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Abstract: Efficient processing for big data is attracting increased attention in many scientific problems. In particu-
lar, singular value decomposition (SVD) of matrices is one of the most significant operations in linear algebra. For
example, the truncated SVD is used for principal component analysis of large-scale document-term matrices. In this
paper, we improve the augmented implicitly restarted Lanczos bidiagonalization (AIRLB) method for the truncated
SVD of large-scale sparse matrices. Instead of the conventional method, using the QR decomposition in terms of
the Householder reflector, we propose an algorithm that restarts with orthogonalization of both sides of the singular
vectors of the small matrix. As a result, in single precision floating point arithmetic, several numerical experiments
show that our improvements shorten computation time and increase the accuracy of truncated SVD compared with a
conventional algorithm.
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1. Introduction

In some applications of SVD, a part of the singular values
and singular vectors of the input matrix may be required. Such
decomposition is called a truncated SVD. For example, in the
principal component analysis of a large-scale sparse matrix, only
some singular values and singular vectors corresponding to larger
singular values are required. We call a triplet of a singular value
and its left and right singular vectors a singular triplet.

The QR algorithm [5], the Jacobi algorithm [6], the divide-and-
conquer algorithm [6], and the bisection and inverse iteration al-
gorithm [13] are the best known SVD algorithms in LAPACK [1].
Like the SVD algorithms, there are some algorithms to com-
pute truncated SVD. The Golub–Kahan–Lanczos (GKL) algo-
rithm [7], the Jacobi–Davidson algorithm [14], the randomized
algorithm [8], and the augmented implicitly restarted Lanczos
bidiagonalization (AIRLB) algorithm [2], [3] are the best known
truncated SVD algorithms. The GKL algorithm is a classical
algorithm. The Jacobi–Davidson algorithm is suitable for the
largest singular value and its singular vectors. The randomized
algorithm is suitable for a truncated SVD whose singular values
are not clustered. The AIRLB algorithm is appropriate for use
as a computation library since it has low dependency on input
matrices and can output solutions stably.
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We have developed a truncated SVD library that can be down-
loaded from [10]. Thus, in this paper, we make the AIRLB al-
gorithm more accurate. In accelerators such as GPUs, single pre-
cision floating point arithmetic is usually faster than double pre-
cision floating point arithmetic. In single precision floating point
arithmetic, the number of significant digits is small. Therefore, an
improvement to achieve high speed and high accuracy is required.

In Section 2, we introduce algorithms for solving truncated
SVD problems. In Section 3, we improve the AIRLB algorithm.
In Section 4, we evaluate the computation time and accuracy of
the improved algorithm.

2. Algorithms for Solving Truncated SVD
Problems

2.1 Singular Value Decomposition
Let A be an m× n (m ≥ n) real matrix with rank r. The SVD of

A is A = UΣV� and is also described as

Aui = σiui, (1)

A�ui = σiui (i = 1, . . . , r), (2)

where

U :=
[
u1, u2, . . . , ur

] ∈ Rm×r, (3)

V :=
[
u1, u2, . . . , ur

] ∈ Rn×r, (4)

are column orthogonal matrices and

Σ := diag(σ1, σ2, . . . , σr) ∈ Rr×r, (5)

is a nonsingular diagonal matrix. Without loss of generality, we
can assume that the decomposition satisfies σ1 ≥ σ2 ≥ · · · ≥
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Algorithm 1 GKL algorithm
1: Set an n-dimensional unit vector p1

2: q← Ap1, α1 ← ||q||, q1 ← q/α1

3: P1 ←
[
p1

]
,Q1 ←

[
q1

]
4: for k = 1, 2, . . . do

5: p← A�qk

6: p̃← Reorthogonalization(Pk, p)

7: βk ← || p̃||, pk+1 ← p̃/βk

8: Compute the SVD of B̆k = ŬkΣ̆kV̆�k
9: if max

1≤i≤l

|βkŭi(k)|√
2
< δ (threshold value) then

10: σ̂i ← σ̆i, ûi ← Qkŭi, ûi ← Pk ŭi

11: Stop algorithm and output (σ̂i, ûi, ûi) as i-th triplets of A

12: end if

13: q← Apk+1

14: q̃← Reorthogonalization(Qk , q)

15: αk+1 ← ||q̃||, qk+1 ← q̃/αk+1

16: Pk+1 ←
[
Pk pk+1

]
, Qk+1 ←

[
Qk qk+1

]
17: end for

σr > 0. We denote by σi the i-th singular value, ui as the cor-
responding left singular vector, and ui as the corresponding right
singular vector.

