
A Research on Big Data and AI Analysis
Algorithm Optimization Using GPUs

TRAN VAN SANG2 KOBAYASHI RYOUSUKE1 YAMAGUCHI RIE1

NAKATA TOSHIYUKI1,2

Abstract: With the significant increase of computer performance, in recent years, many complex human-like
tasks have been resolved by computer software in reasonable time. These tasks include visual object recog-
nition, speech to text interpretation, human face authentication, etc. . . . However, computer performance
is going to reach the limit as the CMOS transistor size near the limit. On the other hand, the amount of
data which need to be processed is incredibly growing up under Internet of Thing, Industrialization 4.0,
social network era [13], which leads to the demand of higher scalability on current Big Data, AI analysis
algorithms. Our research investigated on finding scaling solution for Big Data, AI analysis problems. The
whole development is composed of 2 phases: acceleration by GPU and distributed computing application.
This research focuses on the former topic. A real-world dataset was used in this research to achieve more
real-life optimization and model evaluation result.

1. Introduction

In recent years, with the explosion of internet and mo-

bile evolution, internet service is becoming bigger and bigger

in terms of system complexity and user volume. Concern-

ing user privacy and credentiality, internet service providers

never want to give credential to wrong user. An obvious

and canonical method is to use a combination of secret pass-

word and unique user identification. However, this becomes

a burden for service users to remember their password on

each service. There also is a trade-off between remember-

ing convenience and security level when choosing a pass-

word. User behaviour of sharing password among multiple

services raises the password leaking risk. Recently, there is

a new way to give credentiality using Lifestyle Authentica-

tion. Lifestyle Authentication is a brand new authentication

method which makes use of user auxiliary information rather

than user id and password combination [16]. Auxiliary in-

formation can be user location paired with system access

timestamp, user daily access pattern, etc. . . . With this au-

thentication method, a system can identify and authorize a

user without requiring him/her doing any procedure explic-

itly. Yamaguchi Laboratory, Social ICT Center, University

of Tokyo, is investigating this authentication method, and

MangaONE is one of candidates for their research.

MangaONE [8], one of biggest Manga providers in Japan,

with very large number of users and high frequent daily

access. Researchers in Yamaguchi Laboratory, Social ICT

Center, University of Tokyo, and we are using MangaONE

1 University of Tokyo, Graduate School of Information Science
and Technology, Social ICT Center

2 University of Tokyo, Graduate School of Information Science
and Technology, Department of Computer Science

system log information for authentication application, by

building a model to distinguish an user’s behavior from all

others’. Machine Learning, which recently attracts much

public attention and many giant corporations’ attention, is

one of computer science fields which can be able to be ap-

plied on unstructured and multiple features data due to its

ability to mimic human like task by computer. There are

also many Machine Learning models which can be applied

to this authentication problem. For example, Multilevel Hy-

pergraph Partitioning [10], Random Forest, Decision tree,

k-Nearest Neighbourhood, k-means. R. Kobayashi [12] used

Random Forest model to train one model for each user with

negative samples randomly chosen from all others. Beside

plenty choices of models and acceleration techniques, an-

other topic which data analysts usually care about is pro-

gramming language. R is one of the most popular language

for data analyst in recent years because of its high interac-

tivity, user friendly syntax and flexible data manipulation

but its speed is sometimes problematic.

With machine learning’s recent large scale research com-

munity and investment, it has been improved significantly.

Basic models with basic algorithms nearly reach their best

performance in single machine while input data size keeps

increasing with tremendous pace. As a result, there is a need

to horizontally scale up the algorithm via GPU acceleration

or distributed computing. Horizontally scaling up an ap-

plication means to divide the application into many smaller

tasks in order to execute them in multiple machines in paral-

lel in a network such as distributed system, or execute them

with GPUs. According to CRAN Task View [4], there are

many GPU libraries to speedup R’s standard application,

such as gputools, gpuR,. . . . However they almost support

― 1212 ―

「マルチメディア，分散，協調とモバイル
(DICOMO2018)シンポジウム」 平成30年7月

© 2018 Information Processing Society of Japan

only basic matrix and vector manipulation and lack Machine

Learning model training using GPUs. Gputools is a rare li-

brary that trains General Linear model using GPU but it

only supports single precision number. R. Kobayashi [12]

provided very efficient model to identify user with relatively

low false rate but his model requires training one model for

each individual. This reduces overall scalability of the so-

lution. His model also ignores majority of input data when

training each model because taking all negative data will

bias the model and the result predictor will become an one-

way negative predictor.

