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Extracting Class-specific Sequential Pattern for
Continuous Glucose Monitoring
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Abstract: Continuous glucose monitoring (CGM) is temporal time-series data that has been available for approx-
imately 10 years thanks to the invention of a device with low measurement error. Understanding the time series
variation of glucose helps you treat specific patient groups better by understanding their lifestyles. Therefore, we
propose a method of extracting characteristic sequential patterns from given pairs of labels and sequences. First, we
apply time-series clustering to transform CGM value sequences into cluster id sequences. Next, we apply sequential
pattern mining to extract frequently occurred sequences. Finally, we evaluate each frequent sequence based on their
correlation to a specific class. We experimented with two datasets that is manually created and one real CGM dataset
to prove our method is effective.

1. Introduction
Diabetes mellitus is a major health condition whose prevalence

is rapidly increasing worldwide. One of the major causes of dia-
betes mellitus is patient lifestyles, medical service worker have to
understand it to decide a therapeutic strategy. Thanks to techno-
logical advancements for medical devices, we can measure glu-
cose by the minute for weeks using a sensor called the“ con-
tinuous glucose monitoring (CGM) system.”CGM is time-series
data and has been available since devices with low measurement
errors appeared 10 years ago. CGM can be relied upon to help
make treatment decisions.

A major issue regarding CGM is educating physicians to use it.
Since many physicians are unfamiliar with CGM, they cannot use
it to make treatment decisions. The review study about CGM [1]
reported that there is an urgent need for a standardized interpre-
tation of glucose data and patterns akin to automated electrocar-
diogram interpretation. We discuss current glucose management
methods in Section 3, although they are not technical issues.

In this paper we propose a method of extracting characteris-
tic sequential patterns from given pairs of labels and sequences.
Figure 1 shows the overview of the method. This method can
help us understand the typical CGM patterns of a specific patient
group. We believe that the method can greatly contribute to CGM
interpretation.

In this paper we propose the method for extracting characteris-
tic sequential patterns from given pairs of labels and sequences.
Every user has its label that is predefined based on age, sex and
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Fig. 1 Overview of the task

laboratory test result. Figure 1 shows the overview of the method.
This method can help us understand the typical CGM patterns of
a specific patient group. We believe that the method can greatly
contribute to CGM interpretation.

We deal with the following technical issues for handling time-
series data to extract characteristic sequential patterns.
( 1 ) data normalization. Generally data has noise and it make

handling data more difficult.
( 2 ) shift-invariance. Sometimes similar waves starts from dif-

ferent points. This is one of the major issues on handling
time-series data.

( 3 ) method scalability. The review study of time-series data pro-
cessing [2] reports that time-series data tends to be huge due
to its application’s characteristic.

The method consists of 3 steps. At first we apply time-series
clustering to transform CGM value sequences into cluster id se-
quences. By clustering the data we group similar elements of data
to find patterns more effectively. We propose mini-batch top-n k-
medoids for the clustering method that runs on part of data and
assigns cluster centroids to multiple elements on a cluster. Sec-
ondly we apply sequential pattern mining to extract frequently
occurred sequences. Finally we evaluate each frequent sequence
based on its correlation to a specific class.

The research questions that we answer based on the result of
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the experiment are the followings.
• Does mini-batch make the performance worse?
• Does mini-batch improve the scalability?
• Does multiple centroids work better than only one centroid?
• Does the method deal with shift-invariance?
• Does the method find class-specific sequential patterns?
We conducted two experiment to answer the research questions

with manually created datasets. We design one experiment for
evaluating mini-batch top-n k-medoids and the other one for eval-
uating class-specific sequential pattern extraction. And we ap-
plied the proposed method to the real CGM dataset. We conclude
that the proposed method is effective for the technical issues.

2. Motivation
In this section, we discuss technical issues with the tasks and

how we solved them. We proposed a method that receives time-
series data and its labels and produces label-specific sequential
patterns. In the field of CGM analysis,“ labels”means the CGM
user’s attributes, such as age, sex, and laboratory test results.

2.1 Sequential normalization with subsequence time-series
clustering

Generally, data has noise, and finding patterns in raw data is
difficult. Although CGM data is one-dimensional data, we need
to normalize the data for preprocessing. Therefore, we extracted
a set of subsequences from a sequence and applied a clustering
method to group similar subsequences in the same cluster. We
also translated a given sequence into a cluster id sequence.