For the truncated SVD of matrix A,
√
||Aui − σiui||2 + ||A�ui − σiui||2 (i = 1, . . . , l) (6)

is called the SVD error. If the SVD error is small, the matrix
UlΣlV�l with rank l is closely approximating the singular triplets
of the input matrix A. Computation accuracy of SVD is estimated
by these errors.

2.2 GKL Algorithm
The GKL algorithm outputs l singular triplets corresponding to

large singular values of an input matrix A ∈ Rm×n (m ≥ n) with
rank r. We show the pseudocode of the GKL algorithm in Algo-
rithm 1. This algorithm iterates the bidiagonalization of the input
matrix to B̆k ∈ Rk×k and the SVD of the generated bidiagonalized
matrix.

First, we set a suitable unit vector p1 ∈ Rn. In the k-th steps,
we generate pk ∈ Rn and qk ∈ Rm. These vectors are generated
according to following two Krylov subspaces:

K(A�A, p1, k)

= span{p1, (A
�A)p1, . . . , (A

�A)k−1 p1}, (7)

K(AA�, Ap1, k)

= span{Ap1, (AA�)Ap1, . . . , (AA�)k−1Ap1}. (8)

Following bidiagonalization by the Krylov subspace, the singu-
lar values of B̆k well approximate the large singular values of A.
Moreover, the approximated singular vectors can be expressed
by the product of the singular vectors of B̆k and the transforma-
tion matrix Qk ∈ Rm×k and Pk ∈ Rn×k used for bidiagonalization.
Each vector generated according to the Krylov subspace is or-
thogonalized to be an orthogonal basis by applying the complete
classical Gram–Schmidt algorithm [4] two times (CGS2) for high
accuracy. By using level 1 Basic Linear Algebra Subprograms
(BLAS) [11], reorthogonalization of p with Pk means applying
the following equation twice:

p← p−
k∑

j=1

〈pj, p〉pj. (9)

To improve computation speed, Expression (9) is implemented
by using matrix–vector multiplication using the level 2 BLAS as

p′ ← P�k p, p← p− Pk p′. (10)

By using the column orthogonal matrices Pk and Qk, A is bidi-
agonalized to B̆k. The form of B̆k is

B̆k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1

α2 β2

. . .
. . .

αk−1 βk−1

αk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

and the following equations holds

APk = QkB̆k, (12)

A�Qk = PkB̆�k + βk pk+1e�k , (13)

where ek is the k-th column of the k × k identity matrix.
The matrix size of B̆k is smaller than the size of A, so execut-

ing SVD for B̆k is easier than A. By executing SVD of B̆k, we
obtain Ŭk =

[
ŭ1, ŭ2, . . . , ŭk

]
∈ Rk×k, V̆k =

[
v̆1, v̆2, . . . , v̆k

]
∈ Rk×k

and Σ̆k = diag(σ̆1, σ̆2, . . . , σ̆k) ∈ Rk×k where B̆k = ŬkΣ̆kV̆�k and

B̆k v̆i = σ̆iŭi, B̆�k ŭi = σ̆iv̆i, (14)

for i = 1, . . . , k. Using Eqs. (12), (13), and (14), we obtain

APk v̆i = QkB̆k v̆i

= σ̆iQkŭi, (15)

A�Qkŭi = PkB̆�k ŭi + βk pk+1e�k ŭi

= σ̆iPk v̆i + βk pk+1e�k ŭi. (16)

By defining σ̂i := σ̆i, ûi := Pk v̆i and ûi := Qkŭi, Eqs. (15) and
(16) are described as

Aûi = σ̂iûi, (17)

A�ûi = σ̂iûi + βk pk+1e�k ŭi. (18)

If second term of Eq. (18) is zero, then Eqs. (17) and (18) are
equal to Eq. (1). Therefore, the truncated SVD is complete.

We estimate the error of σ̂i as the singular value of matrix A.
The following theorem provides an upper bound of the singular
value error.