Our research investigated on using one single model to dis-

tinguish any user behaviour in database. Then afterward,

we integrated GPU into the standard implementation to

speedup the critical part of the training algorithm. In accel-

eration phase, we chose General Linear model to optimize

because of its high correction rate and reasonable resulted

predictor. The optimization accelerates the algorithm bot-

tleneck portion around twice.

Our paper is composed of 3 sections. In the next section, af-

ter describing test environment, data sanitization and model

choice, we explain our improvement using GPU in detail. In

following section, we show model training and optimization

result with summary. Because of time margin, we could not

implement all optimization strategy. Thus, in the last sec-

tion, there will be discussion on future development plan in

terms of modeling and optimization.

2. Methodology

This section is composed of 3 subsections: data manip-

ulation, model selection, and optimization. Data manipu-

lation subsection describes input raw data, data filtering,

how to convert data into feature vector before explaining

how to generate false samples for supervised learning model.

Model selection subsection is subdivided into unsupervised

learning, supervised learning models, and other approaches

discussion. Unsupervised learning deals with k-means, k-

nearest neighbor, random forest, decision tree, neural net-

work, linear discriminant analysis, and a very promising

graph based Multilevel Hypergraph Partition approach. Be-

fore mentioning some visualization techniques in other ap-

proaches subsection, the main approach of this research,

General Linear model, is then described in supervised learn-

ing subsection, together with Decision Tree model. Follow-

ing model selection subsection is optimization where there

is discussion on how GPU optimization is conducted and

several benchmark tools and techniques will be described.

3. Data manipulation

In our research, we ran benchmark on a dedicated ma-

chine equipped with CPU AMD Ryzen Threadripper 1950X

16-Core Processor 2.2GHz, 128GB of Memory, NVIDIA

GeForce GTX 1080Ti 11GB Memory. Original raw data

includes 41,638,144 records of user manga reading log in-

formation with 8,502 manga chapters over 49,261 users in

nearly 9 months between 2014 December 18, 19:18:47 JST

Table 1 Data Table for Training Model

Feature Description

User id User’s system unique id. There are 49,261 users in
total

Weekday Sunday: 0, Monday: 1, . . . , Saturday: 6

h1, h2, . . . , h24
Number of reading in an specified hour in a specified
day
For example: h1 feature presents number of reading
from 12AM before

and 2015 September 10, 03:56:20 JST. Each record contains

3 elements: user’s system unique user id, chapter id read by

user and timestamp of the reading. System unique user id is

arbitrary and unique number generated by system and does

not contain any user private information.

First, data was filtered by removing all data of first day

and last day because these days’ log information may not

be completed and their portions are small enough to not

affect overall performance. Next, all records of same user

on same hour of same day were aggregated into one record

with a new label representing number of records, i.e. num-

ber of the user’s reading on specific hour in specific day.

Then, week day of the reading was also calculated into inte-

ger values between 0 and 6, with Sunday be 0, Monday be

1,. . . and Saturday be 6. Finally, we came up with data ta-

ble of 4,532,246 records, each record having 26 data features

and 1 label feature as described in Table 1

Due to the fact that finer timestamp division, for example

combining data into 30 minutes chunk instead of 1 hour, is

believed to make higher quality predictor, in future research,

various timestamp division should be consider to achieving

the best prediction rate. Moreover, time division does not

need to be uniform, it can be any pattern depend on their

particular characteristic. For example: sleeping hour (from

11PM last day until 6AM), commuting hour (from 6AM to

8AM), working hour (from 9AM to 12AM and from 1AM to

5AM), lunch hour, etc. . . . This shows very high potential

for future improvement of this approach.

