. 579–590 (2015).
- Mueen, A., Keogh, E., Zhu, Q., Cash, S. and Westover, B.: Exact discovery of time series motifs, *SDM*, pp. 473–484 (2009).
- [10] Chiu, B., Keogh, E. and Lonardi, S.: Probabilistic discovery of time series motifs, *KDD*, pp. 493–498 (2003).
- [11] Lam, H. T., Pham, N. D. and Calders, T.: Online discovery of top-k similar motifs in time series data, *SDM*, pp. 1004–1015 (2011).
- [12] Mueen, A. and Keogh, E.: Online discovery and maintenance of time series motifs, *KDD*, pp. 1089–1098 (2010).
- [13] Chen, Y., Nascimento, M. A., Ooi, B. C. and Tung, A. K.: Spade: On shape-based pattern detection in streaming time series, *ICDE*, pp. 786–795 (2007).
- [14] Li, Y., Zou, L., Zhang, H. and Zhao, D.: Computing longest increasing subsequences over sequential data streams, *PVLDB*, Vol. 10, No. 3, pp. 181–192 (2016).
- [15] Yeh, C.-C. M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H. A., Silva, D. F., Mueen, A. and Keogh, E.: Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets, *ICDM*, pp. 1317–1322 (2016).
- [16] Zhu, Y., Zimmerman, Z., Senobari, N. S., Yeh, C.-C. M., Funning, G., Mueen, A., Brisk, P. and Keogh, E.: Matrix profile ii: Exploiting a novel algorithm and gpus to break the one hundred million barrier for time series motifs and joins, *ICDM*, pp. 739–748 (2016).
- [17] Lin, J., Keogh, E., Wei, L. and Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series, *Data Mining and knowledge discovery*, Vol. 15, No. 2, pp. 107–144 (2007).
- [18] Shieh, J. and Keogh, E.: i SAX: indexing and mining terabyte sized time series, *KDD*, pp. 623–631 (2008).
- [19] Castro, N. and Azevedo, P.: Multiresolution motif discovery in time series, SDM, pp. 665–676 (2010).
- [20] Begum, N. and Keogh, E.: Rare time series motif discovery from unbounded streams, *PVLDB*, Vol. 8, No. 2, pp. 149–160 (2014).
- [21] Nguyen, H.-L., Ng, W.-K. and Woon, Y.-K.: Closed motifs for streaming time series classification, *KIS*, Vol. 41, No. 1, pp. 101–125 (2014).
- [22] Reiss, C., Wilkes, J. and Hellerstein, J. L.: Google cluster-usage traces: format+ schema, *Google Inc.*, *White Paper*, pp. 1–14 (2011).