
Electronic Preprint for Journal of Information Processing Vol.27

Regular Paper

Resolving Ambiguous Types in Haskell by Checking
Uniqueness of Type Variable Assignments under Type

Class Constraints

Yuya Kono1,a) Hideyuki Kawabata1,b) Tetsuo Hironaka1,c)

Received: April 4, 2018, Accepted: August 8, 2018

Abstract: The type class mechanism, which introduces ad-hoc polymorphism into programming languages, is com-
monly used to realize overloading. However, this forces programmers to write many type annotations in their pro-
grams to resolve ambiguous types. Haskell’s type defaulting rules reduce requirements for annotation. Furthermore,
the widely used Glasgow Haskell Compiler (GHC) has an ExtendedDefaultRules (EDR) extension that facilitates
interactive sessions so that the programmer avoids problems that frequently occur when using values like [] and
Nothing. However, the GHC EDR extension sometimes replaces type variables with inappropriate types, so that, for
example, the term show . read that is determined to have type String -> String under the GHC EDR extension does
not exhibit any meaningful behavior because the function read in the term is considered to have type String -> ().
We present a flexible way of resolving ambiguous types that alleviates this problem. Our proposed method does not de-
pend on default types defined elsewhere but rather assigns a type to a type variable only when the candidate is unique.
It works with any type and type class constraints. The type to be assigned is determined by scanning a list of existing
type class instances that meet the type class constraints. This decision is lightweight as it is based on operations over
sets without using algorithms that require backtracking. Our method is preferable to using the GHC EDR extension
since it avoids the use of unnatural type variable assignments. In this paper, we describe the details of our method. We
also discuss our prototype implementation that is based on the GHC plugins, and the feasibility of modifying GHC to
incorporate our method.

Keywords: type class, type ambiguity, type defaulting, Haskell

1. Introduction

The type class mechanism [9], [12] is used to introduce
ad-hoc polymorphism into programming languages. It has
been put into practical use for realizing overloading in the
Haskell programming language [8]. For example, the func-
tion show in Haskell can be applied to arguments of different
types. The type of show is represented with the type scheme
forall a. Show a => a -> String. The left-hand side of =>,
i.e., Show a, is called a type class constraint. It means that
the type assignable to type variable a is limited to types that
are instances of the type class Show. In the Haskell program-
ming language, types Integer and Bool are defined as in-
stances of type class Show with definitions of an overloaded
function named show. Therefore, when the term show True
is evaluated, the function show with a monomorphic type of
Bool -> String is applied to the boolean value True. Similarly,
for show (42 :: Integer), the function show with a monomor-
phic type of Integer -> String is applied to the integer value
42 :: Integer.

Introducing type classes causes ambiguous types [5], [7]. For

1 Hiroshima City University, Hiroshima 731–3194, Japan
a) ykono@ca.info.hiroshima-cu.ac.jp
b) kawabata@hiroshima-cu.ac.jp
c) hironaka@hiroshima-cu.ac.jp

example, the type of the function read in Haskell is represented
with the type scheme forall a. Read a => String -> a. There-
fore, the type of the composite function show . read is repre-
sented with the type scheme

forall a. (Show a, Read a) => String -> String.

That is, the type of show . read is determined to be
String -> String independently of the type assigned to
the type variable a, but we cannot determine the behavior of the
composite function show . read until the type variable a is fixed
because the behavior depends on the value of a. In Haskell, terms
that have types represented by such ambiguous type schemes
are not regarded as well-typed. If ambiguous types appear in a
Haskell program, the programmer must write type annotations to
enable determination of the types of type variables that cannot be
fixed [8], [11].

It would not be a best solution to prohibit ambiguities because
that would force programmers to write many type annotations in
their programs. For instance, since numeric literals in Haskell
have a polymorphic type represented by forall a. Num a => a,
even if one wanted to simply use integer values, it might be nec-
essary to attach a type annotation to each value that appears in the
program such as 42 :: Integer. Haskell’s type defaulting rules
alleviate this situation by assigning a default type declared in ad-
vance to each ambiguous type variable under certain conditions,

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

which reduces the need to annotate types in programs [8].
The widely used Glasgow Haskell Compiler (GHC) [1] of-

fers, in addition to type defaulting, an ExtendedDefaultRules
(EDR) extension [3] that enables defaulting of ambiguous type
variables under a less restricted condition. This promotes the
usability of polymorphic constants, especially in interactive en-
vironments. When the EDR extension is enabled, some value
constructors of polymorphic algebraic data types, such as [] and
Nothing, become usable without type annotations. For example,
terms such as show [] are judged as well-typed in the interactive
environment (GHCi) of GHC if this extension is enabled.