On weekday field, because of its categorical type, it is the

best if this field is encoded into vector of 7 binary elements

presenting 7 days in a week with one and only one element

be TRUE to appoint its representing weekday. In this re-

search, we kept them as its numerical value to simplify the

model.

At current development, the best way is likely to treat user

id feature as numerical value because of its large domain.

This data design may raise a question on why chapter id fea-

ture was removed. In fact, if chapter was a static feature, in

other words, if it never changed by time, it would have been

considered to be a component of the model. Moreover, chap-

ters are also grouped into 207 groups by theirs manga with

many useful additional data. This has potential to reduce

input data size while still preventing loss of information on

what user read. However, if chapter information is included

― 1213 ―
© 2018 Information Processing Society of Japan

in the model, by time user might lose his/her interest in

reading some chapters, his/her reading behaviour with the

chapter he/she read becomes variate, and the trained model

will be invalidated.

For supervised learning model training purpose, the next

step in the data process is negative sample generation. User

id and weekday were uniformly randomized from their do-

mains. All newly generated values’ label are false. How-

ever, with uniform generator for remaining 24 features of

number of reading, Decision Tree model produced a predic-

tor that can correctly predict 99.31% test samples, which

implies a bad data generation rather than leveraging the

training model’s performance. Hence, we investigated new

way to generate number of reading to generate data more

likely to existing data. Because all users usually do not read

manga on every hour, there should be more zero value in

these 24 features. In order to do this, firstly, number of to-

tal reading of each user was investigated. Figure 1 shows

this value histogram.

Fig. 1 Total number of reading per day of each user histogram

Figure 1 illustrates that total number of reading in a day re-

gardless user more concentrates at lower values from 1 to 7

times, then concentrates again at 8 before slightly dispersing

until infinity. To achieve same total reading per day distri-

bution on newly generated data, total number of reading

of each new record S firstly randomized from set of all to-

tal number of reading in original data regardless of the user.

Next, 23 numbers k1, k2, . . . , k23 were uniformly randomized

between 0 and S with replacement. With k0 = 0, k24 = S,

24 features h1, h2, . . . , h24 then calculated by

hi = ki − k(i− 1) with i = 1 . . . 24

Number of negative samples generated is exactly same as

number of positive samples. After negative sample genera-

tion, there was 9,064,492 records in total. In model evalu-

ation, 70% of them were used to train the model and 30%

were for testing. In optimization phase, 100% data was used

for better comparison result.

4. Model selection

4.1 Unsupervised approach

Following unsupervised approaches only consider positive

samples with label feature removed.

The very first approach was unsupervised k-mean model. All

samples were grouped into k clusters of interested to min-

imize each data group’s variance based on their Euclidean

vector distance. Modified version of gap statistics in [15] was

used to identify the k, number of clusters. Found number of

clusters was 7. Figure 2 shows gap statistic value of variate

k values. Statistic value show how much sum of squared dis-

tance within cluster clustering gains by increase number of

clusters from k − 1 to k. In gap statistic, k value should be

chosen with their highest gap statistic value. However, from

Figure 2, gap statistics seem to increase consistently. We

heuristically chose k = 7 because of the slight decrease of

gap statistic value when k goes from 7 to 8. Subsequently,

clusters were evaluated by calculating how many clusters

each user has their samples belong to in average. Evalu-

ated number was 4.7 clusters over total 7 clusters. In other

words, each user has samples presenting more than half of

all clusters, while at most one or two clusters had been ex-

pected for k-means model to be adopted.

Fig. 2 Gap statistics of multiple k value

Similar to k-means, k-nearest neighbor model was also ap-

plied by finding most k nearest records from training data

for each record in testing data. Dominated user in set of

k nearest neighbors is used to label test data. Unlike k-

means model, k-nearest neighbor can use any of distance

function. Figure 3 illustrates error rate of this model with

variate minkowski distance, which points out that this model

cannot make correct prediction of more than 4% of test sam-

ples.