Some clustering methods do not work well for subsequence
time-series clustering. Previous studies [3] [4] reported that k-
means with an Euclidean distance metric for subsequence time-
series clustering obtains non-intuitive results. Centroids in all
clusters tend to be similar, which implies that the clustering
method does not grasp the true nature of clusters. To resolve the
issue, we applied a clustering method with a non-Euclidean dis-
tance metric and did not calculate the centroids of the clusters.

2.2 Shift invariance
Time-series data has issues with time-series invariances. We

focus on shift invariances, one of the time-series invariances.
Shift-invariance is the phenomenon that two sequences are

similar but differ in phase. In the field of CGM analysis this issue
may occur when two CGM users are similar conditions and eat
breakfast on the different time. We probably would observe two
similar sequences starting at different times.

Figure 2 shows an example of the shift invariance that uses two
sine waves. These two waves are the same and start from differ-
ent positions. They have the same frequency and amplitude, and
either one can have translation.

To deal with shift invariances, we used a sliding window for
feature extraction from given time-series data. The sliding win-
dow repeated subsequence extraction that had the same length
while changing the start position. Therefore, we could handle all
the subsequences and find the patterns with translation.

Fig. 2 Example of shift-invariance: The two waves have the sample am-
plitude and frequency and start from the different points.

2.3 Handling large scale data
Generally time-seres data processing needs large amount of

calculation because of two reasons. The review study [2] reports
that time-series data tends to be huge due to its application’s char-
acteristic. And we discuss about sliding window for feature ex-
traction and its advantage in the section 2.2. One side effect of
a sliding window is that it augments the data size. Moreover, if
CGM becomes more common, the data size we will have to han-
dle will increase dramatically.

Second reason is that similarity metrics used in time-seres data
processing is often more complicated than euclidean distance.
For example we briefly compare two similarity metrics, Euclid
distance and Earth mover’s distance. We found Earth mover’s
distance is 200 times slower than Euclid distance. In the com-
parison we used randomly produced data with 12 dimension and
repeated calculation more than 1000 times.

To solve the issue we proposed new clustering method, we pro-
pose mini-batch top-n k-medoid. The method runs on part of
data not whole data and it can reduce the amount of calculation.
Although we used similarity metrics designed in time-seres data
processing, the whole amount of calculation is not very large.

3. Related work
3.1 Glucose monitoring

Glucose management is essential, especially for diabetes mel-
litus patients. HbA1c is one of the laboratory tests for blood, and
it is important for glucose management. Generally, HbA1c re-
flects the averaged glucose value over the course of three months.
A limitation of HbA1c is that HbA1c does not provide a daily
change of glucose or information about hyperglycemia and hypo-
glycemia [5].

Self-monitoring of blood glucose (SMBG) is when a patient
draws his/her own blood and checks his/her current glucose level
with a home glucose meter. SMBG has been widely used for
decades, and the American Diabetes Association initially estab-
lished guidelines for SMBG in 1987.

CGM provides real-time glucose data and uses a human im-
plantation sensor that continuously operates for a few weeks.
This information contains signs of hyperglycemia or hypo-
glycemia and aids glucose management. Currently, device mak-
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ers provide analysis software for CGM logs*1*2. The Interna-
tional Diabetes Center created an analysis schema called the
“Ambulatory Glucose Profile”that consists of more than 10 met-
rics, including mean glucose [6]. This analysis schema handles
one patient’s CGM logs and does not compare them with other
patient’s logs.

3.2 Sequential pattern mining
In sequential pattern mining, we receive a set of sequences

and a frequency threshold and find all the subsequences that oc-
cur more often than the threshold. Subsequences are not always
evaluated by frequency, and they sometimes use criteria such as
length and profit. Sequential pattern mining is a special kind of
pattern mining, and the difference is that elements of data are in
order. The order of elements is not important in other pattern
mining tasks, such as frequent itemset mining.

A lot of research work has applied sequential pattern mining
in many fields [7]. For example, we use it for term recognition
in the field of natural language processing [8]. Other applications
are market basket analysis and webpage click-stream analysis.

The approaches of sequential pattern mining are classified into
two general groups: bread-first searches and depth-first searches
[7]. PrefixSpan is a depth-first search proposed by [9]. PrefixS-
pan counts sequence event frequencies using tree structure called
prefix tree or trie tree.