However, the GHC EDR extension allows its typechecker to
assign unnatural types to ambiguous type variables. For ex-
ample, when above-mentioned composite function show . read
is typechecked, the unit type () is assigned to the ambiguous
type variable, and the functions read and show are judged to
have types String -> () and () -> String, respectively. As
a result, applying the composite function show . read of type
String -> String to a string value of type String, which is ob-
viously not a value of the unit type, causes a runtime error. This
behavior of the composite function show . read cannot be pre-
dicted from its type; enabling the EDR extension of a typechecker
could cause runtime errors that are difficult for the programmer
to locate and remove.

Since the EDR extension can cause runtime errors, it is not
suitable for batch compilation. We addressed this problem by de-
veloping a method for resolving type ambiguities that provides
a more flexible way to write programs supporting user-defined
types and batch compilation. It avoids causing runtime errors in
ordinary situations by not assigning inappropriate types to type
variables.

The contributions of the paper are summarized as follows:
(1) We present a method for resolving type ambiguities in a nat-

ural way without forcing the programmer to write either type
annotations or additional rules related to types. The pro-
posed method determines which types to assign to type vari-
ables by scanning the existing type class instances that meet
the type class constraints, so that any well-typed terms can
be evaluated without causing runtime errors. The type vari-
able assignment determination is lightweight as it is based
on operations over sets without using backtracking.

(2) We demonstrate the feasibility of the proposed method by
presenting its implementation based on Jones’ reference im-
plementation of the Haskell typechecker [6].

(3) The prototype implementation of the method using GHC
plugins is described. Although its functionality is limited
due to the use of GHC plugins, its implementation demon-
strated its effectiveness against existing large-scale Haskell
programs.

The rest of the paper is organized as follows. In Section 2,
we describe the type classes of the Haskell programming lan-
guage and the problems related to type ambiguity. We also
describe the type defaulting rules introduced into Haskell for
avoiding ambiguous types. In Section 3, we describe the GHC
ExtendedDefaultRules extension in detail and discuss its im-
portance and related problems. In Section 4, we illustrate the

type ambiguity problems that are difficult to be avoided when us-
ing existing methods and describe the method we developed for
alleviating such problems. In Section 5, we describe how we im-
plemented our proposed method in GHC. In Section 6, we discuss
our method from several viewpoints. We conclude in Section 7
by summarizing the key points and mentioning future work.

2. Ambiguous Types and Type Defaulting

A type that is represented by a type scheme in which the type
variables that have been introduced by universal quantifiers do not
appear in the body of the type is called an ambiguous type [5], [7].
For example, the type of the term show 42 is represented as

show 42 :: forall a. (Show a, Num a) => String.

The type of this term is ambiguous since the type variable a does
not appear in the body of the type on the right-hand side of =>. In
this paper, we call type variables to which type assignment can-
not be performed, like a in the above example, ambiguous type

variables.
In Haskell, numeric literals have polymorphic types. For ex-

ample, the literal 42 has a type represented as

42 :: forall a. Num a => a,

and the type of 3.14 is represented as

3.14 :: forall a. Fractional a => a,

where type class Fractional is a subclass of type class Num.
Ambiguous types frequently appear in an environment in

which there are many polymorphic type terms with type class
constraints. In fact, ambiguous types related to type class Num
tend to frequently appear in many programs. A Haskell pro-
grammer can omit type annotations for numeric literals because
Haskell provides type defaulting rules for resolving ambiguous
types by consulting a predefined list of declared default types for
module.

Type defaulting lets the typechecker search a given list of de-
fault types for an appropriate type to assign to a type variable, say
v, if the following conditions hold (Ref. [8], Section 4.3.4):
(1) All type class constraints in which v appears are in the form
C v (where C denotes a type class).