Fig. 3 Error rate of k-nearest neighbor with different minkowski
distance (k = 10)

Random forest (with 500 trees), decision tree, neural net-

work, linear discriminant analysis were applied with user id

as categorical variable to be classified. Their classification

miss rate were 93.55%, 99.20%, 98.83%, 95.51% respectively.

All these values were too high to be considered as final so-

lution.

Final unsupervised approach was graph based. Multilevel

Hypergraph Partitioning in [10] is a very popular model in

VLSI circuit design and market basket problem. In market

basket problem, item seller wants to classify buyers or selling

― 1214 ―
© 2018 Information Processing Society of Japan

items into group of interested based on buyers’ picking be-

havior. Each time a buyer pickup items into basket and go to

the cashier, his/her basket’s items are called one transaction.

This transaction represents an hyperedge of the hypergraph

whose node present a shopping item. Hypergraph [2] is a

general concept of graph which has hyperedge connecting 2

or more than 2 nodes, and is associated with one numerical

value called hyperedge weight. There are multiple ways to

mapping market basket problem into our MangaONE user

classification problem. One is to map each user to be item

buyer, and each chapter to be graph node, i.e shopping item.

Another way is to map each manga user to be item buyer,

and each reading pattern of 25 features to be shopping item.

Interestingly, there are only 956,511 of user reading patterns,

equivalent to 21.10% of number of samples, which is also rel-

atively small to the whole pattern space. In addition, there

are 3.70 users in average having same reading pattern and

less than 10% of reading patterns which associated with at

least 3 users. This means eliminating less than 10% hyper-

edge changes the hypergraph into normal graph, and many

graph partitioning algorithms can be applied. It is impor-

tant here to notice that hypergraph partitioning algorithm

is to group graph node, i.e user reading pattern or chapter,

into clusters while our purpose is to classify user. In fact,

there are multiple techniques to cluster users based on node

partitioning result. This will be discussed soon in following

paragraph.

Because of large number of transactions, transactions are

not directly mapped into hyperedge. Instead, APRIORI

in [1] is used to identify association rules which are used to

build hyperedge and their associated weight. Reader should

refer to [1] for details on association rules and related defi-

nitions: confidence, support. There are multiple choices of

defining hyperedge weight from its association rules. One

can be defined by taking average confidence of the associa-

tion rules, called essential rules, that have all the items of the

hyperedge and has a singleton right handside [7]. Another

way is to take sum of the confidence of the all the possi-

ble association rules involving all the items of the hyper-

edge [6]. In general, hyperedge weight can be any function

of its underlying association rules’ confidence and its con-

nected items set’s support. Next, use Fiduccia-Mattheyses

algorithm [5] to partition hypergraph into clusters of nodes.

Fiduccia-Mattheyses algorithm usually is capable and works

effectively on graph with number of nodes between 35 and

100 [9], while there are 956,511 reading patterns and 8,502

chapters. Multilevel partitioning algorithm in [10] intro-

duces an ideal of coarsening the graph into new graph with

smaller number of nodes, apply Fiduccia-Mattheyses then

uncoarsening graph to original scale. Finally, associate each

user with the node partition which contains most of his/her

items, i.e. reading pattern. It is possible to directly apply

Fiduccia-Mattheyses because there are only 76 mangas in

total.

hMETIS library [9], [10] implements multilevel hypergraph

partitioning algorithm using APRIORI ([1]) and Fiduccia-

Mattheyses algorithms. Unfortunately, it is closed-source

and only supports 32-bit Linux system. Reimplementation

of these algorithms is beyond of this research time frame.

Hence, we could not go further in this analysis. [3] also intro-

duces an algorithm to partition hypergraph parallel, which

make use of distributed system power. For this reason, this

approach suggests a very promising future development.

4.2 Supervised approach

In supervised approaches, all 27 features were used with

input data separated into training samples, and test sam-

ples. Boolean label feature is target feature to be predicted.