Theorem 1 (Wilkinson’s theorem [15]) Let λ1, λ2, . . . , λn

be the eigenvalues of an n × n real symmetric matrix M. If
||x̂|| = 1, then

min
j
|λ̂ − λ j| ≤ ||M x̂ − λ̂x̂||.

Let the true values of singular values of the matrix A be
σi (i = 1, . . . , r). Here, r = rank A. The expansion matrix of
A is

M =

⎡⎢⎢⎢⎢⎣ O A

A� O

⎤⎥⎥⎥⎥⎦ ∈ R(m+n)×(m+n). (19)
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The eigenvalue λi (i = 1, . . . , m + n) of M is obtained as

λ1 = σ1, . . . , λr = σr, λr+1 = −σ1, . . . ,

λ2r = −σr, λ2r+1 = 0, . . . , λm+n = 0. (20)

The i-th singular triplets (σ̂i, ûi, ûi) obtained by the GKL algo-
rithm for the matrix A correspond to the eigenvalue λ̂i := σ̂i and
the eigenvector

x̂i :=
1√||ûi||2 + ||ûi||2

⎡⎢⎢⎢⎢⎣ ûi

ûi

⎤⎥⎥⎥⎥⎦ . (21)

Here, ||x̂i|| = 1 is satisfied. Thus,

min
j
|σ̂i − λ j| ≤ ||M x̂i − σ̂i x̂i||

=
√
||M x̂i − σ̂i x̂i||2

=

√
||Aûi − σ̂iûi||2 + ||A�ûi − σ̂iûi||2√

2
. (22)

By Eq. (20), it is not guaranteed that λ j is a singular value of A.
However, in this paper, singular triplets corresponding to larger
singular values are required. Therefore, in the case that |σ̂i − λ j|
is the minimum, λ j can be regarded as a singular value of A.

The right-hand side of Eq. (22) is regarded as the upper bound
of the singular value error and this is used as a singular value er-
ror afterwards. From Eqs. (17) and (18), the singular value error
of A is as follows,

√||Aûi − σ̂iûi||2 + ||A�ûi − σ̂iûi||2√
2

=
||βk pk+1e�k ui||√

2
=
||βk pk+1ui(k)||√

2

=
||pk+1|| · |βkui(k)|√

2
=
|βkui(k)|√

2
. (23)

Since error can be estimated by |βkui(k)|/√2 with a small amount
of computation, max1≤i≤l(|βkui(k)|/√2) can be used for the stop-
ping criterion.

As Pk and Qk are enlarged as the number of iterations in-
creases, the GKL algorithm will use more spaces in computation.
The algorithm uses a space for Pk and Qk at most mn + n2 on the
computer.

2.3 AIRLB Algorithm
The AIRLB algorithm is one of the Krylov subspace algo-

rithms, and it can obtain the singular triplets corresponding to
large singular values of large-scale sparse matrices faster than the
GKL algorithm with a smaller memory space. In the GKL algo-
rithm, the memory space to use and the amount of computation
increase as the number of iterations increases. The AIRLB algo-
rithm overcomes the problem. This algorithm is given in Algo-
rithm 2.

Assume that we need l singular triplets of matrix A. First, take
the same procedure as the GKL algorithm and obtain a k × k

(l < k) bidiagonal matrix B̃k. In general, twice the value of l

is used for k. Next, the SVD is performed on the obtained ma-
trix B̃k = ŨkΣ̃kṼ�k . Then, we continue with the GKL algorithm
leaving only necessary l singular triplets corresponding to large l

Algorithm 2 AIRLB algorithm
1: Set an n-dimensional unit vector ũ1, i← 1

2: repeat

3: P̃i ←
[
ũ1, ũ2, . . . , ũi

]
4: while i ≤ k do

5: u←Aũi, Reorthogonalization(Q̃i,u)

6: α̃i ← ||u||, ũi ← u/α̃i

7: Q̃i ←
[
ũ1, ũ2, . . . , ũi

]
8: u←A�ũi, Reorthogonalization(P̃i, u)

9: β̃i ← ||u||, ũi+1 ← u/β̃i

10: P̃i+1 ←
[
ũ1, ũ2, . . . , ũi+1

]
11: i← i + 1

12: end while

13: ũl+1 ← ũk+1

14: Compute the SVD of B̃k = ŨkΣ̃kṼ�k
15: for i = 1, . . . , l do

16: ρ̃i ← β̃kũi(k)