Some studies [10][11] applied a deep learning approach to
understand the pattern of given time series data. They used
autoencoder-based methods that are not literally interpretable.
Thus we do not learn medical insights from the learning result.

3.3 Clustering
Clustering receives unlabeled data and produces multiple

groups where similar elements belong to the same group. Clus-
tering is a kind of unsupervised machine learning, and typical
methods are hierarchical clustering and partitional clustering. Hi-
erarchical clustering assigns a cluster to every element, then re-
peatedly measures the similarity between every cluster pair and
merges one cluster pair with maximum similarity until the num-
ber of clusters becomes the given one. The algorithm has a time
complexity of O(n3), where n is the number of elements. The
memory complexity is O(n2) if we use the cache.

k-means is a kind of partitional clustering that receives the
number of the clusters k and data X and produces k centers C
that minimize the loss function ϕ.

ϕ(X,C) =
∑
x∈X

min
c∈C
||x − c||2 (1)

A centers c ∈ C is calculated from the mean of elements X′ ⊂ X
whose nearest center are c. This is not suitable for temporal series
data. The algorithm has a time complexity of O(n · k · t), where
n is the number of elements and t is the iteration number. The
memory complexity is O(n × k).

Some studies proposed extensions of k-means. k-means++

*1 http://professional.medtronicdiabetes.com/

ipro2-professional-cgm
*2 https://www.dexcom.com/clarity

[12] improve cluster initialization step. Mini-batch k-means [13]
uses random sample of given data to reduce time complexity and
memory complexity.

k-medoids does not create centroids but uses an element of a
cluster that minimizes the averaged distance to the other elements
in the cluster as its centroid. The loss function is as follows.
dist(x, y) is the distance between x and y.

ϕ(X) = argmin
x∈X

∑
y∈X,y,x

dist(x, y) (2)

The algorithm has a time complexity of O(n2 ·k · t), where n is the
number of elements and t is the iteration number.

Time-series clustering is clustering technology for time-series
and has three main topics: whole time-series clustering, subse-
quence time-series clustering, and time point clustering [2]. The
survey [2] summarizes the three challenges of time-series clus-
tering as large data sizes, high dimensions, and special distance
metrics. Since we focused on subsequences of given time-series
data, we did not handle high dimensional data. However, we did
take care of large data sizes and special distance metrics. We
proposed a new clustering method and used the existing distance
metrics designed for time-series data.

Distance metrics used in time-series clustering are designed to
deal with issues with a sequence. A dynamic time window han-
dles the shift-invariance of a given pair of sequences by [compar-
ing .... — through comparisons?] Short time series distance han-
dles the shapes of a sequence. The earth mover’s distance (EMD)
compares two value distributions of a given pair of sequences.

The following is the definition of EMD. Let P = {p1, p2, ..., pm}
and Q = {q1, q2, ..., qn} two sequences, D = [di, j] be the cost
between pi and q j respectively. And let F = [ fi, j] be the flow
between pi and q j.

EMD calculation consists of two steps. Firstly we minimize
the loss function ϕ under 4 constraints and find flow F that mini-
mizes the cost for translating P into Q.

ϕ(P,Q,D) = min
m∑

i=1

n∑
j=1

fi, j · di, j (3)


fi, j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n∑n

j=1 fi, j ≤ pi, 1 ≤ i ≤ m∑m
i=1 fi, j ≤ q j, 1 ≤ j ≤ n∑m
i=1
∑n

j=1 fi, j = min{∑m
i=1 pi,

∑n
j=1 q j, }

Then we calculate the EMD distemd using estimated flow F.

distemd(P,Q,D) =

∑m
i=1
∑n

j=1 fi, j · di, j∑m
i=1
∑n

j=1 fi, j
(4)

4. Method
First, we applied time-series clustering to transform CGM

value sequences into cluster id sequences. Then, we extracted
frequently occurred sequences with sequential pattern mining. Fi-
nally, we evaluated each frequent sequence based on correlations
to specific classes.

Let T = {t1, t2, ..., t|T |} be a set of time-series data, ti =
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Fig. 3 Example of Sliding-window

{vi,1, vi,2, ..., v|ti |} be a sequence of values, and Y = {y1, y2, ..., y|T |}
be labels. The labels have m classes and we can also define labels
as Y = {Y (1),Y (2), ..., Y (m)} where Y (i) is a set of indices of ele-
ments that have i-th class. Our task was to receive the time-series
data T and labels Y above and produce subsequences with strong
correlations with a specific label.