Direct application of Decision Tree model on training data

set of 6,345,144 records produced a predictor that can pre-

dict correctly 2,300,767 (84.61%) samples from test data set

of 2,719,348 records, gave False Acceptance Rate be 9.15%

and False Rejection Rate be 6.24% with False Acceptance

and False Rejection Rate be defined as following

False Acceptance Rate =
number of accepted negative test samples

number of test samples

=
248, 951

2, 719, 348
= 9.15%

False Rejection Rate =
number of rejected positive test samples

number of test samples

=
169, 630

2, 719, 348
= 6.24%

Fig. 4 Prediction tree generated by Decision Tree model

Figure 4 shows generated tree by Decision Tree model. The

tree simply differentiates samples by their user’s id by a

threshold value, which is too simple to be applicable.

The next approach we tried was General Linear model,

which uses binomial distribution for regression and logit

function for linking. This model is the best choice within this

research scope because it produced a predictor with reason-

able coefficients, and its implementation is latterly shown to

heavily depend on a matrix equation whose calculation can

be accelerated by GPU hardware. Moreover, this model also

performs as well as Decision Tree model does with relatively

low False Acceptance Rate and False Rejection Rate. In fol-

lowing subsection, this model is used for optimization. The

model evaluation result will be described in result section in

detail.

4.3 Other approach

Visualization technique like PCA and t-SNE in [14] have

also been applied. By visualization, we can extract most

important information from input features by taking their

― 1215 ―
© 2018 Information Processing Society of Japan

linear (with PCA) or nonlinear (with t-SNE) combinations,

then present them by 3, 4 components. In other words, visu-

alization is one of compression method to compress original

data into smaller dimension space with least information

lost as possible. After the compression, 3 features of the

compressed data were taken to make graph to give us gen-

eral look of the data. From the graph, we may intuitively

make assumption on data shape, clusters number, density

of each cluster. However, eventually their final result was

not good enough, thus they will not be included in detail in

this paper.

5. Optimization

General Linear model was chosen to be optimized with

GPU acceleration. General Linear model is a algorithm

whose running time mostly concentrates on least squares

solver in multiple iterations. R implementation solves the

least squares equation via QR decomposition with House-

holder reflection, which make the algorithm computational

complexity be O(m×n2×k) where m is number of samples,

n is number of features, and k is number of iteration until

convergence.

Firstly, R’s standard General Linear model training process

was profiled line by line by profvis package. Figure 5 shows

profiled result.

Fig. 5 R General Linear model profiling result

Longer bar presents longer time it takes to finish the call.

The very bottom bar, glm, presents the most outer call be

triggered at command line. Subsequently, 2 eval calls were

processed as wrapper functions to generalize the algorithm.

Glm.fit is the fitting function that iterates a loop to mod-

ify coefficient vector until converged. Each iteration calls a

.Call subroutine, which is the most intensive code portion

and is written in C. Figure 6 illustrates the program flow. It

also denotes that glm.fit subroutine takes 93.42% of glm call

and .Call subroutine takes the majority 58.13% running

time of glm.fit in all iterations. This implies that optimiz-

ing the bottleneck .Call subroutine will make it possible

to speed up the algorithm by at most 2.2 times. Although

2.2 times speed up upper bound is not a much gain, the op-

timization on this subroutine is mandatory and a basis for

subsequent development on eliminating iteration overhead.

What C extension does is calling R’s standard stats pack-

age’s C Cdqrls internal C function to solve Least Squares

Linear equation, i.e. to find solution vector x which satisfies

x = argminx(|Ax− b|)

A matrix’s dimension is proportional to the model input,

and is 9,064,492 records by 27 features. A’s 27 columns

presents 26 input features and 1 additional intercept feature

(free coefficient). b presents target label feature. C Cdqrls

Fig. 6 General Linear model trainer program flow chart

is a C wrapper of a popular and canonical FORTRAN ver-

sion of high performance computing mathematical library

named linpack with slight modification to optimize QR de-

composition when processing linearly dependent columns.

This library is notably optimized while still maintaining its

generalization and correctness.

