
Learning Basic Skills to Survive the First Day in
Minecraft with Life-long Learning

Laige Peng1,a) Yoshimasa Tsuruoka1

Abstract: In recent years, deep reinforcement learning has had a great impact on agent design in the field of
game AI. The success of Atari 2600 gives researchers confidence to attempt to utilize it in more challenging
games. Minecraft, as a representative example of complicated and challenging games, has recently attracted
a lot of attention from researchers. Considering the complexity of playing Minecraft, in our work, we applied
the concept of lifelong learning in deep reinforcement learning to solve a task: learning basic skills to survive
the first day in Minecraft. In our experiment, we decomposed this main task into three subtasks. The agent
learned the skills from the process of solving the three subtasks and finally managed to finish the main task
using pre-learned skills.

1. Introduction

Recent achievements in Atari games and self-play algo-

rithms have shown the power of deep reinforcement learning,

which demonstrates human-level or even better performance

in games. Deep reinforcement learning has wide applications

and can be seen as a means to achieve Artificial General

Intelligence (AGI). The publication of Deep Q-Network [1]

has had a far-reaching impact on the field of game AI. There

have been incessant numbers of new reports on state-of-art

solutions to some new games or new adaptions of the DQN

algorithms. However, deep reinforcement learning is not om-

nipotent. Minecraft, a popular but challenging game, is one

example that presents some challenges to deep reinforcement

learning.

Minecraft creates a 3D world for players to explore various

topographies and scenes. Its players can enjoy an exciting

experience of ultimate survival or the pleasure of creating

their own worlds. Figure 1 shows a screenshot of the game.

The world is very complex, containing thousands of differ-

ent elements, items, blocks and operations. This complexity

makes it very difficult to have an artificial intelligence agent

learn to act like a human in the Minecraft world. It is hard to

define the action space because the actions in Minecraft are

continuous, since the action time depends on how long play-

ers press their keyboard. The complicated survival system is

confusing even to human players. For example, new players

may not know where to start or what actions to make, fac-

ing such a huge plane when they enter the world for the first

time. Besides the complexity of the environment, another

difficulty is the property of partial observability. Like many

1 Department of Information and Communication Engineering,
The School of Information Science and Technology, The Uni-
versity of Tokyo

a) penglaige0417@yahoo.co.jp

other first-person sight games, the agent sees only the scenes

in front of it, which only provide partial information on the

whole environment. These two properties of the special en-

vironment in Minecraft present a challenge for researchers

to create an artificial intelligence agent for it.

Figure 1. A screenshot of the game Minecraft.

Although the task is challenging, Minecraft still attracts

the attention of many researchers as a testbed for deep re-

inforcement learning algorithms. One of the reasons for this

is its resemblance to the real world. This indicates the fact

that good methods in Minecraft may be adapted into the

real world. There are already some excellent studies on

Minecraft. David et al. [2] that combined the idea of de-

composing large tasks into several subtasks and propose a

method of selecting subgoals by using deep learning from

raw pixels. Chen Tessler et al. [3] propose a Hierarchical

Deep Reinforcement Learning Network (H-DRLN) architec-

ture to learn skills and solve complicated tasks. Shu et al.

[4] also propose another kind of hierarchical architecture and

add a human language interpretable skill in multi-task rein-

forcement learning in Minecraft.

In our work, we mainly construct our agent with the hi-

erarchical architecture H-DRLN, which we will describe in

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 101 -

the related research section. We aim to solve more realistic

tasks in Minecraft, including the task of surviving the first

day in the world. Survival is a serious problem because it

determines whether players are able to continue their life in

this world. We manually decompose this main target into

three subtasks: (1) Collect an apple in case of starvation;

(2) Collect cobble stone as an important material; (3) Cut

the wool in order to make a bed to skip the dangerous night.

To decrease the difficulty of the situation, we initially give

the agent a diamond pickaxe and shears as tools. Accord-

ing to our experiment, we successfully have the agent learn

those three skills and finish the final task. We describe the

details of the methods we use to achieve this main task and

the final performance.

