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Abstract: Although most existing text-based CAPTCHAs use distorted images of alphanumerics, they have been
criticized because large image distortions make it difficult for human beings to recognize the characters, despite the
ease with which computers can eliminate distortions and consequently recognize them. Ergonomically designed
CAPTCHAs, which exploit human-specific phenomena, are a solution to this problem. Ergonomic design enables
humans to momentarily recognize them, while significantly increasing computational costs for machines to recognize
characters. Recently, owing to the development of deep learning, the image recognition capability of machines has im-
proved dramatically. Characters are easily recognized within reasonable time by deep convolutional neural networks
(DCNNs), which have similar architectures to visual perception mechanisms of the brain. In this paper, to clarify
whether ergonomically designed CAPTCHAs can withstand state-of-the-art methods of deep learning, we use several
kinds of DCNNs to measure the classification rates of the characters displayed. With respect to ergonomic designs, we
first use Amodal CAPTCHA proposed by Mori et al., which exploits the two human-specific phenomena of amodal
completion and aftereffects. We secondly modify Amodal CAPTCHA by adding jagged lines to the edges of charac-
ters, aiming to prevent DCNNs from recognizing them correctly, since edges are one of the most fundamental features
for DCNNs. Experimental results, however, show that both naive and jagged-lined Amodal CAPTCHAs are almost
completely broken. Another approach we conducted is to use only complete characters without shielding as training
data, assuming that attackers have no information about how amodal completion and jagged edges were applied. How-
ever, even for this assumption, the classification rate of DCNNs is still sufficiently high. On the whole, our results in
this paper show that any ergonomic effects such as amodal completion and jagged edges are no longer countermeasures
against character recognition by DCNNs.
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1. Introduction

Completely automated public Turing test to tell computers and
humans apart (CAPTCHA) is a technology that prevents comput-
ers from creating new web service accounts. CAPTCHA was first
proposed in 1950 by Turing [1]. He advocated an artificial intel-
ligence (AI) test to evaluate “awareness” in computers. Coates
et al. forwarded the opinion that CAPTCHA is a “reverse” Tur-
ing test [2]. CAPTCHA is used to distinguish computers from
humans, because autonomous computers (i.e., bots) are common
tools for attackers. Often, attackers use bots to participate in on-
line voting activities directly or indirectly related to finance, be-
cause public sentiment pushes value trends, ultimately benefiting
the attackers. Web service providers wish to eliminate bot ac-
counts, because the unfair, non-human activities can inflate value
and harm credit.

CAPTCHA has been commonly used to thwart bots as it is
effective and cheap. CAPTCHA provides questions that are eas-
ily answered by human beings, but difficult for bots to answer.
If a person correctly answers a question, the CAPTCHA judges
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the user to be a human. There are several types of CAPTCHA,
the most popular being text-based. With this method, alphanu-
meric characters are randomly shown on the screen. The charac-
ters are distorted and noise is added, but they can be most often
recognized by humans. However, the characters are sometimes
extremely distorted to avoid machine optical character reader
(OCR) attacks, thus decreasing accessibility to humans. OCR
methods have rapidly improved. Thus, it has been recently re-
ported that all text-based CAPTCHA algorithms are now break-
able by bots [3].

In addition, recently George et al. succeeded in solving
CAPTCHA more than 300 times more efficiently than the con-
ventional method using the model called Recursive Cortical Net-
work (RCN) [4]. In this thesis it is stated that it is possible to read
characters that are arranged side by side rather than split charac-
ters.

The inefficiency of CAPTCHA has long been warned about
for by researchers. For instance, the website, PWNtcha *1, dis-
plays various images of CAPTCHAs defeated by the PWNtcha
project [5]. In practice, there are other types of CAPTCHA meth-
ods, such as image and audio CAPTCHA. The basis for our OCR
read-resistant CAPTCHA as described in Section 3.1 is that it
takes too much time for a computer to emulate amodal comple-

*1 http://caca.zoy.org/wiki/
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tion. However, we admit that it may be possible for newer ma-
chine learning techniques to defeat Amodal CAPTCHA without
amodal completion. If so, Amodal CAPTCHA will no longer be
safe.

Furthermore, we had experiments in Section 7 in which it was
tested whether samples with obstacles was able to be recognized
by learned model by samples without obstacles. If the accuracy
of the experiments exceeds 99%, it is suggested that malware can
break through CAPTCHA without relearning since samples for
learning have no knowledge of obstacles on samples for test. That
is, if DCNN marks a good score in the experiments, algorithms
for appearance of obstacles have no influence on the classification
of characters on DCNN. Change of the algorithms or whether
they are secret or not is no longer a matter of the DCNN classi-
fication. Therefore, malware does not need relearning. Malware
that attacks CAPTCHA is considered to be independent. The rea-
sons are described below. Attackers hijack someone else’s com-
puter and execute the malware, but they dislike that the owner is
noticed that it is being hijacked or that the communication record
is specified. Therefore they do not like opening the backdoor all
the time to communicate.