Our optimization focuses on porting this external C pro-

gram to make use of GPU power. Similar to the standard

library implementation, it takes 3 steps to solve the least

squares linear equation. Assume A is a matrix of m rows

by n columns. First, A matrix is decomposed into form

A = QR such that Q is unitary matrix of size m, R is upper

right triangular matrix of m row by n column. Next, reas-

sign b by setting b := t(Q) × b where t(Q) is transpose of

matrix Q. And then evaluate final solution x via backward

substitution such that Rx = b to take advantage of R being

upper right triangular matrix. All 3 steps are available in

CUDA Toolkit CUSOLVER library version 9.1 to directly

use GPU acceleration for the calculation. However, in step

1 CUDA Toolkit CUSOLVER library does not support non

linearly dependent columns input matrix. We investigated

2 ways to go through this barrier. First way is to run QR

decomposition algorithm twice, one to detect and eliminate

linearly dependent columns, and another to execute QR de-

composition on linearly independent columns matrix. This

version of optimization is called CUSOLVER LS solver. In

second way, manual QR decomposition was conducted via

Householder reflection, combined with linearly dependent

columns removal in decomposition. This version of opti-

mization is called manual LS solver. QR decomposition

via Householder algorithm with its variance are described is

described in [11]. The most simple version of the algorithm

in this paper was adopted with slight modification to detect

linearly dependent columns. When calculating Householder

reflection matrix of a column, we check if its norm is greater

than a value, namely tolerance value, if it is not greater

than this threshold, this column will be moved into end of

the matrix followed with previously calculated elements on

the same column. At time of being written, [11] was be-

lieved that it is the fastest announced QR implementation

executing entirely on the GPU [11]. In future development,

we will investigate modifying this algorithm to achieve bet-

ter overall result.

Figure 7 describes CUSOLVER LS solver and manual LS

― 1216 ―
© 2018 Information Processing Society of Japan

solver programs’ flow

Fig. 7 Least Squares Linear solvers program flow

It is also worthwhile to mention that converged condition

checking does not require all data of linear solver to be

copied back from GPU device memory to Host memory.

However, due to time frame of the research, the implementa-

tion still relies much on R’s standard implementation. In fu-

ture development, this redundant copy removal should take

high priority.

All 3 programs and R standard program were set to use

same tolerance setting and their results were cross checked to

make sure they execute same number of iterations and pro-

duce similar result. Execution time of overall model trainer

and total execution time in all iterations of C external call

were recorded to make comparison. nvprof was also used to

evaluate GPU performance and each subroutine’s contribu-

tion on overall program. R standard program is speeded up

by openblas shared library with number of OMP thread be

1. Various number of OMP threads setting was also mea-

sured to check OMP effect onto the algorithm.

Because of high portion of overhead timing and particular

shape of input matrix, 3 version of C extensions were laterly

profiled.

6. Result

This section includes 2 subsections which illustrates se-

lected model’s accuracy and how much the optimization ac-

celerate the algorithm. It is worthwhile to mention that

model evaluation use 70% data set for training and remain-

ing 30% for testing while optimization does use all data set

for benchmark result.

7. Model evaluation

Trained General Linear model can predict correctly

78.71% test data while False Acceptance Rate and False

Rejection Rate were 10.69% and 10.60% respectively.

Correctness =
Number of correctly predicted test samples

number of test samples

=
2, 140, 394

2, 719, 348
= 78.71%

False Acceptance Rate =
number of accepted negative test samples

number of test samples

=
290, 583

2, 719, 348
= 10.69%

False Rejection Rate =
number of rejected positive test samples

number of test samples

=
288, 371

2, 719, 348
= 10.60%

Fig. 8 Trained General Linear model’s coefficients

According to Figure 8, trained General Linear model’s coef-

ficients of h4, h5, h6 have high absolute value to compensate

its low numerical value compared to other features, as illus-

trated from Figure 10. On the other hand, h22, h23, h24, h1

features’ coefficients have high absolute numerical to em-

phasize their diversity in our sample. This can be observed

from Figure 9 where these features’ variances are relatively

higher than the others.