4.1 Extracting subsequence time-series with sliding-window
In the first step, we extracted a sequence of subsequences from

one given sequence by using a sliding-window. Then, we applied
the clustering method to a set of subsequences to group similar
subsequences. This is the preprocess for extracting interesting
patterns from given time series data. Although dealing with raw
data is difficult, we abstract given data for a clearer interpretation.

Let n be the length of the subsequence. Then we can define a
subsequence t j

i = {vi, j, vi, j+1, ..., vi, j+n−1}. This is a part of a given
sequence.

We can extract a sequence of subsequences by repeating subse-
quence extraction. It means we transform ti into {t1

i , t
n
i , ..., , t

|ti |−n
i }.

Note that t1
i = {vi,1, vi,2, ..., vi,n}, tn+1

i = {vi,n+1, vi,n+2, ..., vi,2n}.
The sliding-window repeats the previous procedure with

changing the first index and produces n sequences of subse-
quences. Figure 3 shows an example of a sliding-window.
Here, the sequence has 12 values, and the length of the
subsequence is 3. We obtain 3 sequences of subsequences:
{t1

i , t
4
i , t

7
i }, {t2

i , t
5
i , t

8
i }, and{t3

i , t
6
i , t

9
i }.

We use the sliding-window to deal with shift invariance where
similar waves start from different points. With the sliding-
window we can extract subsequences from different points and it
is one way to solve shift invariance. The side-effect of a sliding-
window is data augmentation. If we use n as the length of the
subsequence, then we have to handle n times data size. For ex-
ample, we set n = 3 in the example used on the Figure 3. Here
we obtain 3 sequences of subsequences and this is triple size of
the given one. We discuss the scalable clustering method to deal
with large size data.

4.2 Mini-batch top-n k-medoids
This step receives sequences of subsequences created in the

previous step, and applies the clustering method to all subse-
quences to group similar subsequences. Moreover, we transform
sequences of subsequences into cluster id sequences to extract
interesting sequential patterns more effectively.

We proposed mini-batch top-n k-medoids for the clustering
method. Thisis a partitional clustering method that uses a non-
Euclidean distance metric and runs faster with large scale data.
We do not define the centroid of a cluster, but use some elements
of the cluster to define the distance between the cluster and a

given element.
Some studies reported that k-means with an Euclidean distance

metric for subsequence time-series clustering is useless because
the centroid of a cluster is similar to a sine wave. To deal with the
issue, we use a non-Euclidean distance metric and do not make
new centroids. We assign multiple centroids to some elements in
the cluster. This strategy is based on k-medoids.

To define the steps of mini-batch top-n k-medoids we define
some variables and functions. Let X = {x1, ..., xn} be given data
where each elements xi has the same dimension. The distelem cal-
culates the distance between an element of the cluster xi ∈ X( j)

and the cluster X( j). The distclus calculates the distance between
two clusters X(i), X( j). We use distEMD as a non-Euclidean dis-
tance metric in distelem and distclus(Ci,C j), however we can use
other distance metric.

distelem(xi, X( j)) =
1
|X( j)|

∑
xk∈X( j) ,xk,xi

distEMD(xi, xk) (5)

distclus(C(i),C( j)) =
1

|C(i)| · |C( j)|
∑

xi∈C(i)

∑
x j∈C( j)

distEMD(xi, x j)

(6)
Let b be the batch size and a part of the given data X′ ⊆ X be

a batch, respectively. Obviously |X′| = b. Let k be the number of
cluster and C = {C(1),C(2), ...,C(k)} be the centers of the clusters,
respectively. Let m be the number of centers in one cluster C(i) be
centers of i-th cluster. Obviously C(i) = m.

The following is the steps mini-batch top-n k-medoids.
( 1 ) Batch Initialization. We make batch X′ by randomly select-

ing b elements from X.
( 2 ) Cluster initialization. We execute this procedure only one

time. We choose one element from X′ and assign it as the
initial center for a cluster. Only on the first time each cluster
has one center, not m centers.

( 3 ) Assign the new cluster. We search the closest cluster of an el-
ement xi by the following loss function and assign it as new
cluster of the element xi. Here we use the distEMD function
to calculate the distance between two elements.