(2) At least one of these type classes is Num or a subclass of Num.
(3) All of these type classes are defined in the Prelude module

or in the standard Haskell libraries.
The list of default types can be defined separately in each mod-

ule with a default declaration. For modules that do not have a
default declaration, the types used as defaults are Integer and
Double, in that order.

Type defaulting in Haskell reduces the need for explicit type
annotations for resolving ambiguities due to the use of type class
Num. For example, applying type defaulting disambiguates the
type of the aforementioned term show 42 to be String, with the
type variable a assigned to be the type Integer.

In Haskell, type defaulting prevents some problems caused
by type ambiguity while keeping numeric literals polymorphic.
For example, if there is no type defaulting, a simple term

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

print $ 3.14 * 5 * 4 does not typecheck without a type anno-
tation specifying the type of the subterm 3.14 * 5 * 4 given by
the programmer. However, as mentioned above, the applicabil-
ity of type defaulting is limited; all type classes appearing in the
type class constraints of ambiguous types must be defined in the
Prelude module or in the standard libraries. Therefore, it is not
possible to resolve an ambiguous type in which user-defined type
classes appear in its type class constraints. In addition, type de-
faulting covers only ambiguous types with type class constraints
containing Num or its subclasses. Thus, type defaulting cannot
resolve ambiguities caused by non-numeric polymorphic values
like [] or Left True.

3. GHC’s ExtendedDefaultRules Extension
and Related Problems

3.1 ExtendedDefaultRules (EDR) Extension
The ExtendedDefaultRules extension (EDR) in GHC [3] re-

laxes the type defaulting conditions, thereby improving conve-
nience in interactive environments. In an interactive environment,
there are many situations in which values that have polymorphic
types, such as [], Nothing, and Left "foo", are displayed on
the screen. In those cases, an attempt is made to convert a value
into a string by using a function like show. However, because
polymorphic values are inherently ambiguous, we are often re-
quired to specify type annotations for those terms, that is, a tire-
some requirement in interactive sessions. Use of the EDR exten-
sion alleviates this problem. By using the EDR extension, GHC’s
typechecker judges that terms [], Nothing, and Left "foo"
have types [()], Maybe (), and Either String (), respec-
tively.

When the EDR extension is enabled, the typechecker attempts
to resolve ambiguous types by using the following procedure
(Ref. [3], Section 4.4.8):
(1) Remove constraints that are not in the form C a, where C and
a denote a type class and a type variable, respectively, and
divide up the remaining set of constraints into groups such
that all type class constraints in a group have an identical
type variable.

(2) Among the divided groups of constraint sets, remove those
sets that do not include any of the following type classes:
Num, subclasses of Num, Show, Eq, Ord, Foldable, and
Traversable.

(3) For each group, check whether each type on the list of de-
fault types satisfies all type class constraints in the group.
Assign the first type that passes the check to the correspond-
ing type variable.

In a preliminary step, the EDR extension places the unit type
() and list type constructor [] at the head of the list of default
types.

Figure 1 illustrates an example dialogue between the program-
mer and GHCi with the EDR extension enabled. On the first line,
a type annotation is explicitly assigned to a polymorphic term
[] as [] :: String. In this case, type defaulting does not work
and the type of show is determined to be String -> String. On
the third line, type defaulting by EDR is performed. The type
of [] thereby becomes [()], and the type of show becomes

Fig. 1 Example of interactive session in GHCi.

[()] -> String. Without the EDR extension, the programmer
would have had to write the third line with an annotation like
show ([] :: [()]) in order to obtain the same result shown on
the fourth line. Requiring the programmer to continually write
such type annotations in an interactive environment would im-
pose a great burden.

3.2 Problems with EDR Extension
Although the GHC EDR extension greatly improves conve-

nience in GHCi, it can also cause confusions since the resultant
assignments of types to ambiguous type variables are sometimes
obscure. For example, since show . read has an ambiguous type,
the term is judged to be ill-typed in standard Haskell. If the
EDR extension is enabled, the type of the term is judged to be
show . read :: String -> String. However, since the unit type
() is assigned to the ambiguous type variable, the type of the
function read in this composite function show . read is actually
judged to be String -> (). Therefore, applying the compos-
ite function show . read of type String -> String to a string
value of type String, which is obviously not the unit type value,
causes a runtime error. And compilers should not generate code
that almost certainly will cause an error at runtime. However, un-
der EDR, it is not possible to completely eliminate, by checking
types, the chance of generating erroneous code. Thus, enabling
the EDR extension could cause confusing bugs that are difficult
to identify by simply “desk-checking” the source programs.