2. Related Research

2.1 Markov Decision Process (MDP)

In a Markov Decision Process, there are several definitions

to describe the terminology:

• S : A set of states.

• A : A set of actions.

• Pa(s, s′) : The probability that state s at time t will

transition to state s′ at time t+1 when given action a.

• Ra(s, s′) : The immediately received rewards after state

s transitioning to state s′ when given action a.

• γ ∈ [0, 1] : The discount factor, represents the priority

difference of the future rewards and the present rewards.

A Markov Decision Process is defined as a process in which

the future is independent of the past given the present. That

is, state s′ at time t + 1 is only determined by the state s

and the action a at time t.

2.2 Reinforcement Learning

Reinforcement learning [5] is an area of machine learning

in which an agent learns what to do—how to map situations

to actions—so as to maximize a numerical reward signal.

Reinforcement learning focuses on the interaction between

the agent and the environment. More specifically, the agent

observes a situation or state s from the environment, and

then chooses an action a and receives a reward r from the

environment. The environment makes a transition to an-

other state s′ because of the effect of action a, and then the

agent repeats to choose a new action. The whole process

is described as a MDP. What is different from supervised

learning is that, the agent is not told which actions to take

or any other extra labeled information, but instead discovers

which action will generate rewards by trying them.

In reinforcement learning, the agent at time t always tries

to maximize the expectation of the cumulative rewards with

a discount factor from time t. The value function of each

state s is represented by using the Bellman equation as:

V (s) = E[Rt+1 + γV (St+1) | St = s].

A policy π is represented by π(a | s) = P [At = a | St = s].

The state value function is defined as the expected return

starting from state s, and then following policy π:

Vπ(s) = Eπ[
∑∞

k=0 γ
kRt+k+1| St = s], for all s ∈ S

Thus the reinforcement learning agent aims to learn a policy

π which maximizes the value function V (s) of a given state

s.

Reinforcement learning is widely adapted in various areas

such as game AI, control theory and multi-agent systems. It

is imperative to recognize that reinforcement learning has a

deep influence in game algorithm researches.

2.3 Q-learning

Q-learning [6] is a well-known reinforcement learning

method, aiming to learn how to act optimally in controlled

Markovian domains. Q-learning is based on the action value

function qπ(s, a) which defines as:

qπ(s, a) = Eπ[
∑∞

k=0 γ
kRt+k+1| St = s,At = a]

The optimal action value function is represented as q∗π(s, a)

when π is the optimal policy. Q-learning aims to approxi-

mate the optimal action value function q∗π(s, a) by using a

Q-table which is a table that records the value of q(s, a) for

all a ∈ A and s ∈ S.

The process of the Q-learning algorithms is as follows: 1.

Initialize the Q-table arbitrarily. 2. For a state s at time

step t, choose an action a with highest value in the current

table of q(s, a), observe the next state s′ at time t and the

reward r. The target value of q(s, a) is r + γmaxa′ q(s, a′),
then update q(s, a) := q(s, a) + α[r + γmaxa′q(s, a′) −
q(s, a)], α is the learning rate. 3. Repeat 2 until learn-

ing ends.

Q-learning is limited to solve MDPs with finite states and

finite actions. However, many environments have infinite

states space, it is impossible to create all the state-action

pairs to calculate the q(s, a).

2.4 Deep Q-Network (DQN)

Deep Q-Network [7] is a method that combines reinforce-

ment learning with a deep neural network to approximate

the action value function instead of Q-table in infinite states

environments. The notable success in Atari 2600 shows the

potential of the DQN algorithm.

A DQN takes an observation s as the input of the deep

neural network, and calculates the value q(s, a) for all pos-

sible action a given s. Assume that the parameters of the

neural network is θ. Q-learning updates at iteration i with

the following loss function:

Li(θi) =

E(s,a,r,s′)∼U(D)[(r + γmaxa′Q(s′, a′; θ−i)−Q(s, a; θi))
2]

in which γ is the discount factor and θ−i is the parameters

of the target network at iteration i. The target network pa-

rameters θ−i updates with the θi only every C steps in order

to eliminate the correlations between the network Q(θ) and

the target network Q(θ−).