ϕ(xi,C) = arg min
C(i)∈C

1
|C(i)|

∑
x j∈C(i)

distEMD(xi, x j) (7)

( 4 ) Assign the new centers. We assign new centers C(i) to k ele-
ments of the cluster X(i). We use distelem function and calcu-
late the averaged distance to each element in the same clus-
ter. And we choose k-minimum elements or select elements
based on the k-means++ initialization method.

( 5 ) Check the stop criteria. We chek the distance between the
current centers C and the previous centers C′ with the fol-
lowing formula. If the distance is less than threshold delta,
we can get results from the procedure. If not, we go back to
the first step.

distcent(C,C′) =
∑

C(i)∈C
min

C( j)∈C′
distclus(C(i),C( j)) (8)
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Fig. 4 Example of PrefixSpan: Each node shows character and its fre-
quency. The root of the tree is A:85 and it means A is observed
85 times.

4.3 Sequential pattern mining
This step receives a set of cluster id sequences and produces

frequently occurred sequential patterns by applying the sequen-
tial pattern mining method. Next, we evaluate the patterns to filter
out the interesting ones.

We use the PrefixSpan extension that both extracts frequently
occurred sequential patterns and indexes where the sequences are
observed. The aim of the entire method is to extract label-specific
patterns, and we have to know where a subsequence is observed.

PrefixSpan is a sequential pattern mining method where we re-
ceive a set of sequences and frequency thresholds and find all
subsequences that occur more than thresholds. Tracing all sub-
sequences of multiple sequences is time-consuming, so PrefixS-
pan devises a data structure for tracing and uses the tree structure
that is called trie tree or prefix tree to quickly extract frequent
sequence patterns.

Figure 4 shows an example tree structure used on PrefixSpan.
The node of the tree has character, and its frequency and parent-
child relationship shows the occurrence order of the characters.
For example, {A} occurs 85 times and the {A, B} sequence occurs
35 times. Since the frequency of a parent must be greater than its
child’s, we can easily stop tracing trees to extract sequences that
occur more often than the threshold.

We extend PrefixSpan to save a subsequence’s index in given
cluster id sequences. With this index, we can easily understand
labels of the subsequences and can evaluate frequent patterns with
the given labels in the next step.

4.4 Sequence evaluation to find label-specific patterns
This step receives frequent sequential patterns that consist of

cluster ids and labels, and evaluate patterns to find label-specific
patterns. We design a score that assign a high value to a patter
that frequently occurs and is correlated with specific label. The
score is calculated from filling ratio of a label’s elements and la-
bel frequency ratio.

The scoring function receives a pattern and returns real num-
ber. Since we mostly find multiple patterns by sequential pattern
mining, we have to evaluate the score distribution, not a score for
one pattern. We evaluate a set of patterns by the median of the
scores that is calculated from them.

Let S = {s1, s2, ..., s|S |} be a set of sequential patterns and L(si)
be a set of indices where pattern si occurs. As preprocess of the
score calculation we define two probability distributions d f (si)
and dc(si) as follows.

d f (si) =
{
|Y (1) ∩ l(si)|
|Y (1)| ,

|Y (2) ∩ l(si)|
|Y (2)| , ...,

|Y (m) ∩ l(si)|
|Y (m)|

}
(9)

dc(si) =
{
|Y (1) ∩ l(si)|
|l(si)|

,
|Y (2) ∩ l(si)|
|l(si)|

, ...,
|Y (m) ∩ l(si)|
|l(si)|

}
(10)

d f (si) consists of filling ratio of a label’s elements and dc(si)
shows label frequency ratio. Obviously d f (si) and dc(si) have
the same dimension. Note that the sum of d f (si) does not equal
to 1 and the sum of dc(si) equals to 1.

The score is calculated as follows. The formula is consists of
two parts, fpos and fneg. The first pat is positive one and the sec-
ond one is a penalty.

f (si) = fpos(dc(si)) ·
1

fneg(d f (si))
(11)

In the first part we calculate relative entropy between label fre-
quency ratio and uniform distribution to evaluate correlation to a
specific label. Relative entropy is known as Kullback-Leibler di-
vergence and a measurement for distance between two probabil-
ity distributions. Let P = {p1, p2, ..., pn} and Q = {q1, q2, ..., qn}
be probability distributions. Then relative entropy is defined as
follows.