Note that, even if the EDR extension is enabled, there are still
many cases in which the programmer must write type annota-
tions. For example, even if a type that satisfies a set of particular
type class constraints is uniquely found, the type cannot be as-
signed to an ambiguous type variable if it is not on the list of
default types. The programmer must specify the type by writing
a type annotation or modify the list of default types to include the
type.

For these reasons, we do not expect that the use of an EDR
extension is a best practice, especially when batch compilation is
needed.

4. Resolving Ambiguous Types by Checking
Uniqueness of Type Variable Assignments

4.1 Cases in which Type Defaulting and EDR are not Appli-
cable

As described in Section 3, there are cases that cannot be prop-
erly handled by existing disambiguation methods. For example,
the Haskell program shown in Fig. 2 contains such an ambigu-
ity. The type of the expression, toString 42, at the bottom
is forall a. (Num a, Outputable a) => String, which con-
tains an ambiguous type variable a. The type class Outputable

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 2 Program with ambiguous type.

used in the example is a user-defined class. Haskell’s standard
type defaulting cannot deal with the ambiguity associated with
Outputable because it tries to disambiguate only type variables
related to type classes defined in module Prelude or in the stan-
dard libraries.

The GHC EDR extension has a wider range of applicable type
class constraints compared to Haskell’s type defaulting and can
handle user-defined type classes. However, it relies on a prede-
fined list of default types for disambiguation. For the program
shown in Fig. 2, the type class Outputable has only two in-
stances, i.e., Int and Bool. Although Int is also an instance
of the type class Num, the expression toString in toString 42
cannot be treated as having type Int -> String because Int is
not on the list of default types.

Let us consider the situation from another perspective. Look-
ing at the type class constraint (Num a, Outputable a), we see
that the type that is uniquely suited for assignment to the type
variable a under this constraint is Int. Thus, a decision is made
to assign Int to the ambiguous type variable a. Note that this
decision does not require heavyweight processes. It is enough to
check whether there is a unique type that is an instance of all type
classes that appear in the type class constraints in order to de-
termine whether there is a unique solution for a set of type class
constraints. Doing this does not require a large amount of com-
putational resources.

4.2 Proposed Method
Our proposed method resolves type ambiguities by assigning

an ambiguous type variable a type that is a unique solution of
the corresponding set of type class constraints. With this method,
the type of the expression toString 42 shown at the bottom of
Fig. 2 is determined to be String by assigning Int to the am-
biguous type variable.

Unlike existing methods such as type defaulting and EDR, the
proposed method derives assignments for ambiguous type vari-
ables from type class constraints without resorting to predefined
lists of default types. Also unlike type defaulting and EDR, our
method does not place any restriction on type class constraints.
Thus, it provides the programmer a much more flexible means of
disambiguation, enabling the programmer to use any type and any
type class constraint, including user-defined ones, in programs.
The proposed method can be used with existing methods such
as type defaulting and EDR, enabling them to avoid more type
ambiguity problems.

Checking whether there is a unique assignment to a type vari-
able a in a set of type class constraints (C1 a, C2 a, ..., Cn a)

can be done by counting the number of elements in the intersec-
tion of sets that contain instances of type class Ci. The steps in

disambiguation are summarized as follows:
(1) Partition type class constraints into groups so that the con-

straints in each group are associated with the same type vari-
able; i.e., the type constraints in a group are of the form C a,
where type variable a is identical.

(2) Construct a set of instances corresponding to each type con-
straint in each group in the current type class environment.

(3) Calculate the intersections among the sets of instances cor-
responding to type constraints in each group.

(4) For each group of constraints, if the previously calculated set
contains exactly one type, assign it to the corresponding type
variable a.