Computers which can easily be attacked are those which have
poor security because the OS is old and updates have not been
carried out. Attackers dislike fully using a CPU for deep learning
on a victim’s PC if it leads to it being noticed more easily.

Of course, malware which contains the same learned model can
be detected by pattern matching method since the same model is
constructed by the same binary patterns. However, in this paper,
we focus unknown malware. In other words, unknown malware
cannot be detected by pattern matching while it can be detected
by behavior analysis such as communicating with attackers’ site,
fully using a CPU, etc. When new malware with new models ap-
pears, no one can detect it by pattern matching. Moreover, the
binary patterns of the model will be veiled in polymorphic mal-
ware.

Therefore, in this study, we evaluate our new CAPTCHA by
subjecting it to machine learning recognition algorithms. Thus,
we gain an understanding of how deep learning captures and ana-
lyzes edges of characters as features. We then break the edges by
making them jagged and evaluate deep learning recognition again
in order to investigate whether the final accuracy of deep learning
can be lowered.

This paper is the revised version of a paper [27] in COMPSAC.
In the paper in COMPSAC, we thought that jagged edges can de-
crease the accuracy of deep learning, we were wrong. We discuss
it in this paper. Furthermore, we also investigated whether deep
learning can break the CAPTCHA without the knowledge of ap-
pearance algorithms of obstacles for amodal completion.

2. Related Works

CAPTCHA has also been developed with images and sounds,
because text-based CAPTCHA is no longer safe. However, most
new CAPTCHA techniques have problems and complications.
Several of those methods are introduced in this section.

Fig. 1 Example of Text-Based CAPTCHA.

Fig. 2 Example of image CAPTCHA.

2.1 Text-Based CAPTCHA
The most popular type of CAPTCHA is text-based. Fig-

ure 1 is an example of text-based CAPTCHA that can be eas-
ily analyzed with OCR algorithms. According to Mori et al. [6],
text-based CAPTCHA is 92% breakable. Therefore, text-based
CAPTCHA’s human-readability continues to decrease as a coun-
termeasure, rendering it nearly useless.

2.2 Image CAPTCHA
Image CAPTCHA was proposed as an alternative to text-based

CAPTCHA. To pass this CAPTCHA, humans select from several
available images those that help answer a question. The most fa-
mous of image CAPTCHA is reCAPTCHA, by Google. Figure 2
is example of reCAPTCHA. It is difficult for both humans and
bots to read reCAPTCHA, because image content is quite dis-
torted. Even so, reCAPTCHA and other image CAPTCHAs can
be attacked using a database, because images are reused. Thus,
attackers can replicate the CAPTCHA database by using a human
to solve the problems in advance.

2.3 Audio CAPTCHA
Audio CAPTCHA distinguishes bots from humans by trans-

mitting sounds to the user, requiring a variety of responses. This
CAPTCHA does not require visuals, such as text and images.
However, because CAPTCHA pronunciation is the same for all
questions, it can be defeated by collecting sound registration pat-
terns in a database.

2.4 Video CAPTCHA
Video CAPTCHA is considered a subspecies of image

CAPTCHA. Several images are sequentially displayed, making
machinery analysis more difficult. An example is NuCAPTCHA,
by Leap Marketing Technologies, a Canadian software com-
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pany [7]. In NuCAPTCHA, alphanumeric characters are ran-
domly generated using multiple fonts, and moved around on the
screen. Human beings can easily recognize the characters, be-
cause they remain grouped together in motion. Furthermore,
NuCAPTCHA alters recognition difficulty per the prediction of
whether an examinee is a human or a bot. Thus, both security
and usability remain high. However, NuCAPTCHA can also be
broken, because video can be separated into multiple static im-
ages, which are readable with OCR technology.