Another key idea to break the correlations present in the

sequence of the past observations in DQN is the experience

replay. The DQNmodel creates a memory buffer to store the

(s, a, r, s′) tuples in the buffer for learning process. When se-

lecting the learning data from the memory buffer, randomly

choosing the data reduces the influence of the correlations.

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 102 -

There are some variants of DQNs such as Double DQN

[8], Dueling DQN [9] and Distributed DQN [10].

2.5 Lifelong learning

A traditional definition of lifelong learning is “all learning

activity undertaken throughout life, with the aim of improv-

ing knowledge, skills and competences within a personal,

civic, social and/or employment-related perspective” [11].

Although this definition is to describe the lifelong learning

in human domain, it is also able to be adapted to the game

theory.

A lifelong machine learning system [12] aims to contin-

uously learn tasks from one or more domains over its life-

time. There are two unique properties in lifelong learning

systems: (1) sequentially retaining the skills it has learned;

(2) selectively applying the learned skills to solve new tasks.

These properties provide a lifelong learning system with the

ability to solve tasks continuously from simple ones to com-

plex ones. It is not a specific learning algorithms, but a

good conception for the system designers to move beyond

the learning algorithms to more seriously think about the

nature of systems that are able to continuously learn new

knowledge over a lifelong time.

2.6 Hierarchical Deep Reinforcement Learning

Network (H-DRLN)

The Hierarchical deep reinforcement learning network (H-

DRLN) architecture (Figure 1) which aims to learn skills

and solve complex tasks was proposed by Chen Tessler et

al. [3]. The H-DRLN architecture which utilizes the concept

of lifelong learning, has the ability to retain a skill learned

from one task, and then know how to reuse the previously

learned skill to solve new tasks. This novel architecture was

proposed to solve the complex tasks in Minecraft. The archi-

tecture consists of a main neural network which determines

whether to use skills or take primitive actions and a deep

skill module (DSN) as a pool of skills where each skill is

represented by a pre-trained neural network model gained

from previous tasks. Input of this architecture is the state

space that represented as raw image pixels from the last four

image frames. If the network selects a primitive action, the

agent will take a primitive action as a result. Otherwise,

the agent will follow the policy of the skill network model

until it terminates. Each pre-trained skill neural network

was trained by the Vanilla DQN architecture [7].

There are two different modules to implement the DSN:

(1) a simple array of pre-trained skill networks in which each

network is represented by a separate DQN; (2) a single deep

network that represents multiple skill networks by using pol-

icy distillation [13].

In the experiments, Chen Tessler et al. prepared four pre-

trained skills: (1) navigation in one room without obstacles;

(2) navigation in one room with obstacles; (3) picking up

objects; (4) placing objects. When the main network was

trained in a two-room multi-task domain, the H-DRLN net-

work achieved the highest success rate of 76%, outperform-

ing a simple DQN or DSN. This results show the advantage

of the lifelong learning system and its adaptability to new

and complex tasks.

Figure 2. The H-DRLN Architecture[3]

3. Proposed Approach

Our proposed approach in this paper is mainly based on

the H-DRLN architecture. Chen Tessler et al. showed us

that this architecture has achieved good performance to

solve complex tasks in Minecraft. However, the tasks in

their experiment were a little bit abstract compared to the

real Minecraft world. Thus in this paper, we propose a main

task of surviving the first day in Minecraft and try to make

our goal more realistic in Minecraft world.