In the example program shown in Fig. 2, the last expression of
toString 42 has an ambiguous type represented by type scheme
forall a. (Num a, Outputable a) => String. With our pro-
posed method, the resultant intersection of type class constraints
related to the ambiguous type variable a is {Int}. Thus, Int is
assigned to a to eliminate the ambiguity. The proposed method
thus solves the problem of type ambiguities by finding a unique
assignable type at low cost.

5. Embedding Our Method in Haskell Type-
checkers

Although there is no formal specification for Haskell’s type
inference, typecheckers are often implemented in Haskell com-
pilers by incorporating a two-step constraint-based procedure:
the first step generates the constraints and the second one solves
them. For example, GHC’s typechecker uses a constraint-based
inference algorithm described in Ref. [11]. In Ref. [6], a type-
checker of Haskell is implemented in Haskell. The reference im-
plementation of the Haskell typechecker [6] is designed for read-
ability and simplicity.

Here we briefly describe these representative typecheckers be-
fore introducing the implementation of our proposed method. We
also discuss our prototype implementation that is based on the
GHC plugins, and the feasibility of modifying GHC to incorpo-
rate our method.

5.1 Typechecking and Type Defaulting in Haskell
Constraint-based type inference resolves type ambiguities by

first generating constraints and then solving them. In addition
to type class constraints, the constraints include equational con-
straints and constraints on type families.

We illustrate the flow of a typical type inference procedure by
using an example of typing a function f defined as

f x y = x == y.

(1) Assign type variables to partial terms
Type variables are assigned to terms as follows:
• x == y ::α
• x :: β
• y :: γ.

(2) Generate type constraints
The following constraints are generated:
• α ∼ Bool
• β ∼ γ

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 3 Functions withUniqueCheck and ambiguities used to implement proposed method in the type-
checker described by Jones [6].

• Eq β,
where ∼ denotes a constraint that requires the types on both sides
to be the same. For example, α ∼ Bool means that α and Bool
must be the same type.
(3) Solve type constraints

The following typing is obtained by solving the constraints:

f :: forall a. Eq a => a -> a -> Bool.

where the type variable a corresponds to the type variable β
(∼ γ), which was not assigned a type in this step.
(4) Perform type defaulting

If the obtained type is ambiguous, type defaulting is performed.
For GHC, disambiguation by EDR is attempted in this step if
EDR is enabled. If some ambiguities still remain, the Haskell
typechecker fails and an error is reported.

The proposed method is designed to be activated immediately
before executing type defaulting. After types are obtained by
solving the constraints, it attempts to disambiguate type variables,
which is followed by type defaulting. Our method can thus be
properly implemented along with type defaulting and EDR with-
out their intervention.

5.2 Embedding Our Method in Typechecker of Typing
Haskell in Haskell

Typing Haskell in Haskell by Jones [6] describes the details of
implementing Haskell’s typechecker in Haskell. The typechecker
has been designed focusing on readability and simplicity and is
thus appropriate to use in designing and prototyping the extended
functionalities of Haskell’s type system. It explains the function-
alities used to deal with type ambiguity and explains type default-
ing, along with its implementation [6] (Section 11.5.1).

The function withUniqueCheck in Fig. 3 shows the major part
of our implementation of the proposed method. This function ac-
cepts a function f that is used for disambiguation, a type class
environment ce, a list vs of type variables that appear in the body
of types and are not ambiguous, and a list of type class constraints
ps of inferred types as arguments. The function f accepts a list
of tuples of resolvable ambiguous type variables and types to be
assigned as arguments. The function withUniqueCheck first de-
termines the possibility of unique type variable assignments by
following the procedure described in Section 4. Then, it applies
the function f to the results to resolve type ambiguities by re-

moving the type class constraints and registering tuples of type
variables and types to the corresponding type environment. The
behavior and the usage of the function withUniqueCheck re-
sembles those of the function withDefaults [6], which manages
type defaulting.

On Line 3 of the program shown in Fig. 3, a list vps of tuples
of ambiguous type variables and corresponding type class con-
straints is computed by function ambiguities, which accepts a
type class environment ce with instances, a list vs of type vari-
ables that appear in the bodies of types, and a list ps of type class
constraints as arguments. Type class constraints related to am-
biguous type variables are partitioned into groups so that each
group is related to a single type variable.