KL(P||Q) =
n∑

i=1

qi · log
qi

pi
(12)

We normalize positive part to change the range of the return.
It makes the score more flexible. du is the uniform distribution.
dd is the distribution where one element is 1.0 and the other el-
ements is 0.0. The distribution dd shows that a pattern is only
observed in the data with a specific label. We define the value
klmax = KL(dd||du) for normalization. The following is the posi-
tive part fpos(X) that returns x ∈ [0, 10].

fpos(X) =
10

klmax
· KL(X||du) (13)

The second part is a penalty to assign low value to a pattern
that does not frequently occur and calculated from filling ratio of
a label’s elements. We use the function f (x) = 1 − log(x) in the
penalty calculation. When all samples with the specific label have
the patterns, x = 1 and f (x) = 1. Therefore we do not have any
penalty for the pattern.

fneg(X) =
1
|X|
∑
x∈X

1 − log(x) (14)

5. Experimental Results and Discussion
In this section, we describe how we evaluated our method with

two experiments with manually created datasets. We design one
experiment for evaluating mini-batch top-n k-medoids and the
other one for eval- uating class-specific sequential pattern ex-
traction. And we applied the proposed method to the real CGM
dataset.

5.1 Mini-batch top-n k-medoid
In this section, we discuss how we manually created a dataset

for the mini-batch top-n k-medoids evaluation and the results we
achieved. The aim of the evaluation is to answer the following
questions:
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Table 1 AMI with different batch size and the number of centroids: N on
the header is the number of the centroids.

bach size
N 100 300 500 700 1000 2000 4000
1 0.305 0.271 0.216 0.354 0.244 0.301 0.182
10 0.442 0.419 0.425 0.389 0.301 0.474 0.468
20 0.386 0.496 0.389 0.413 0.397 0.374 0.448
30 0.396 0.496 0.426 0.402 0.359 0.526 0.528
50 0.394 0.443 0.277 0.441 0.422 0.326 0.414

• Does mini-batch make the performance worse?
• Does multiple centroids work better than only 1 centroid?
• Does mini-batch improve the scalability?

The last question seems to be nonsense because you cannot get
non-intuitive results with methods that do not create a centroid
and assign a cluster to an element. However, we empirically eval-
uated the issue; we used a manually created dataset rather than a
real CGM dataset or a public time-series dataset.

We created a dataset through the following steps. The dataset
contained 4 types of waves with 12 dimensions, and each type has
1,000 samples. Thus, the dataset consisted of 4,000 waves with
12 dimensions.
( 1 ) We created 4 base waves in the first step. We randomly

created 3 waves with 4 dimensions and arranged them ran-
domly to create 1 wave with 12 dimensions. An element of
the waves is a random real number in the half-open interval
[0.0, 1.0). By repeatedly arranging the waves, we obtained 4
base waves. We used the Python library*3 to create the initial
3 waves.

( 2 ) We created a sample for one base wave by adding noise, a
random real number in the half-open interval [−0.3, 0.3). By
repeating the procedure, we created 1,000 samples for 1 base
wave and finally obtained 4,000 waves.

To answer the research questions, we applied the mini-batch
top-n k-medoids to the dataset by changing the size of the mini-
batch and the number of centroids n. The method is a randomized
algorithm, and we repeated the same setting 5 times and used the
averaged values. We used k = 4 in the experiment.

We use adjusted the mutual information (AMI) [14] for the per-
formance metric of clustering. AMI is an extension of the mutual
information. AMI handles the fact that the mutual information is
generally higher for two clusterings that have many clusters.

Table 1 and Figure 5 shows the result of the experiment.
When N = 1, we obtain the worst performance if we change
the batch size. The number of the centroids is not always
positively correlate with the performance. When batch size =
{100, 300, 500, 2000, 4000}, we do not obtain the best perfor-
mance on the setting where N = 50. The batch size is not cor-
relate with the performance. When the batch size is 4,000, we
obtained the best performance. However the performance does
not always decrease when we make the batch size smaller. We
answer the research questions in the rest of this subsection.

Does mini-batch make the performance worse? No. When the
batch size is 4,000, we obtained the best performance. However
the performance do not always decrease when we make the batch
size smaller. We can conclude that the batch size is not correlate

*3 https://docs.scipy.org/doc/numpy-1.15.0/reference/

generated/numpy.random.random.html

Fig. 5 Influence of the batch size and the number of centroids on AMI.

with the performance based on the result.
One of the positive aspects is that we can process the analy-

sis with the part of given data. It can improve the scalability and
it is strong advantage especially in time-series data processing.
Because time-series data processing mostly needs much compu-
tation resource.