17: end for

18: B̃k(1 : l, 1 : l) ← Σ̃k(1 : l, 1 : l), Q̃k ← Q̃kŨk(:, 1 : l), P̃k ← P̃kṼk(:, 1 :

l)

19: i← l + 1

20: until max
1≤i≤l

|ρ̃i |√
2
≤ δ (threshold value)

21: ũi ← Q̃k(:, i), ũi ← P̃k(:, i)

22: Output (σ̃i, ũi, ũi) for i = 1, . . . , l

singular values. The triplets are sorted in order and the remaining
k − l triplets are discarded. Next, reuse the remaining l singular
triplets to obtain a k × k pseudo-diagonal matrix B̃′k ∈ Rk×k. Cre-
ating new matrix requires k − l iterations of the GKL steps. In
reorthogonalization of the vectors, the CGS2 is applied.

Then, the pseudo-bidiagonal matrix B̃′k is given as

B̃′k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ̃1 ρ̃1

. . .
...

σ̃l ρ̃l

α̃l+1 β̃l+1

. . .
. . .

α̃k−1 β̃k−1

α̃k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

where σ̃i is the i-th largest singular value of B̃′k, and ρ̃i := βkũi(k).
The lower right bidiagonal part is composed of bidiagonalization
by the GKL algorithm with ũk+1 as the initial vector. Here B̃′k is
treated as a new B̃k and the SVD is continued to confirm the ac-
curacy of the singular triplets as the input matrix A. Iterate these
restart procedures until the singular value error is small enough
in the sense of Wilkinson’s theorem (Theorem 1).

In the SVD of the matrix B̃′k in the algorithm, it is desirable
to not process B̃′k directly, but to bidiagonalize as preprocessing
and apply the algorithm afterwards from the viewpoint of reduc-
ing the amount of computation. Actually, we make a bidiagonal
matrix GLB̃′kGR from B̃′k by using the Givens transformation [6]
of rotation matrices GL ∈ Rk×k and GR ∈ Rk×k. In this paper, from
the viewpoint of computational complexity and computational ac-
curacy, we use orthogonal transformation by the Givens trans-
formation, not the Householder transformation. For the Givens
transformation, we use LAPACK DLARTG [1] instead of BLAS
DROTG [11] to achieve high accuracy. The rotation matrices are
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orthogonal matrices, the singular values are invariant under the
rotation, and the SVD holds GLB̃′kGR = Ũ′Σ̃′Ṽ ′�. Therefore, the
column orthogonal matrices G�L Ũ′ and GRṼ ′ are the singular vec-
tors of B̃′k.

Let us prepare column orthogonal matrices Q̃k ∈ Rm×k and
P̃k ∈ Rn×k to generate B̃k in Algorithm 2. Equations (12) and
(13) of the GKL algorithm also lead to the following equations:

AP̃k = Q̃k B̃k, (25)

A�Q̃k = P̃k B̃�k + β̃k p̃k+1e�k , (26)

where the n-dimensional vector p̃k+1 is the (k + 1)-th column of
P̃k+1. By multiplying Ũl and Ṽl, which are singular vectors of B̃k,
we obtain

AP̃l = Q̃lΣ̃l, (27)

A�Q̃l = P̃lΣ̃
�
l + β̃k p̃k+1e�k Ũl, (28)

where Q̃l is substituted by Q̃kŨl and P̃l is substituted by P̃kṼl. At
the next restart of the algorithm, Σ̃l, Q̃l, and P̃l are adopted as new
initial matrices at line 2 of Algorithm 2.

From Eqs. (27) and (28), the upper bound of the singular value
error is described as

min
j
|σ̃i − σ j| ≤

√||Aũi − σ̃iũi||2 + ||A�ũi − σ̃iũi||2√
2

=
|ρ̃i|√

2
, (29)

where ũi is the i-th column of Q̃l, ũi is the i-th column of P̃l, and
ρ̃i is the element of B̃′k at (i, l+1). Similarly to the GKL algorithm,
we define a stopping criterion as follows,

max
1≤i≤l

(|ρ̃i|/
√

2) ≤ ε, (30)

where ε is a small positive number.
In the AIRLB algorithm, P̃i and Q̃i are not enlarged over k.

The algorithm uses a maximum memory space for P̃i and Q̃i of
mk + nk.