We manually decompose the main task into three sub-

tasks: (1) collect an apple; (2) find a stone or a sheep; (3)

use tools to get the cobblestone or wool. Our proposal is

to solve the main task by using a H-DRLN network with

a pre-trained skill pool. Therefore, we define each subtask

as a basic skill and each skill is trained with a DQN ar-

chitecture. After training the skill networks and saving the

models, we then simply put those models in the DSN array

for the H-DRLN network to choose. Finally we train the H-

DRLN network aiming to solve the main task of collecting

the apple, the stone, and the wool to survive the first day

in Minecraft. The output of the H-DRLN network contains

several primitive actions and a DSN in which we store mod-

els of the three skill networks. The training process would

make the agent learn when to use primitive actions and when

to utilize skills.

We use the vanilla DQN structure [7] to train our three

skill networks. Most of the parameters and hyperparame-

ters are the same as those in the vanilla DQN. However,

we adjust some parameters such as exploration rate and

learning-start time steps to fit our experiments. The same

DQN structure is used to train all the three skill networks

but with different environment settings, rewards and action

spaces. The second skill ”find object” aims to find the ob-

ject for the agent to remain in front of it, and the third skill

”use tools” aims for the agent to learn how to use different

tools depending on what object is in front of it. In order to

avoid using two networks to train the agent to find the stone

and the sheep, we prepare two different maps in the training

process, which give the agent the ability of recognizing the

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 103 -

objects in front of it. We will discuss the details later in the

experiment section.

This research aims to utilize the pre-trained skill networks

to solve the main task by applying the H-DRLN architec-

ture.

4. Experiment

4.1 Train skill networks

In this research, we use the Project Malmo as a platform

to construct the game environment. The Project Malmo,

which is a research platform created by Microsoft for con-

ducting artificial intelligence experiments in Minecraft, has

contributed to the new generation of algorithms to challenge

more complicated problems in such a unique environment.

Hence, we construct the experiment environment basing on

the Malmo platform, which is convenient to get environment

information and control the agent.

We have three skill networks as mentioned previously. We

use the vanilla DQN structure described in the related re-

search section to train those three skills but with different

environment settings. The results indicate that the three

skill networks are able to finish the subtasks. In the follow-

ing parts, we describe the experiment details.

4.1.1 Skill network 1: collecting apples

State space - The frames initially obtained from the

game environment are the images of the first-person view of

the agent, with size 200 × 160. The previous process was

used to scale the frames to size 84 × 84 and transform the

RGB images to gray images. State space is represented as

the raw pixels by combining the last 4 processed frames.

Actions - In the task of collecting apples, in the begin-

ning of each episode, the agent receives a command to con-

tinuously move forward. In the training process, there are

three actions can be chosen: (1) Continue Moving forward;

(2) Stop, turn right by 30◦ and then move forward; (3) Stop,

turn left by 30◦ and then move forward.

Rewards - The agent gets a non-negative reward when

collected an apple.

Game environment setting - The experiment envi-

ronment is a 8 × 8 place that is restricted by fences in the

grassland. In the beginning of each episode, there are 5 po-

sition fixed apples drop inside the place. For each episode,

the initial position of the agent is fixed, but the direction

that the agent faces is randomly set. Once the agent col-

lects one apple, it gets a reward of 100. An episode ends

when the agent collects all the apples or uses up the allotted

time. Final scores of each episode are calculated by the time

average rewards.

Training results - Figure 3 shows the training results

of this skill network. It indicates that the agent learns from

the experience and collects apples faster. However, there

is a decrease in the image from the 200th episode. In or-

der to explain the reason for it, another detail should be

mentioned. During the training process, each episode was

recorded as a video by using the video recording function

provided by the Malmo platform. According to the observa-

tions of those episode videos, we find that there are several

reasons for this performance.

According to the videos, we observed several phenomena:

(1) As the learning goes on, the agent is able to rapidly

collect the nearby apples. However, it becomes difficult to

collect the farthest apple, especially when it is the last one

to collect. (2) When there is no apple in sight of the agent,

the latter gets confused and stuck for a period of time. And

in our map, the 4 corners of the fence are similar to each

other, this is what increases the difficulty for the agent to

distinguish its own position with respect to the fence. (3)

Because of the game property in Minecraft, the agent is able

to collect the apple from aside without necessarily seeing the

apple, in lots of videos we observe that the agent collects ap-

ples in this manner. This causes a huge problem because this

also gives the agent a reward, in turn leading it to learn the

wrong policy. (4) Although there are some problems in the

learning process, we observe that once there is an apple in

the sight of the agent, it is able to quickly collect the apple.