Fig. 9 Access count variance each hour in a day

― 1217 ―
© 2018 Information Processing Society of Japan

Fig. 10 Mean number of reading by hour in a day

8. Optimization

Time for training all data with standard R algorithm,

manual LS solver and CUSOLVER LS solver were 112.79

seconds, 87.579 seconds, 88.897 seconds respectively. These

timing result is described in detail in Figure 11

Fig. 11 Training time of 3 implementation3

Figure 11 shows that CUSOLVER LS solver C extension

run 2.12 times faster than R standard version C Cdqrls. Be-

cause of the major portion of overhead timing, the overall

algorithm can speed up merely 1.27 times over maximal ideal

speed up rate of 2.2 times. C extension running time of CU-

SOLVER LS solver is slightly faster than manual LS solver’s

one. This can be explained by the fact that input matrix is

indeed linearly independent, CUSOLVER LS solver imple-

mentation only need to run QR decomposition once without

caring about linear independence while manual LS solver

version does care about. In CUSOLVER LS solver running

time, there exists portion named R-C protocol copying

overhead. This is time occupied by memory transfer be-

tween R program and C extension because CUSOLVER LS

solver program does not use optimized interface while man-

ual LS solver does. This portion elimination can be adopted

with not much effort.

Fig. 12 Relation between BLAS accelerated run time with num-
ber of OMP cores

According to Figure 12, there is no strong relation be-

tween number of OMP threads and algorithm performance.

Probably, R’s extension C Cdqrls is not compiled with

OpenMP. Before going to a solid conclusion, an experiment

on CPU usage measurement of training algorithm was done

by using Linux htop tool. Number of OpenMP threads was

set to be 16, same with number of machine’s physical cores.

Figure 13 indicates a timing when htop catches a moment

that all CPUs are fully used. However, the phenomenon dis-

appeared immediately. This shows the fact that the train-

ing algorithm does not execute parallel well enough. The

same experiment also was done to the C extension C Cdqrls.

Eventually, there was no moment that more than 1 CPU is

fully used. This opens an interesting topic for future re-

search on parallelizing the training algorithm.

Fig. 13 htop catches a glimpse when all CPUs are fully used

Fig. 14 GPU profiling result via nvprof of CUSOLVER LS solver

Fig. 15 GPU profiling result via nvprof of manual LS solver

From Figure 14 and Figure 15, we can observe that CUDA

memcpy routine, a memory transfer routine between CPU

(host) and GPU (device), takes around 20% of the execution

on GPU device. This proves the potential of time reduc-

tion in future because in current implementation, all data

is copied back to CPU after each iteration for convergence

check while actually only a small portion of data is required.

Fig. 16 Isolated C extension time comparison on 3000 rows by
2000 columns matrix

Figure 16 and Figure 17 emphasize matrix dimension’s

― 1218 ―
© 2018 Information Processing Society of Japan

Fig. 17 Isolated C extension time comparison on 9,064,492 rows
by 27 columns matrix

effect on C extension performance. With input matrix of

3,000 rows by 2,000 columns, GPU version speeded up LS

solver by 17.94 times and 79.91 times resepectively. While

with input matrix of 9,064,492 rows by 27 columns their

speedup rate were merely 1.48 times and 1.65 times respec-

tively. This implies that narrow matrix does not take more

advantage of GPU speedup than square matrix.

9. Conclusion

Comparing with R. Kobayashi’s result in [12]. General

Linear model in this paper decreases both False Accep-

tance Rate and False Rejection Rate by 1.14 times (from

12.15% down to 10.69%) and 1.3 times (from 14.0% down

to 10.60%) respectively, although these results slightly de-

pends on model choice and false sample generation method.

As discussed in methodology section, graph based approach

is very promising. If it is well developed, it will not only be

helpful on user classification and distinguishment but also

has potential on content recommendation system. For ex-

ample: user next reading chapter suggestion predictor.

Due to major timing fraction of overhead timing, the opti-

mized version of training algorithm achieved relatively high

speedup of 1.27 times under 2.2 times upper bound limit.

This speedup can be improved much more with convergence

check improvement by reducing almost of memory trans-

fer between GPU device and CPU host in middle iterations.