The function ambiguities is identical to the function with the
same name defined by Jones [6]. Function tv computes a list of
type variables that appear in the type class constraints. Among
the type variables listed in tv ps, those that do not appear in vs
are treated as ambiguous type variables.

The value of getinsts defined on Line 4 in Fig. 3 is a list
of instances defined in the environment ce for each type class in
each group of type class constraints. Function solve defined on
Line 9 computes the intersections among sets for each group and
determines the assignments of types to ambiguous type variables
by checking whether the number of elements in each intersection
is 1. The type of the resultant value is a tuple of type Ambiguity
and Type; Ambiguity represents a list of tuples of type variables
and type class constraints, and Type represents a type.

Our proposed method can be implemented by inserting the
overall code that performs disambiguation by using function
withUniqueCheck immediately before the code that performs
type defaulting in the typechecker [6].

5.3 Implementing Our Method in GHC
5.3.1 Implementation with Compiler Plugins

GHC offers a way to modify its functionality through APIs in
the ghc package *1. In addition, GHC supports compiler plu-
gins [3] for simple and plain modification of the behavior of
the compiler. Functionalities implemented by using plugins are
loaded into GHC at runtime. Programmers can add their own
paths for doing something, e.g., resolving type constraints at type-

*1 https://hackage.haskell.org/package/ghc

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

Fig. 4 Implementation of proposed method by using GHC plugins.

checking and reconstructing expressions of intermediate repre-
sentations for optimization, without modifying GHC itself.

We developed a prototype of our type disambiguator by using
compiler plugins and confirmed that the extended typechecker de-
scribed in Section 4 behaved as intended. The disambiguator de-
termines whether there is a unique assignment to a type variable
a following the steps described in Section 4. If there is a unique
type T, another attempt is made to resolve the type constraints by
using an additional type constraint, a ∼ T.

Figure 4 shows the major functions of our implementation by
using GHC plugins. When the GHC typechecker attempts to re-
solve type constraints, the additional function solve is invoked,
which accepts a list of type constraints wanteds that are currently
non-resolved as an argument. Function unifyCts accepts a list
cs of to-be-solved type constraints and returns a list of tuples
of uniquely assignable type variables obtained from cs and their
corresponding types. Functions mkTyEqCts and newTyEqCt gen-

Fig. 5 Example program to be compiled with prototype implemented using
compiler plugins.

Table 1 Elapsed times for compiling Haskell programs (s).

Application pandoc hoogle hlint
(Version) (2.2) (5.0.17.3) (2.1.5)

GHC8.4.1 with proposed method 366.8 39.7 37.5
GHC8.4.1 364.9 40.5 36.8

erate type constraints in the form a ∼ T by using the list. Func-
tion solve computes a new list of type constraints by using those
functions and returns it as the result of the processing by the com-
piler plugins.

Testing using the prototype implementation of our method
demonstrated that our proposed method can properly compile the
example programs shown in Fig. 2 and Fig. 5. To evaluate the
performance of the plugin-based implementation, we carried out
a set of experiments in which three large-scale application pro-
grams written in Haskell (pandoc 2.2 *2, hoogle 5.0.17.3 *3, and
hlint 2.1.5 *4) were compiled. Our prototype system correctly
compiled all three applications. These results partially demon-
strate that the additional functionality does not interfere with the
behavior of the existing GHC typechecker.

Table 1 shows the elapsed times for compiling with and with-
out our extension to the compiler. As shown in Table 1, the differ-
ences in compilation times due to plugin loading and other factors
including excessive disambiguation of type variables, which will
be described in Section 5.3.2, were negligible.
5.3.2 Beyond the Limitation: An Approach for Implement-

ing Our Method in GHC
Implementation based on GHC plugins has inherently limited

functionality: i.e., it is not possible to check whether the type
class constraints in a particular set are causing type variable am-
biguity or to check whether a particular ambiguity is resolvable
without applying our method. Thus, the plugin-based implemen-
tation of our method assigns types to all type variables when there
is a unique type class constraint “solution” even when the type
variable is not actually ambiguous. This could result in making
potentially polymorphic expressions monomorphic, which is not
desired. For example, suppose a function is defined by using the
type class Outputable shown in Fig. 2:

*2 https://hackage.haskell.org/package/pandoc
*3 https://hackage.haskell.org/package/hoogle
*4 https://hackage.haskell.org/package/hlint

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

f x = toString (x + 1).