From the previous observations, we consider that in the

learning process, the learning curve increases because of the

agent learns from the experience buffer, with higher explo-

ration rate (possibility to choose a randomly action rather

than a policy) to overcome being stuck in the corner. How-

ever, as the exploration rate decreases, the policy spends

more time trapped in the corner and affects the score. Thus

the curve decreases as the exploration rate gets lower.

Figure 3. Training results of the apple skill network. The

vertical axis represent the average scores of the last 100 episodes.

4.1.2 Skill network 2: find objects

State space - The state space of this task is the same as

the task of collecting apples.

Actions - In the task of finding objects, it is a little differ-

ent from that in the collecting task, in the beginning of each

episode, there is no ”move forward” command, the agent is

initially still, waiting for the action command. There are

four actions that can be chosen: (1) Move forward; (2) Turn

right by 30◦; (3) Turn left by 30◦; (4) Stay at the same

place.

Rewards - The agent gets a non-negative reward when

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 104 -

stand in front of the objects.

Game environment setting - In this task, we aim to

train the agent to find both stone and sheep. In order to

avoid using two networks, one for stone and one for sheep,

we propose to train these two objects in one network. We

prepare two maps, one map with a stone in the middle of

the field and the other with a sheep in the middle. In the

beginning of each episode, a map is randomly loaded. Once

the agent finds the stone or the sheep, it gets a reward of

10. Another consideration is that we add a ”stay” action

in this task’s action space. The reason is that in the final

H-DRLN network, we would like the agent to firstly find the

object and then stay in front of it so that the agent could use

the tool to get items. For each episode, the limited action

steps are 500. An episode ends when the agent has taken

500 actions. Final scores of each episode are calculated by

the step average rewards.

Training results - Figure 4 shows the training results

of this skill network. The curve shows good performance in

this task. The higher score means that the agent is able to

find the object as quickly as it can and once it had found the

object, it remains in front of it in order to get more records.

The recording videos we took from the training process also

showed this fact.

Figure 4. Training results of the finding object skill network.

The vertical axis represents the average scores of the last 100

episodes.

4.1.3 Skill network 3: use tools

State space - The state space of this task is a little bit

different from the previous two skill networks. State space is

represented as the present one raw pixels instead of the last

4 frames. We discuss the reason in the game environment

setting section.

Actions - In the task of using tools, as that in the ”find

objects” skill network, the agent does not get a ”move for-

ward” command from the beginning. Only two actions can

be chosen: (1) Use a diamond pickaxe, wait 5 seconds and

then move forward to pick the cobblestone; or (2) Use a

shears, wait 5 seconds and then move forward to pick the

wool.

Rewards - The agent gets a non-negative reward when

using a diamond pickaxe to mine the stone or using the

shears to cut the wool from the sheep.

Game environment setting - In this task, the state

space is slightly different. The reason is that the aim of this

task is to train the agent to use different tools depending on

the object it discovered. Thus, the initial position setting

is for the agent to be in front of the object. Moreover, we

would like the agent to make only one action in each episode.

Therefore, there is no need to use state space with the last

4 frames. This method looks like a classification problem,

however, we obtain the labels and the data from the expe-

rience replays. We also prepare two maps, one map with a

stone in the middle of the field, the other one with a sheep

in the middle. In the beginning of each episode, it randomly

loads a map and the agent just stands in front of the object,

then it tries to choose an action to see if it gets a reward. If

the agent choose the right tool, it gets a reward of 100 after

collecting the cobblestone or the wool.

Training results - Figure 5 shows the training results of

this skill network. The curve also shows a good performance

in this task.