2.5 Image Recognition and Machine Learning
2.5.1 Text Recognition using Neural Networks

Neural networks automatically infer rules for distortion or
noise in recognition of alphanumeric characters. With ordinary
pattern-matching methods, character patterns are collected to in-
fer their generation logic. If the generation logic changes, infer-
ence cannot be reused, and recognition algorithms also change.
Alternatively, with neural networks, the same algorithm is adapt-
able to different CAPTCHA algorithms. Chellapilla et al. proved
that one neural network algorithm can analyze characters gener-
ated from multiple CAPTCHA *2 engines [3]. In their report, the
correct answer rate was 5–60%, indicating that their algorithm
is a threat to existing text-based CAPTCHAs, because bots can
retry any number of times. The recognition rate of characters by
human beings compared to bots is reported in another paper by
Chellapilla et al. [8]. CAPTCHA analysis procedures consist of
two steps: segmentation and recognition. Segmentation extracts
the shape of each character, and recognition infers each extracted
character. Segmentation is notably more difficult for comput-
ers. In the paper by Chellapilla el al., the recognition accuracy
of bots is compared to that of humans, and bots’ recognition ac-
curacy is shown to be better after the character is extracted from
a picture. Thus, we should focus on making it more difficult for
bots to recognize the characters in the first place. Human vision
and cognition have been long-researched, and various models of
completion have been proposed. Fukushima et al. [9] used neu-
ral network technology for character recognition. They showed
that characters can be easily recognized when they are not very
distorted or obscured.
2.5.2 Convolutional Neural Networks

Deep learning technology has made a significant breakthrough
in the field of AI in the last several years. This technology is
now bringing widely innovative changes to various fields where
machine learning techniques are potentially available. Notably,
progress is dramatic in the areas of image recognition, speech
recognition, and natural language processing, which are closely
related to machine learning. In deep learning, we optimize a
neural network, which has many neurons with many layers and
weight parameters. There are several types of famous network
architectures used for deep neural networks. Convolutional neu-
ral network (DCNN) is one of them. Various types of DCNN
have been proposed recently such as LeNet, AlexNet, VGGNet

*2 Chellapilla did not use the word, “CAPTCHA”, but instead used the word
“HIP”, which means “human interaction proof”, CAPTCHA was named
by a team at Carnegie Mellon University. We use the word “CAPTCHA”
in this paper, because it is most popular in common use.

GoogLeNet and Residual Network (ResNet) [10], [11], [12], [13],
[14].

DCNN significantly improves the capability of machines to
complete various tasks of image recognition. This is achieved by
combining many convolutional and pooling layers, by increas-
ing computational speed, by developing new learning methods,
and by using appropriate nonlinear functions. As far back as
1989, Cun et al. used DCNN for character recognition [15], [16].
A DCNN architecture called AlexNet, proposed by Krizhevsky
et al. achieved the highest classification result in a competi-
tion called ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC), in 2012. Hence, more sophisticated and deeper struc-
tures of DCNNs have been proposed and developed in search of
even higher accuracies.

VGGNet is one of the networks that produced good results in
image recognition [12]. It finally outputs the classification proba-
bilities through three layers of all connections after repeating the
combination of 3× 3 convolution and 2× 2 max pooling multiple
times.

GoogLeNet is a neural network structure that has 100 layers
(i.e., building blocks) with several million parameters. State-of-
the-art studies have shown that, by learning from large dataset
(e.g., ILSVRC), DCNNs can classify images as well as or even
better than human beings. In our experiments, we use AlexNet.

3. CAPTCHA with Amodal Completion

3.1 Overview of CAPTCHA with Amodal Completion
We introduce a concept and the history of our Amodal

CAPTCHA in this chapter. The first appearance of CAPTCHA
with amodal completion was that by Mori et al. [17]. We call
it MUK CAPTCHA in this paper. The screen shot of MUK
CAPTCHA is shown in Fig. 3. Parts of characters of “A”, “B”,
“C” and “D” are moving on the screen and the parts make one
character at a time. In this figure, “A” is completely made at
this moment. Each character is made one by one, but not at the
same moment. The computer does not know when a character is
complete so that it must keep reading characters frame by frame.
Computer must also emulate amodal completion when OCR is
applied since each character is shielded by obstacles.

Before it, all text-based CAPTCHA methods depended on dis-
tortion or noise. This was the first challenge to make CAPTCHA
difficult for computers and not to make it difficult for human be-
ings at the same time. Mori et al. focused on amodal completion
which is one of the abilities of human beings. It was also known
that amodal completion by human beings was able to be emulated

Fig. 3 MUK CAPTCHA.
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Fig. 4 SU CAPTCHA.

by computers. The most significant point of MUK CAPTCHA
was easily force the heavy calculation to bots for the emulation
so that the calculation never ended in the given time limit. On the
other hand, MUK CAPTCHA was easy to be recognized by hu-
man beings with amodal completion. Human beings can quickly
and commonly recognize objects even when they are obscured;
this feature is called amodal completion in the field of percep-
tual psychology. Masnou et al. describe amodal completion via
level line structures [18]. Amodal completion is a theory advo-
cated by Kanizsa in 1996. It describes the visual acuity of human
beings [19]. We, therefore, apply amodal completion for alphanu-
meric CAPTCHA character objects.