The type of the function f is expected to be
(Num a, Outputable a) => a -> String. However, since
there is no way to check whether the type variable a is am-
biguous by using plugins, our prototype system will investigate
the type class constraints, confirm the uniqueness of the type
assignment to a in the environment, and then, infer that the type
of function f is Int -> String.

To overcome this limitation when implementing our method
in GHC, we must add a new typechecking path that is activated
before carrying out type defaulting, as described in Sections 5.1
and 5.2. This cannot be done, however, without modifying the
GHC source code.

In GHC version 8.4.1, resolving constraints and pro-
cessing type defaulting are mainly done using the function
simplifyInfer in compiler/typecheck/TcSimplify.hs*5. It
should thus be possible to modify the GHC source code by
revising only one file.

6. Discussion

There have been many studies on methods for resolving type
ambiguities in Haskell [4]. The applicability of type defaulting
in the standard implementation of Haskell is quite limited, and
the assignments for ambiguous type variables are restricted to
those related to type classes defined in Prelude or in the standard
Haskell libraries. In contrast, GHC’s EDR extension supports a
wider range of type ambiguities, making the usage of Haskell
more convenient in interactive environments. However, the in-
tended type variable assignments can sometimes require an ex-
plicit declaration of a list of default types. As mentioned above,
we consider the behavior of the GHC EDR extension to be in-
appropriate because the resultant assignments of type variables
can seem unnatural to ordinary programmers. Several EDR ex-
tensions have been proposed [2]. Although they try to support
the use of user-defined type classes for disambiguation, they use
predefined lists of default types, which is different from our ap-
proach.

The reason for placing restrictions on the applicability of au-
tomatic type variable assignments by type defaulting is that the
effect of type defaulting should be limited since the implicit ap-
proaches often cause unwanted assignments. In fact, GHC has
a compile option (-Wtype-defaults) that causes warning mes-
sages to be displayed if type variable assignments are carried out
by the type defaulting facility. Such warning messages would be
helpful for maintaining the source code and figuring out unin-
tended program behaviors. Compared to the implicit approaches,
our proposed method for resolving type ambiguities does not use
predefined lists of default types. Thus, using our method mini-
mizes unintended assignments of type variables. Adding a facil-
ity for displaying warning messages would be also beneficial for
our system.

We realize that our proposed method does not satisfy the claim
by Vytiniotis et al. that “generalising over all constraints carries

*5 https://ghc.haskell.org/trac/ghc/browser/ghc/compiler/typecheck/
TcSimplify.hs?rev=4df0106890df687d32ad1941dd5ccb31a11438d8

significant costs, and negligible benefits” [11]. They propose not
using methods for assigning type variables that search for appro-
priate types because such a search could involve a huge number
of existing instance declarations. Methods that search all existing
type class instances in the environment often suffer an explosive
increase in the cost for searching, especially in cases where there
are many type variables. In addition, their use breaks the “open
world assumption” of GHC’s type system because the addition
of instance declarations of type classes could destroy the once
observed uniqueness of type variable assignments and affect the
result of compilation, which is what they want to avoid. However,
what they describe is a rather general typing strategy concerning
ambiguities related to multi-parameter type classes [9] and type
families [10]. In fact, our proposed method does not require a
huge amount of computation. In addition, it is usable for com-
mon cases and can be implemented in a concise manner. Our ap-
proach thus does not contradict their claim. Many methods, e.g.,
EDR, type defaulting, and monomorphic restriction, have been
implemented and utilized although their appropriateness was still
unsettled [4]. Our approach may be in a similar position.

Most programming languages other than Haskell do not incor-
porate type class-like mechanisms for supporting the overloading
of operators and values. The generics facility of Java and Rust
require explicit type declarations when the values of type argu-
ments are not determinable from the types of their arguments or
results. Scala and OCaml support ad-hoc polymorphism in such a
way that the problem of ambiguous types never occurs since type
variables in type schemes always appear in their bodies.