Figure 5. Training results of the using tools skill network. The

vertical axis represents the average scores of the last 100 episodes.

4.2 H-DRLN network

State space - The state space of this task is the same as

the task of collecting apples. Input to the H-DRLN network

is also the input to the pre-trained skill networks. However,

it should be noted that the state space of the network for

”using tools” is different. Thus, to solve this problem, we

extract the last frame of the state space as the input to the

network for ”using tools”.

Actions - In this network, considering that we have a dif-

ferent action space for different skill networks, we separate

it into a different action space. There are three primitive

actions: (1) Move forward; (2) Turn right by 30◦; (3) Turn

left by 30◦, and three skill networks: (1) Collect apples; (2)

Find objects; (3) Use tools. Thus there are six outputs of

the H-DRLN network. When the agent chooses to use a skill

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 105 -

network, the same input is fed into that skill network and it

predicts an action in the corresponding action space. Next,

the agent executes the action in that action space.

Rewards - In this task, the reward for an apple is 50, a

block of wool is 50 and a block of cobblestone is 100. The

reason of setting the reward this way is that the number

of wool that an agent can get from the sheep by using a

shears is arbitrary. In general the number of wool it can

get is 2 or 3. In order to better evaluate the scores for each

episode, we make the reward of the wool half of the reward of

the cobblestone. Collecting apples can be done when using

primitive actions or the ”collect apples” skill, while collect-

ing wool and cobblestone requires firstly to find the object

and subsequently use the ”use tools” skill. Regarding to the

difficulty, we also make the reward for an apple half of the

reward of cobblestone.

Game environment setting - In this task we place 3

objects in the map; an apple, a sheep and a stone. All of

the objects are in the same position in the beginning of each

episode, but during the game, the sheep is able to change

its position. The agent is also placed in the same initial po-

sition with a fixed direction. Figure 6 shows the beginning

scene of this task. As we mentioned before in the expla-

nation of the H-DRLN architecture, each skill network will

be executed until it terminates. In our H-DRLN network,

skill networks terminate when the agent gets a reward or

approaches the limited steps. The limited steps of skill 1

to 3 are respectively 20, 50 and 1. And each episode ends

when the total steps in that episode exceed 500 or when the

total rewards exceed 200. Final scores of each episode are

calculated by the step average rewards.

Figure 6. The initial position setting of the H-DRLN network

experiment

Training results - Figure 7 shows the training results of

this learning process. When we process the training results

data, we find that there are two episode with extremely un-

usual high scores: 100 and 50 while no other episodes have

a score over 10. Upon looking at the videos of these two

episodes, we discover the reason: the sheep approaches the

agent spontaneously at the beginning of the episode and the

agent obtains the wool immediately, causing an extremely

high score. Thus when we plot the curve of the training

results, we remove these two scores to avoid a huge gap in

the average scores. The results indicate the effectiveness of

the method to solve this complicated task.

We observe several interesting phenomena from the learn-

ing process: (1) As mentioned before, the sheep in the envi-

ronment is able to move. We observe that the agent learns

to track a moving sheep. (2) There is a potential immobility

problem in this task. By using the ”find object” skill, the

agent goes to find an object and finally remains in front of

it. However, if the object does not disappear in the map,

the agent is likely to stay there, in front of the same object,

with a high probability. This occurs when the agent firstly

finds the sheep and the sheep does not disappear when agent

cuts the wool. On the other hand, if the agent firstly find

the stone and mines it, the agent is more likely to continue

to find other objects. (3) Another observation is that, the

sheep is able to grow new wool by eating grass, which means

that the agent can cut wool from the same sheep twice or

more times. (4) Although ”collect apple” was pre-trained as

a skill network in order to finish a subtask in the main task,

we find that both primitive actions and the ”use tools” ac-

tions can lead to collecting apples. Notice that there is also

a ”move forward” command contained in the action spaces

of the ”use tools” network. Another point is that we set

the position of the apple right in front of the agent, this lets

the agent learn to move forward directly to collect it. These

two reasons make the influence of the ”collect apple” skill

not very obvious or useful in the main task. However, the

agent is only able to collect cobblestone and wool by using

”use tools” skill after it finds the object. Our observation

and the results curve show that the ”find object” and ”use

tools” skills make a great contribution to the main task.