The result also provide one negative aspect that we have to
think about making the method more stable. One of the strate-
gies is that we evaluate the performance with the validation part
of given data. However it sometimes takes extra cost.

Does multiple centroids work better than only 1 centroid? Yes.
When N = 1, we obtain the worst performance if we change the
batch size. Thus the multiple centroids always improve the per-
formance. However it is not stable. The fact shows that we have
to carefully consider the number of the centroids before applying
the method.

Does mini-batch improve the scalability? Yes. The perfor-
mance do not always decrease when we make the batch size
smaller. The fact ensures that we can process the analysis with
the part of given data and the method improves the scalability.
We need the method to estimate the best batch size. If we apply
the method with a specific application, then experimentally esti-
mating the batch size with the validation dataset may run well.

5.2 Class-specific sequential pattern extraction
The aim of the evaluation is to answer the following questions.

We do not apply clustering method because it is already evaluated
in the previous section. Here we focus on our sequential pattern
extraction method.
• Does the method deal with shift-invariance?
• Does the method find class-specific sequential patterns?
We created a dataset through the following steps.

( 1 ) We randomly created base data D = {1, 2}100×20 where the
number of samples is 100 and the dimension of an element
is 20. Since the range is limited, we can observe many se-
quences that occur frequently.

( 2 ) We also created two queries q1, q2 ∈ {i ∈ N| − 10 ≤ i ≤ 0}6
where the dimension of a query is 6 and the range of the
query is different from that of base data. We can easily un-
derstand that a given sequence contains the query or not.

( 3 ) We randomly replace the part of base data D with either
query q1 or q2 and finally obtain dataset D′. We set the fre-
quency of query q1 is the same with that of query q2. In other
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Table 2 The result of sequence pattern mining and pattern evaluation:
medianall is the median of the scores for all patterns. medianwith
is the median of the scores for the patterns with the query.
medianwithout is the median of the scores for the patterns without
the query.

threshold = 4
Len. of Subsec. 2 3 4 5 6 7
Num. of Patterns 238 198 73 31 134 108
medianall 2.173 2.173 2.335 2.173 0.325 2.173
medianwith 2.410 2.410 3.169 2.254 10.090 4.832
medianwithout 2.173 0.445 2.173 2.173 0.325 2.173

threshold = 8
Len. of Subsec. 2 3 4 5 6 7
Num. of Patterns 87 69 26 0 61 31
medianall 2.905 2.769 3.103 0.000 0.393 3.169
medianwith 3.169 2.769 3.169 0.000 10.090 4.832
medianwithout 0.393 0.393 2.769 0.000 0.393 3.038

threshold = 10
Len. of Subsec. 2 3 4 5 6 7
Num. of Patterns 59 41 19 0 40 21
medianall 3.169 3.038 3.169 0.000 3.038 3.428
medianwith 3.299 10.090 3.234 0.000 10.090 4.832
medianwithout 3.038 3.038 3.038 0.000 3.038 3.169

words, the half of the samples contains query q1 and the rest
of the samples contains query q2.

We extracted subsequences from the dataset D′ and translated
them into cluster ids. As a result we obtain a set of cluster id se-
quences. Although we do not apply clustering method here, the
number of cluster ids is not big due to the limited range of the
base data D.

Then we applied sequential pattern mining method and evalu-
ated the patterns that we found. Since the range of the queries is
different from that of the rest of the dataset D′, we can easily un-
derstand that a pattern contains the query. We change the length
of subsequence and the threshold of the frequency a.k.a support
and conducted evaluation.

Table 2 and Figure 6, 7 show the result of the evaluation. Since
the number of the patterns and the median of the scores for the
patterns is important, we show them by Figure 6, 7.

It is natural that the number of the patterns is negatively cor-
related with the threshold of the frequency as we show the repla-
tionship in Figure 6. And based on Figure 7 we conclude that
the median of the scores for the patterns is not correlated with the
threshold. We answer the research questions in the rest of this
subsection.

Does the method deal with shift-invariance? Yes. We found the
query that appears randomly in the dataset in the most cases. The
discoverability depends on the length of subsequences. Therefore
the length of the subsequences is very important to find sequen-
tial patterns. To deal with the issue, we proposed the evaluation
method of the patterns we found.