Amodal completion is emulated by computers with neural net-
work technology, as mentioned by Fukushima et al. Instead of
being used to prevent bots from recognizing characters, it as-
sists humans with recognition, according to Mori et al. In their
method, humans can recognize characters at four moments within
ten seconds, when three hundred images are included. There-
fore, bots must analyze three hundred images to find the four in
which characters can be recognized: an easy task for humans us-
ing amodal completion. The cost for machine analysis for three
hundred images is very high, and cannot be ignored by attackers.
Unfortunately, this type of CAPTCHA has a problem. Charac-
ter recognition is easy for human beings when they can choose
images from a video. However, choosing requires high concen-
tration. Completion of characters is not simultaneous as shown
in Fig. 3. That is, for human beings, recognition is easy, but seg-
mentation is difficult.

This problem was addressed by Sawada et al. [20]. They ex-
tended the time for recognition by combining aftereffects with
amodal completion. This CAPTCHA name is Sawada, Uda
CAPTCHA(SU CAPTCHA). The screen shot of SU CAPTCHA
is shown in Fig. 4. A character “A” is drawn with obstacles in
this figure. Characters gradually appear in SU CAPTCHA so
that visibility of a character increases by aftereffects. An after-
effect is the phenomenon where human beings can continue see-
ing an object just after it disappears. We apply aftereffects to
CAPTCHA to prevent bots from gaining an advantage from an-
alyzing one frame of a video. Furthermore, it helps humans rec-
ognize characters within a period that is longer than one frame
of video. That is, recognition time is extended by aftereffects.
However, Sawada’s algorithm did not work well, because the af-
tereffects were too weak to support amodal completion. Thus, we
added colors to enhance recognition by aftereffects [21]. We in-

Fig. 5 Amodal CAPTCHA.

vestigated combinations of complementary colors and luminance
in experiments. Hence, we succeed in prolonging the viewable
time for humans. This is called Amodal CAPTCHA as shown in
Fig. 5, and Amodal CAPTCHA is used for all experiments in this
paper.

Our Amodal CAPTCHA had been a good solution for bots
until deep learning became famous in the world. Because, as
mentioned in Section 1, our CAPTCHA takes too much time to
emulate amodal completion. When limiting the solution time of
CAPTCHA, taking too much time to answer it is fatal to bot. Es-
pecially, DCNN (Deep Convolutional Neural Network) is widely
used for image recognition now.

The most significant features of DCNN are flash classification
and high accuracy. On the other hand, security of our Amodal
CAPTCHA depends on the heavy calculation of amodal com-
pletion by computer. That is, if DCNN can recognize Amodal
CAPTCHA without emulating amodal completion, not only usual
text-based CAPTCHA but also special CAPTCHA with heavy
calculation is no longer safe. Therefore, we tried to evaluate how
accurate DCNN recognized Amodal CAPTCHA in Section 5.

To tell the truth in advance, DCNN almost perfectly broke
Amodal CAPTCHA without emulating amodal completion. Af-
ter this first experiment, we applied jugged edge to characters of
Amodal CAPTCHA since we thought that the accuracy of DCNN
depends on the edge of characters. Of course, we eliminated
adding distortion and noise from our experiments since it had
been known that they had decreased the visual performance of
human beings. The experiments and evaluation is mentioned in
Section 6. We also evaluated the size and frequency of jugged
edges which did not decrease the visual performance of human
beings.

Finally, we tried to eliminate the last possibility of a trick in the
recognition by DCNN since we had doubts about extreme high
accuracy by DCNN against Amodal CAPTCHA. It is the posi-
tion of shields in front of characters. The position is fixed in our
algorithm while the size is different. We thought that DCNN de-
pends on the position in recognition. Therefore, we experimented
and evaluated it in Section 7.

3.2 Amodal CAPTCHA and Other Text-based CAPTCHA
All major text-based CAPTCHA algorithms have been broken

by OCR with a success of 92% according to the research by Mori,
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C. et al. [6]. Of course, strong distortion of characters can de-
crease the readability of OCR. However, it also decreases the
readability of human beings so that another solution is desired.
Mori, T. et al. invented the first Amodal CAPTCHA as a coun-
termeasure of OCR reading [17]. They succeeded to increase the
cost for calculation on reading by OCR while human beings were
able to recognize characters easily with amodal completion.