3. New Restart Strategy

3.1 Rayleigh Quotient in Singular Value Decomposition
In Krylov subspace, as singular values corresponding to null

space cannot be approximated using a small matrix B̃k, the rank
of B̃k can be assumed to be k. The augmented matrix of B̃k is as
follows:

M =

⎡⎢⎢⎢⎢⎣ O B̃k

B̃�k O

⎤⎥⎥⎥⎥⎦ . (31)

The eigenvalue λ̃i (i = 1, . . . , m + n) of M is obtained as

λ̃1 = σ̃1, . . . , λ̃k = σ̃k, λ̃k+1 = −σ̃1, . . . , λ̃2k = −σ̃k. (32)

By using singular vectors ũi and ṽi, x̃i is defined as follows:

x̃i :=
1√||ũi||2 + ||ṽi||2

⎡⎢⎢⎢⎢⎣ ũi

ṽi

⎤⎥⎥⎥⎥⎦ . (33)

The Rayleigh quotient [13] in the singular value and the singular
vectors is defined as

Algorithm 3 AIRLB algorithm (proposal algorithm)
1: Set an n-dimensional unit vector ũ1, i← 1

2: repeat

3: P̃i ←
[
ũ1, ũ2, . . . , ũi

]
4: while i ≤ k do

5: u←Aũi, Reorthogonalization(Q̃i,u)

6: α̃i ← ||u||, ũi ← u/α̃i

7: Q̃i ←
[
ũ1, ũ2, . . . , ũi

]
8: u←A�ũi, Reorthogonalization(P̃i, u)

9: β̃i ← ||u||, ũi+1 ← u/β̃i

10: P̃i+1 ←
[
ũ1, ũ2, . . . , ũi+1

]
11: i← i + 1

12: end while

13: ũl+1 ← ũk+1

14: Compute the SVD of B̃k = ŨkΣ̃kṼ�k
15: Compute the QR Decomposition using Householder reflector of

Ṽl = QvRv
16: Ṽl ← Qv
17: Compute the QR Decomposition using Householder reflector of

Ũl = QuRu

18: Ũl ← Qu

19:
[
Σ̃l

]
i,i
←

[
Ũ�l B̃kṼl

]
i,i

for i = 1, . . . , l

20: for i = 1, . . . , l do

21: ρ̃i ← β̃kũi(k)

22: end for

23: B̃k(1 : l, 1 : l)← Σ̃l

24: P̃k ← P̃kṼl

25: Q̃k ← Q̃kŨl

26: i← l + 1

27: until max
1≤i≤l

|ρ̃i |√
2
≤ δ (threshold value)

28: ũi ← Q̃k(:, i), ũi ← P̃k(:, i)

29: Output (σ̃i, ũi, ũi) for i = 1, . . . , l

ρ =
1
||x̃i||2 x̃�i Mx̃i = ũ�i B̃k ṽi. (34)

ρ in Eq. (34) can satisfy the following equation using computed
singular vectors ũi and ṽi:

ρ = arg min
z
||Mx̃i − zx̃i||2. (35)

Here, ρ closely approximates a singular value σ̃i or −σ̃i.

3.2 Implementation
In the AIRLB algorithm, the SVD of the small matrix B̃k is

performed internally and the result is used at the restarting point
of the algorithm. Unless computation errors are considered, the
singular vectors obtained by SVD are orthogonal matrices. The
GKL algorithm is known to be unstable. Thus, the orthogonal-
ity becomes worse because of the rounding error. To avoid this
problem, we propose an algorithm that restarts with orthogonal-
ization of both sides of the singular vectors of the small matrix
B̃k. We introduce a method to obtain singular vectors of B̃k with
maximum orthogonality by decomposing the left and right sides
of the singular vectors into a column orthogonal matrix and an
upper triangular matrix using the QR decomposition [6] in terms
of the Householder reflector.