Does the method find class-specific sequential patterns? Yes.
We found the query that appears in one class. We also confirm
that the patterns that contains the query has higher scores than
other patterns.

The dataset we used in the experiment is small. It has only two
classes and only two queries. We have to evaluate the method
with large dataset.

Fig. 6 Influence of the threshold and the length of subsequence on the
number of the patterns.

Fig. 7 Influence of the threshold and the length of subsequence on the
median of the scores for the patterns

5.3 Experiment with the real CGM dataset
We applied the proposed method to the real CGM dataset and

show an example of class-specific sequential patterns we found.
The real CGM dataset is created through the clinical trial and con-
tains 16 waves that is created 16 CGM users durning 2 weeks. We
created the labels based on the users’ information.

Figure 8 shows the example of class-specific sequential pat-
terns. We select the pattern that has the maximum score. We
decide the cluster representative by selecting one element that be-
longs to the cluster and has the minimum averaged distance to the
other elements.

We do not discuss about medical issues here. And we do not
provide the quantitative assessment of the result because we do
not know the all class-specific sequential patterns in the dataset.
However we confirm that the method can extract sequential pat-
terns from the real dataset.

5.4 Discussion
Scalability: We propose mini-batch top-n k-medoids for the

clustering method that runs on part of data and assigns cluster
centroids to multiple elements on a cluster. We found the scala-
bility of the method through the experiment with the dataset we
manually created. However since the performance is not stable,
we have to discuss about the strategy to make it more stable. One
of the unsupervised methods to evaluate clustering results is cal-
culating the averaged distance between clusters. By selecting the
setting that minimize the averaged distance, we may obtain stable
performance.
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Fig. 8 Example of class-specific sequential pattern that is produced
from the real CGM dataset.

As we discussed in the section 2.3, EMD that is one of the non-
Euclid distance is 200 times slower than Euclid distance. We con-
firm that the proposed clustering method runs effectively when
batch size is 10 % of the whole data. However we do not try 1%
or 0.1 % because the dataset is not so large. Thus we have to
confirm the scalability with much larger dataset.

One strategy to improve scalability is to filter out unimportant
elements from the dataset before we select batch. We can de-
sign the filtering method based on machine learning technology
or heuristics method. For example we focus on the part of the
data that is produced on specific duration. Another strategy is to
transform the problem into different one where we can use Euclid
distance.

Scoring a pattern: We proposed the score for evaluating pat-
terns to find label-specific patterns in section 4.4 and evaluate it in
the previous section. We assign score to each patterns and see the
median of the all scores. This is one way to handle the score dis-
tribution and we found its effectiveness through the experiment.
Since the dataset that we used in the experiment contains two
classes and is not large size, we have to evaluate the method with
more complicated dataset. One advantage of the current dataset
is that we easily create it due to the simple setting.

Practically we sometimes focus on patterns with high score and
do not investigate all patterns. In this case it is enough to decide a
threshold for score and investigate the number of patterns whose
score are more than threshold. However this strategy provide us
another parameter and makes tuning more difficult. Thus we have
to discuss it carefully.

Cluster representative: We do not discuss about methods to
decide cluster representative. We apply time-series clustering
to transform given data sequences into cluster id sequences for
grouping similar elements of data and finding patterns more ef-
fectively. Thus cluster representative is an important issue for us.
Other studies discusses about the issue and call it motif discov-
ery. It is one of the future work to discuss about method to decide
cluster representative for CGM data analysis.

6. Conclusion
In this paper we propose a method of extracting characteristic

sequential patterns from given pairs of labels and sequences. We
deal with multiple technical issues for handling time-series data
to extract characteristic sequential patterns: data normalization,
shift-invariance and method scalability.

The method consists of 3 steps. At first we apply time-series
clustering to transform CGM value sequences into cluster id se-
quences. Secondly we apply sequential pattern mining to extract
frequently occurred sequences. Finally we evaluate each frequent
sequence based on its correlation to a specific class. By cluster-
ing the data we group similar elements of data to find patterns
more effectively. We propose mini-batch top-n k-medoids for the
clustering method that runs on part of data and assigns cluster
centroids to multiple elements on a cluster.

We answered the 5 research questions through the experiment
with the dataset we manually created. We found the method runs
well based on the results of the multiple experiments. We also ap-
plied the proposed method to the real CGM dataset and showed
one example of the patterns. One of the future work is to discuss
about the strategy to make it more stable because the performance
is not stable.
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