Amodal CAPTCHA has not been used in practice since image
CAPTCHA such as Google reCAPTCHA has emerged. Image
CAPTCHA overcame the reading by OCR. However, it requires
huge amount of images and only a few companies such as Google
can collect them. Therefore, text-based CAPTCHA is still used
in services by small companies although it is no longer safe.

That is, text-based CAPTCHA which has tolerance to OCR is
only Amodal CAPTCHA and only text-based CAPTCHA can be
used without depending on a big company such as Google. This
is the reason why we focus on Amodal CAPTCHA as a repre-
sentative of CAPTCHA algorithms. Furthermore, DCNN was
not major when the first Amodal CAPTCHA appeared. There-
fore, we investigated whether Amodal CAPTCHA had tolerance
to DCNN and we found not [28]. In this paper, we put jagged
edges on characters of Amodal CAPTCHA and investigate how
much the jagged edges interfere with DCNN.

4. Assumption of Threat Models

Threat models for Amodal CAPTCHA are described in this
chapter. The threat we assume is automatic image recognition of
Amodal CAPTCHA by CNN while Amodal CAPTCHA has re-
sistance against OCR as mentioned by Mori et al. Attacks in the
models are classified into some cases.

The first classification is “with the knowledge of the algo-
rithms” and “without the knowledge of the algorithms”. With
the knowledge of the algorithms, attackers can create many im-
ages for machine learning when our CAPTCHA is published as
open source software. Malware may be created with learned
models. Experiments which assume the threat are described in
Sections 5.3 and 5.4. Without the knowledge of the algorithms,
attackers can also create images by manual screen shot of Amodal
CAPTCHA on web browsers. However, it requires much time so
that we do not think that it is one of the threats. If it does, the
corresponding experiments are also in Sections 5.3 and 5.4.

The second classification is “follow the algorithms” and “ig-
nore the algorithms” without the knowledge of the algorithms.
If attackers follow the algorithms without the knowledge of the
algorithms, they collect images manually as mentioned above.
However, they can also attack by ignoring the algorithms, espe-
cially appearance algorithms of obstacles. Experiments which
assume the threat are described in Section 7.

5. Evaluation of Amodal CAPTCHA using
DCNNs

As mentioned above, while SU CAPTCHA is resistant to tra-
ditional methods for image recognition, it is newly threatened by
DCNNs now. In fact, using deep learning to break CAPTCHA
has already been accomplished. According to Sivakorn et al., re-
CAPTCHA is solved by deep learning 70.78% of the time [22]. It

only takes 19 seconds. Levellines used DCNN for classification
of a small data set of Baidu CAPTCHA. Thus, it gained an ac-
curacy of 98.4% [23]. As mentioned earlier, Amodal CAPTCHA
is resistant to conventional threats. However, it is necessary to
check to see if it is resistant to deep learning.

We first test whether DCNN will break our system, which dis-
plays characters exploiting amodal completion and aftereffects.
Via our implementation, each character gradually appears and
disappears, because aftereffects are applied. Because each image
consists of only a small part of the whole image of the charac-
ter, and each is displayed each for just a moment, humans can
recognize the entire shape owing to the aftereffects over many
sequential images. It is difficult for DCNN to process such im-
ages quickly enough, so, as an attacker, we must choose to either
preprocess images appropriately before learning, or to compose
another neural network architecture to handle them.

One approach to solve the attack problem is simply overlaying
sequential images while a character is drawn. In other words, we
pile up a sequence of instantaneous images to make one image.
In this case, what the neural network must learn is not only how
to classify characters, but also, how to distinguish those already
drawn from those still being drawn.

Another potential approach is using the combination of a
DCNN and LSTM. Such combinations may be preferable to
capturing both aftereffects and amodal completion at the same
time, but the computational cost for learning and prediction grows
much higher over DCNN alone, because we must input many se-
quential images to the neural network for each character.

We take the former approach in this paper, because it is simpler
and sufficient for our purpose.

5.1 Preparation of Data
We prepared two datasets of Amodal CAPTCHA. They con-

sist of English capital alphanumerics. See Fig. 6. All images are
obtained by sequentially superimposing images appearing within
the problem. For each character, we divide images into three cat-
egories since characters are drawn as the images. The first is a set
of complete characters (complete), which are correct characters
that human beings recognize via amodal completion. The second
is a set of incomplete characters (incomplete), which are charac-
ters that human beings recognize when the drawing is not yet fin-
ished. The last is a set of dummy characters (dummy), which are
randomly generated drawings that human beings do not recognize
as either complete characters or digits. The small dataset consists
of only six characters: {‘A,’ ‘B,’ ‘K,’ ‘R,’ ‘M,’ and ‘W’}, whereas
the large dataset consists of 24 characters, (i.e., all characters of
the alphabet except for ‘C’ and ‘O’) and 10 digits. The reason for
the exception is that ‘C’ and ‘O’ are difficult to be classified by
human beings when obstacles shield these characters. Mori et al.
did not use ‘C’ and ‘O’ in MUK CAPTCHA and neither do we.