Figure 7. Training results of the H-DRLN network. The vertical

axis represents the average scores of the last 100 episodes.

4.3 Discussion

In our experiment, we train three skill networks and then

use them in our main task. The good performance of the

”find objects” and ”use tools” in the main task shows the

effectiveness of the skill networks and the idea of lifelong

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 106 -

learning. However, several problems still remain and re-

quire our attention for further research in the future, one of

these problems is the decrease of the curve in the ”collect

apple” models. We will try to improve its performance and

experiment with more interesting tasks and methods.

5. Conclusion

In this work, we propose a complex task in the world of

Minecraft and a feasible solution by applying the concept

of lifelong learning to the H-DRLN architecture. Our ex-

periment shows that the pre-trained skill networks actually

contribute to the main task, which is presents a certain dif-

ficultly when solutions are pursued using flat algorithms.

In future works, we will concentrate on the property of

partial observability in Minecraft. We will try to make the

agent memorize the history of its experience by using Recur-

rent Neural Network (RNN) with deep reinforcement learn-

ing.

References

[1] Playing Atari with Deep Reinforcement Learning, Mnih, V.
and Kavukcuoglu, K. and Silver, D. and Graves, A. and
Antonoglou, I. and Wierstra, D. and Riedmiller, M., 2013.

[2] Selecting Subgoals using Deep Learning in Minecraft: A
Preliminary Report, David Bonanno and Mark Roberts and
Leslie N. Smith and David W. Aha, 2016.

[3] A Deep Hierarchical Approach to Lifelong Learning in
Minecraft, Tessler, C. and Givony, S. and Zahavy, T. and
Mankowitz, D. J. and Mannor, S., 2016.

[4] Hierarchical and Interpretable Skill Acquisition in Multi-task
Reinforcement Learning, Tianmin Shu and Caiming Xiong
and Richard Socher, 2018.

[5] Reinforcement Learning: An Introduction, Sutton, R.S.
and Barto, A.G. and Barto, R.S.S.A.G. and Barto,
C.D.A.L.L.A.G. and Bach, F., 1998.

[6] Q-learning, Watkins, Christopher J. C. H. and Dayan, Peter,
1992.

[7] Human-level control through deep reinforcement learning,
Mnih, Volodymyr and Kavukcuoglu, Koray and Silver, David
and Rusu, Andrei A. and Veness, Joel and Bellemare, Marc
G. and Graves, Alex and Riedmiller, Martin and Fidjeland,
Andreas K. and Ostrovski, Georg and Petersen, Stig and
Beattie, Charles and Sadik, Amir and Antonoglou, Ioan-
nis and King, Helen and Kumaran, Dharshan and Wierstra,
Daan and Legg, Shane and Hassabis, Demis, 2015.

[8] Deep Reinforcement Learning with Double Q-learning, van
Hasselt, H. and Guez, A. and Silver, D., 2015.

[9] Dueling Network Architectures for Deep Reinforcement
Learning, Wang, Z. and Schaul, T. and Hessel, M. and van
Hasselt, H. and Lanctot, M. and de Freitas, N., 2015.

[10] Distributed Deep Q-Learning, Ong, H. Y., Chavez, K., &
Hong, A. 2015.

[11] The Bases of Competence: Skills for Lifelong Learning and
Employability, Evers, F.T. and Rush, J.C. and Berdrow, I.,
1998.

[12] Lifelong Machine Learning Systems: Beyond Learning Al-
gorithms, Daniel Silver and Qiang Yang and Lianghao Li,
2013.

[13] Distilling the Knowledge in a Neural Network, Hinton, G.
and Vinyals, O. and Dean, J., 2015.

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 107 -