The whole algorithm is described in Algorithm 3.
In the conventional algorithm, l vectors are extracted from right

singular vectors Ṽk and set as new Ṽl. Our new algorithm uses the
QR decomposition using Householder reflector with Ṽl = Q1R1
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for orthogonalizing Ṽl. Let the orthogonal matrix Q1 be a new Ṽl:

Ṽl ←
[
ũ1, ũ2, . . . , ũl

]
, (36)

Ṽl = QvRv, (37)

Ṽl ← Qv. (38)

Left singular vectors Ũl can be orthogonalized in the same way
as Ṽl:

Ũl ←
[
ũ1, ũ2, . . . , ũl

]
, (39)

Ũl = QuRu, (40)

Ũl ← Qu. (41)

To satisfy

B̃kṼl = ŨlΣ̃l, (42)

B̃�k Ũl = ṼlΣ̃l, (43)

approximately, we set
[
Σ̃l

]
i,i
←

[
Ũ�l B̃kṼl

]
i,i
. (44)

Here,
[
Σ̃l

]
i,i

are the Rayleigh quotients, which closely approxi-

mate singular values or negative singular values of B̃k by using
singular vector Ũl and Ṽl. When Ṽl in Eq. (38) and Ũl in Eq. (41),
of which orthogonality is improved, are adopted,

x1 = ||ABS (B̃kṼl) − ABS (ŨlΣ̃k(1 : l, 1 : l))||, (45)

x2 = ||ABS (B̃�k Ũl) − ABS (ṼlΣ̃k(1 : l, 1 : l))||, (46)

are computed by using the computed singular value Σ̃k(1 : l, 1 : l)
in the line 3 of Algorithm 3. Here, each element in ABS (X) is
transformed into the absolute value. By improving the orthog-
onality of Ṽl and Ũl, x1 and x2 become larger. To avoid this
problem, Σ̃l is redefined by using the Rayleigh quotients Eq. (44).
Moreover, by Eqs. (25) and (26),

Q̃�l AP̃l = Ũ�l B̃kṼl = Σ̃l, (47)

P̃�l A�Q̃l = Ṽ�l B̃�k Ũl = Σ̃
�
l , (48)

is led. Thus, using vector Q̃l and P̃l,
[
Σ̃l

]
i,i

, which are close to
singular values or negative singular values of A, can be regarded
as the Rayleigh quotients.

3.3 Advantages of adopting Householder QR decomposition
In the Householder QR decomposition, an m × n matrix C is

not decomposed to an orthogonal matrix Q but H1, · · · ,Hn, which
is obtained by the Householder reflector, and an upper triangular
matrix R.

By using the classical Gram Schmidt method or the modi-
fied Gram Schmidt method, the orthogonality of Q is affected
by the condition number of C [16]. On the other hand, in the
Householder QR decomposition, Q may be constructed by the
computation of H1×· · ·×Hn. Here Q does not depend on the con-
dition number of C [16]. However, even though it is guaranteed
that computed Q has high orthogonality, when Q is computed,
the rounding error occurs. Q is not therefore constructed in many
cases.

In lines 3, 3, 3 of Algorithm 3, matrices are not multiplied

by the orthogonal matrix Q, which is computed by the classical
Gram Schmidt method or the modified Gram Schmidt method,
but instead by the Householder reflector. Therefore, Algorithm 3
can be performed without the orthogonal matrix Q. Moreover,
the amount of rounding error in lines 3, 3, 3 of Algorithm 3 be-
comes small. In the proposed algorithm, the Householder QR
decomposition should therefore be adopted.

4. Numerical Experiments

In this section, numerical experiments are performed to evalu-
ate the proposed algorithm in single precision floating point arith-
metic. To show the improvement by adopting the proposed al-
gorithm that restarts with orthogonalization of both sides of the
singular vectors of the small matrix B̃k, we compare the imple-
mentation adopting the new restart strategy and the conventional
implementation.

4.1 Experiment Environment
For the experimental environment, we use a computer

(ACCMS, Kyoto University) equipped with Intel Xeon Phi KNL
CPU (1.4 GHz × 68 cores) and DDR4-2133 memory (90 GB).
Each program is compiled using Intel C++ and Fortran Compil-
ers 18.0.1 and Intel Math Kernel Library 2018 [9] as a computa-
tion library. We use 68 cores of Intel Xeon Phi KNL CPU as 68
threads for the numerical experiment. Sparse matrices are stored
in CRS format. The matrix-vector operation is paralleled by us-
ing OpenMP. Basic linear algebra operation is paralleled by Intel
Math Kernel Library 2018.

As a numerical experiment, we compare the AIRLB algo-
rithms. Implementation of the QR algorithm uses SBDSQR,
which is implemented in single precision arithmetic, on LAPACK
1.0 (SIAM SIAG/LA, 1991) [5]. We set the threshold ε for the
stopping criterion to 0.