The reason for choosing those six characters for the small data
set is explained below. ‘A’ is the first alphabet character which
is usually shown as a representative of alphabets. ‘B,’ ‘R,’ and
‘K’ appear similar while each character is being drawn, although
obscured, as in Fig. 7. ‘M’ and ‘W’ have almost the same fea-
ture points. We prepared a large dataset as described in Sec-
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Fig. 6 Objective dataset. A couple of dozen sample characters, each of which is represented as a blue and
yellow line, are shown in each image. All characters in each image represent an identical letter.
The top, middle and bottom images show characters drawn as the complete, the incomplete and
the dummy, respectively. The small numbers beside the axes of each figure represent the numbers
of pixels.

Fig. 7 Similarity of characters.

tion 5.4 later and a small dataset as also described in Section 5.3
later. Thirty four characters which contain alphabets are in the
large data set, and six alphabets are chosen for the small dataset.
As a result of the classification of the large dataset, the predic-
tion accuracy went up to approximately 0.999. We tried to put
jagged edges on characters in the small dataset to investigate how
much they prevented the classification. If the jagged edges do not
prevent the classification effectively, other characters in the large
dataset will be less prevented since similar shaped characters are
more difficult to be classified.

The small data set has 13 labels. They are labeled complete and
incomplete for each of the six characters. There is one common,
labeled dummy. We collect 120 images independently for each
category pair and character. Therefore, we have 2,160 images
total. We describe details of the large dataset in Section 5.4.

5.2 Network Architectures and Implementations
To evaluate Amodal CAPTCHA by deep learning, we conduct

an experiment to find the optimum DCNN. The naive classifi-
cation method is predicting 13 labels. However, as we can see
from the figure, it is difficult to distinguish between incomplete

Table 1 Summary and comparison of used DCNN architectures.

referred name
(varient)

#layers #conv. ∗ #pool. #bn. #fc. #params

AlexNet 14 5 3 3 3 13.4 M
VGGNet 22 13 5 1 3 20.5 M
GoolgeLeNet 163 70 15 73 5 14.5 M

∗ conv: convolution layers, bn: batch-normalization layers,

pool: pooling layers, fc: full-connected layers

and dummy. But, because the purpose of this experiment is deter-
mining whether deep learning can read CAPTCHA with amodal
completion, we also evaluate the case when we merged incom-
plete and dummy into one label in the experiment.

Furthermore, we prepared three kinds of DCNNs to find the
optimal one to solve this classification problem. The three are
Krizhevsky’s DCNN (i.e., AlexNet) as well as two different well-
known architectures: VGGNet and GoogLeNet. AlexNet has 14
layers, except for pooling layers, and approximately 13 million
parameters to be optimized. The size of input for DCNNs is
67 × 67. The output is obtained via the softmax function, which
is learned to output optimal probabilities of 13 or 7 labels. We
modify each architecture to fit the target datasets.

We also use batch normalization, proposed by Ioffe et al. [24],
which is known to accelerate learning and to prevent over-fitting.
It exploits the average and the variance over each batch. We add
a batch normalization layer at the bottom of each DCNN, instead
of normalizing input images.

A comparison of DCNN architectures used is shown in Ta-
ble 1.

We implement learning, prediction and evaluation code exper-
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Table 2 Comparison of accuracies and run times among DCNNs.

name mean acc. variance of acc. prediction time learning time
AlexNet 0.990 0.006 0.6 ms 2.7 ms
VGGNet 0.986 0.008 0.7 ms 3.4 ms
GoolgeLeNet 0.965 0.014 1.5 ms 8.7 ms

Table 3 Comparison the scores between 7-labels and 13-labels classifica-
tion.

complete∗ incomplete†

#labels accuracy (σ) P R F P R F
7 0.990 (0.006) 0.98 0.995 0.985 - - -

13 0.954 (0.010) 0.96 0.995 0.978 0.94 0.94 0.93

(∗) P/R/F averaged over six characters labeled complete.