7. Conclusion

We have described the problem of ambiguities in Haskell pro-
grams and have summarized two existing methods (type default-
ing and the EDR extension of GHC) commonly used for resolving
type ambiguities. We pointed out that there are cases in which
type defaulting and the EDR extension cannot properly handle
type ambiguities, and we presented a method for solving this
problem. It does this by checking the uniqueness of type vari-
able assignments under type class constraints.

We also presented an implementation of the proposed method
as an extension of Jones’ typechecker and presented results
demonstrating its effectiveness. In addition, we discussed the use
of our method to extend GHC’s typechecker; presented how we
built a prototype by using the GHC plugins, and confirmed the
applicability of our approach to existing Haskell compilers.

Future work includes a detailed study introducing our disam-
biguation method, in an efficient and practical way, into systems
that have, for example, multi-parameter type classes [9] and type
families [10].

Acknowledgments The authors would like to thank Keisuke
Nakano for his helpful comments. This work was supported
in part by a KAKEN Grant-in-Aid for Scientific Research (C),
No.17K00106.

References

[1] Glasgow Haskell Compiler home page, available from 〈https://www.
haskell.org/ghc/〉 (accessed 2018-05-06).

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.27

[2] GHC new feature request: Extending ExtendedDefaultRules,
available from 〈https://ghc.haskell.org/trac/ghc/ticket/8171〉 (accessed
2018-05-06).

[3] GHC Team: GHC User’s Guide Documentation, Release 8.4.1 (2018).
[4] Hudak, P., Hughes, J., Peyton Jones, S. and Wadler, P.: A History of

Haskell: Being Lazy With Class, 3rd ACM SIGPLAN History of Pro-
gramming Languages Conference (HOPL-III), pp.12-1–12-55 (2007).

[5] Jones, M.P.: Coherence for qualified types, Research Report
YALEU/DCS/RR-989, Yale University, New Haven, Connecticut,
USA (1993).

[6] Jones, M.P.: Typing Haskell in Haskell, Haskell Workshop (1999), re-
vised version available from 〈http://web.cecs.pdx.edu/˜mpj/thih/〉 (ac-
cessed 2018-05-06).

[7] Jones, M.P.: Qualified Types: Theory and Practice, PhD Thesis, the
University of Oxford (1992).

[8] Marlow, S. (Ed.): Haskell 2010 Language Report (2010).
[9] Peyton Jones, S., Jones, M. and Meijer, E.: Type classes: An explo-

ration of the design space, Haskell Workshop (1997).
[10] Schrijvers, T., Peyton Jones, S., Chakravarty, M. and Sulzmann, M.:

Type Checking with Open Type Functions, Proc. International Con-
ference on Functional Programming (ICFP ’08), pp.51–62 (2008).

[11] Vytiniotis, D., Peyton Jones, S., Schrijvers, T. and Sulzmann, M.: Out-
sideIn(X) – Modular type inference with local assumptions, Journal of
Functional Programming, Vol.21, pp.333–412 (2011).

[12] Wadler, P. and Blott, S.: How to make ad-hoc polymorphism less
ad hoc, Proc. 16th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’89), pp.60–76 (1989).

Yuya Kono is a student in the Depart-
ment of Computer and Network Engineer-
ing, Hiroshima City University. His re-
search interests include programming lan-
guages. He is a junior member of IPSJ.

Hideyuki Kawabata received B.E. and
Ph.D. degrees from Kyoto University in
1992 and 2004, respectively. Since 2007,
he has been a lecturer at Hiroshima City
University. His research interests in-
clude numerical programming and pro-
gramming languages. He is a member of
ACM, IEEE Computer Society, IPSJ, IE-

ICE, JSIAM, and JSSST.

Tetsuo Hironaka received a Ph.D. de-
gree from Kyushu University in 1993.
From 1993 to 1994, he served as a re-
search associate at Kyushu University.
From 1994 to 2006, he was an associate
professor at Hiroshima City University.
Since 2006, he has been a professor in
the Computer Architecture Laboratory of

Hiroshima City University. His research interests include com-
puter architectures, reconfigurable architectures, and software en-
gineering. He is a member of IPSJ, IEICE, IEEE, and ACM.

c© 2018 Information Processing Society of Japan