For these numerical experiments, we prepare two types of ma-
trices. First, we use real sparse matrices A1 ∈ R1,000,000×1,000,000

and A2 ∈ R1,800,000×1,800,000 as input. There are 1,000 elements
consisting of uniform random numbers of [0, 1) in each row.
Here A1 and A2 are examples of large-scale sparse matrices,
which are similar in data to real problems assuming large-scale
document-term matrices. By performing SVD for these matrices,
we show that our new implementation can solve the actual prob-
lems more accurately. Second, we use real bidiagonal matrices
A3 ∈ R10,000×10,000 and A4 ∈ R50,000×50,000, all diagonal and off-
diagonal elements are 1. The i-th singular value of A3 and A4 is

1 − cos

(−2i + 2n + 1
2n + 1

π

)
where n is the matrix size. Therefore,

large singular values of these matrices are quite clustered around
2. Thus, these matrices are difficult problems to solve. By solving
SVD for these matrices, we show that our new implementation
can solve difficult problems with high speed and high accuracy.
The output is l (l = 10, 20, 30) singular triplets corresponding to
the larger singular values of the input matrices.

From Eq. (22), we adopt

1
l

∑
1≤i≤l

1√
2

√
||Aũi − σ̃iũi||2 + ||A�ũi − σ̃iũi||2 (49)

as the average error value and
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Fig. 1 Performance of truncated SVD (QR(C) denotes the conventional algorithm, and QR(P) denotes
the proposed algorithm restarting with orthogonalization).

max
1≤i≤l

1√
2

√
||Aũi − σ̃iũi||2 + ||A�ũi − σ̃iũi||2 (50)

as the maximum error value for machine computed singular
triplets (σ̃i, ũi, ũi) of A. Moreover, we use the orthogonal errors

||Ũ�l Ũl − I||, ||Ṽ�l Ṽl − I|| (51)

to check orthogonality of Ũl =
[
ũ1, ũ2, . . . , ũl

]
and Ṽl =[

ũ1, ũ2, . . . , ũl
]
.

4.2 Discussion of Numerical Experiment
Figure 1 shows the computational results for performing trun-

cated SVD. As a result, in the case of the proposed algorithm
that restarts with orthogonalization of both sides of the singular
vectors of the small matrix B̃k, the average and the maximum
value of the singular value error, orthogonal errors of Ũl and Ṽl,

and iteration number are decreased as compared with the case of
the conventional algorithm. By (a) and (b) in Fig. 1, we confirm
that Eqs. (47) and (48) are satisfied. Since the proposed algorithm
restarts with the orthogonalization of both sides, the orthogonal-
ity of Ũl and Ṽl become smaller as shown in (c) and (d). Thus,
the reduction in error is thus established. The results of (a), (b),
(c), and (d), iteration number in the proposed algorithm is smaller
than that in the conventional algorithm. With respect to the com-
putation time, since the orthogonality of the vector in the Krylov
subspace and the singular value error becomes better, the number
of iterations decrease. Thus, the computation time in the orthogo-
nalized restart strategy is faster than that in the conventional algo-
rithm. As a result, it is verified that our improvement is effective
for the truncated SVD of large-scale sparse matrices on real and
difficult problems, and it is desirable for highly fast and accurate
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computation to adopt the proposed algorithm that restarts with or-
thogonalization of both sides of the singular vectors of the small
matrix B̃k for implementation of the AIRLB algorithm.

5. Conclusions

In this paper, we have improved the AIRLB algorithm to com-
pute truncated SVD of the input large-scale sparse matrix.

We have proposed an algorithm that restarts with orthogonal-
ization of both sides of the singular vectors of the small matrix
B̃k generated inside the AIRLB algorithm. At restarting, our
improved implementation executes the QR decomposition using
Householder reflector for orthogonalizing the matrix composed
of left and right singular vectors.

Using numerical experiments, we have verified that the aver-
age and the maximum singular value errors, orthogonal errors of
singular vectors, and the computation time are reduced compared
with a conventional algorithm in single precision floating point
arithmetic.

As future research, we expect to use the bisection and inverse
iteration algorithm [13] for SVD of the inner matrix B̃k in the
AIRLB algorithm.
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