(†) P/R/F averaged over six characters labeled incomplete.

iments with a library named chainer 1 and the existing architec-
ture, modified as follows [25]. First, we used stochastic gradient
descent (SGD) with a step-size of 0.01 and a momentum of 0.9.
Second, the step-size decays exponentially with a factor of 0.97
in the latter optimization steps. Finally, in the training phase, we
iterate 40 epochs with the batch size of 32. We use commod-
ity PC with a GPU (CPU: core i7-5820k, GPU: GeForce GTX
980 TI) by computational environment. We adopt a tenfold cross
validation for the evaluation of the prediction result. On aver-
age, each image (67 × 67 pixels) was processed in approximately
2.7 ms for learning, and in approximately 0.6 ms for prediction,
using AlexNet.

5.3 Experimental Results for the Small Data
The consumed time for classification was less than 1 ms for

each character, or less than 30 ms for each batch. This is fast
enough to process images that are given sequentially in real-time.

Generally, AlexNet is the simplest neural network architecture,
and GoogLeNet has the highest classification capability for image
recognition tasks.

Although, Table 2 shows that AlexNet achieves the best accu-
racy *3 (i.e., 0.990) among three types of DCNNs, its computa-
tional cost is lowest at 0.6 ms. The reason is that our classifica-
tion problem is easier than other image recognition tasks, such
as ImageNet. From this experiment, it can be argued that it is
appropriate to apply AlexNet to this classification problem.

Table 3 shows a summary and comparison of the experimen-
tal results for 7- and 13-labeled data. Because this is multi-class
classification, we measure the results by the precision/recall/F-
measure (P/R/F), as well as the accuracy.

The averages are acquired over ten cross-validation (CV) trials.
Table 3 shows the accuracy of 13-labels classification is lower
than that of 7-labels, but the standard deviation is larger than that
of 7-labels. This instability and low capability of 13-label classi-
fication arises from the difficulty of recognizing incomplete and
dummy characters.

The columns marked (∗) show the P/R/F averaged over six
complete characters, whereas the columns marked (†) show
P/R/Fs averaged only among six incomplete characters. As we
can see from the table, the P/R/F of 13-labels are as high as those
for 7-labels, in the case of complete characters.

*3 The word ‘accuracy’ in this paper denotes the rate where labels are cor-
rectly predicted.

Table 4 P/R/Fs for each character.

W B K A M R
precision 0.98 0.96 0.96 0.94 0.95 0.97

recall 1.0 0.99 1.0 0.98 1.0 1.0
F-measure 0.99 0.98 0.98 0.96 0.97 0.98

The results of 7-labels classification are shown.

All values are evaluated by 10-fold CV.

Fig. 8 Examples of misrecognition by DCNNs.

Conversely, for incomplete characters, the F-measure of 13-
labels is obviously lower than that of complete. The error rate of
the F-measure drops less than one-third (7% to 2.2%). This result
denotes that the category incomplete is difficult for one to dis-
tinguish from other categories. If we compare the accuracies of
only complete characters, there is almost no difference between
13-labels and 7-labels.

Another observation made from this table is that the average
recall among complete characters is almost 1.0. Thus, even if
some parts of the target character are hidden, machines rarely
fail to collect characters when they are completely drawn through
amodal completion.

In short, DCNN can break Amodal CAPTCHA.
The P/R/F for each character are shown in Table 4. Addition-

ally, precision vary depending on characters. Yet, the recall fre-
quency is continually close to 1.0.

5.4 Experimental Results for the Large Data
This dataset consists of 34 characters, ‘0’-‘9’ and ‘A’-‘Z’ (ex-

cept ‘C’ and ‘O’).
We classify images into four categories: complete, incomplete-
a, incomplete-b, and dummy. Although the overall configuration
is the same as those for the small dataset, we split the category in-
complete into two types: incomplete-a consists of images that hu-
mans may recognize as a correct character, whereas incomplete-b
consists of images that human beings cannot recognize or may
recognize as another character. The reason of the classification
into four categories is the difficulty of recognizing incomplete
and dummy characters on 13-label classification in Section 5.3.
We confirm that humans can correctly recognize the images in
incomplete-a with aftereffects over sequential frames.
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Fig. 9 Prediction accuracy and F-measure as a function of the number of
input samples. The x-axis shows the number of images for each pair
of a category and a character.

We collected 1,200 images, each by category and character.
Because we regard dummy as a common label, we merge cate-
gories into two types: {complete, incomplete-a} and {incomplete-
b, dummy}. We selected an image of the 36th frame as complete
since one character is drawn with 36 frames. The middle frame
is 18th frame in 36 frames. We selected an image of the 27th
frame as incomplete-a since it is at the center between the middle
and the last frame. It means that the image is almost complete
but not complete. We also selected an image of the 9th frame as
incomplete-b since it is at the center between the middle and the
first frame. It means that the image is almost nothing but some-
thing drawn.