The memory transfer should be done only in the first and the

last iteration. Last experiment of the research proved that

CUDA speedup effect highly depends on input matrix shape.

That is to say, the more features input model has the more

speedup this research’s optimization gains. It is significant

to take notice that both Least Squares solver implementa-

tions were not fully optimized. CUSOLVER LS solver re-

quires calling QR decomposition twice due to CUDA Toolkit

CUSOLVER library’s low abstraction. On the other hand,

manual LS solver is nothing more than a simple linear QR

decomposition with Householder reflection. Blocked House-

holder QR algorithm in [11] is one of the fastest QR imple-

mentations executing entirely on the GPU [11], with some

more investigation on capability with linearly dependent sys-

tem, it is clearly applicable and gains much speedup. In

contrast to GPU optimization technique, it is worthwhile

to take attention on multicore optimization by installing

and loading appropriate lapack library to exploit multicore

power.

The last benchmark result on isolated C extension perfor-

mance proves GPU accelerated algorithm’s effectiveness to

wide matrix. That is to say the accelerated algorithm gains

more speedup on model with high number of features. Es-

pecially, when training model with categorical variables ex-

panded, number of features increases proportionally to cat-

egorical variables’ domain.

References

[1] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algo-
rithms for mining association rules. In Proc. 20th int. conf.
very large data bases, VLDB, volume 1215, pages 487–499,
1994.

[2] Claude Berge and Edward Minieka. Graphs and hypergraphs.
1973.

[3] Karen D Devine, Erik G Boman, Robert T Heaphy, Rob H
Bisseling, and Umit V Catalyurek. Parallel hypergraph parti-
tioning for scientific computing. In Parallel and Distributed
Processing Symposium, 2006. IPDPS 2006. 20th Interna-
tional, pages 10–pp. IEEE, 2006.

[4] Dirk Eddelbuettel. Cran task view: High-performance and
parallel computing with r. https://cran.r-project.org/
web/views/HighPerformanceComputing.html.

[5] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic
for improving network partitions. In 19th Design Automation
Conference, pages 175–181, June 1982.

[6] Eui-Hong Han, George Karypis, Vipin Kumar, and Bamshad
Mobasher. Clustering based on association rule hypergraphs.
In DMKD, page 0, 1997.

[7] Eui-Hong Han, George Karypis, Vipin Kumar, and Bamshad
Mobasher. Hypergraph based clustering in high-dimensional
data sets: A summary of results. 21:15–22, 01 1998.

[8] Shogakukan inc. . https://manga-one.com/.
[9] G. Karypis. hmetis - hypergraph & circuit partitioning. http:

//glaros.dtc.umn.edu/gkhome/metis/hmetis/overview.
[10] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi

Shekhar. Multilevel hypergraph partitioning: applications in
vlsi domain. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 7(1):69–79, 1999.

[11] Andrew Kerr, Dan Campbell, and Mark Richards. Qr de-
composition on gpus. In Proceedings of 2Nd Workshop on
General Purpose Processing on Graphics Processing Units,
GPGPU-2, pages 71–78, New York, NY, USA, 2009. ACM.

[12] Ryosuke Kobayashi and Rie Shigetomi Yamaguchi. A utiliza-
tion of manga browsing and other usage history in manga ap-
plication for an authentication method. volume Symposium
on Cryptography and Information Security of SCIS 2017,
Naha, Japan, 1 2017. The Institute of Electronics, Informa-
tion and Communication Engineers, The Institute of Elec-
tronics, Information and Communication Engineers.

[13] Steve Lohr. The age of big data. New York Times, 11(2012),
2012.

[14] Laurens van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(Nov):2579–2605, 2008.

[15] Robert Tibshirani, Guenther Walther, and Trevor Hastie.
Estimating the number of clusters in a data set via the gap
statistic. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 63(2):411–423, 2001.

[16] , , , and .

.
In 2016
, volume 2016, pages 1284–1290, oct 2016.

― 1219 ―
© 2018 Information Processing Society of Japan