This dataset can complete a classification problem of 35 labels
with 82,800 images in total.

Experimental results show that the prediction accuracy goes up
to approximately 0.999 when we use all training data (Fig. 9 (b)).
The x-axis of both Fig. 9 (b) and 9 (a) represents the number of
images for each category and character pair. From Fig. 9 (a),
we know that both accuracy and F-measure go beyond 0.9 when
the number of images is greater than four. This means that, for
each character, only four images labeled complete are needed to
achieve accuracy and an F-measure of 0.9.

6. Effect of Jagged-lined Amodal CAPTCHA
as Ergonomic Design

Our method is completely broken by deep learning, as men-
tioned in Section 5. However, we found that edges of characters
are mainly used for analyzing samples in deep learning proce-

Fig. 10 fillRect.

Fig. 11 fillOval.

Fig. 12 Examples of the edge between fillRect and fillOval.

dures. Therefore, in this section, we add a new algorithm to our
CAPTCHA method to break the edges. In this algorithm, a char-
acter consists of a cluster of random size objects so that edges of
the character appear as jagged lines. In our method, each char-
acter is written as an aggregate of pixels. However, in our new
algorithm, each character is written as an aggregate of objects
consisting of many pixels square. There are two kinds of objects
in our experiments. One is a square, drawn by “fillRect” and the
other is a circle, drawn by “fillOval” using Java. Figures 10 and
11 show the obtained “fillRect” and “fillOval”.

Examples of jagged line are shown in Fig. 12. The edge of a
character by “fillRect” is drawn as (A). It is made by the collec-
tion of many rectangles of different sizes. The edge of a character
by “fillOval” is drawn as (B). It is made by the collection of many
circles of different sizes.

6.1 Purpose of the Experiments
We found that knowledge of character edges is very important

for deep learning recognition. Therefore, by making jagged edges
of CAPTCHA, we should not decrease the visual performance of
humans. First, we investigate the differences among jagged line
types, including how jagged they can be while maintaining hu-
man recognition. Second, we investigate the influence of jagged
lines on deep learning recognition.

6.2 Preparation of Subjective Parameters
Characters with jagged edges are created as a cluster of objects,

and the cluster consists of many squares or circles. We deemed
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Table 5 Evaluation of visual performance by human beings.

Examinee age sex fillRect fillOval
A 21 M 18 18
B 21 M 18 16
C 21 F 18 18
D 21 M 12 18
E 21 M 10 6
F 21 M 11 15
G 21 M 13 15
H 21 M 11 9
I 19 M 9 15
J 19 M 13 11

the smallest size of an object to be three pixels by three pixels,
because zero pixel objects do not appear on the screen, and one-
or two-pixel objects are too small to make a jagged line. We
also deemed the maximum object size to be eighteen pixels by
eighteen pixels, because we feel that larger characters are hard to
recognize. Moreover, the object size is incremented by two pixels
each. Finally, as the size of each object is from three to eighteen-
pixel square, the rate of the decision of the size is the same. We
call this object a “big size object.” There is also a “small size ob-
ject” consisting of one pixel. One character consists of 3/40 big
size objects and 37/40 small size objects, because too many big
size objects only thicken the character and erase the jagged lines.
The objective of our research is learning whether character recog-
nition with deep learning is impeded by jagged-edged characters,
and by how much.

6.3 Visual Performance for Human Beings
We evaluated our jagged-edge algorithm by conducting an ex-

periment with ten examinees. All examinees are healthy students
between 19 and 21 years old and their sexes and ages were added
in Table 5. Their ages are those at April 1st, 2017 out of consid-
eration of their privacy. The experiments were done in different
days. The resolution of the monitor for the experiments by ex-
aminee F, G, H, I and J is 226 dpi (dot/inch), and the panel of the
monitor is 2,304 by 1,440 square dots. Examinee A, B, C, D and
E used their own PCs. A: 13.3 inch, 1,366 by 768 dots, 117.8 dpi;
B: 11.6 inch, 1,366 by 768 dots, 135.1 dpi; C: 13.3 inch, 1,366 by
768 dots, 117.8 dpi; D: 13.3 inch, 2,560 by 1,440 dots, 220.8 dpi;
E: 11.6 inch, 1,366 by 768 dots, 135.1 dpi. One character is drawn
with 36 frames and the drawing speed is 60 fps (frame/second).

In this evaluation, there are two characters on the screen. The
characters are moving by our CAPTCHA method, as mentioned
in Section 3. The maximum object size is randomly set at the
initial appearance. Examinees choose the one with better visi-
bility. The size of the character not chosen is then changed ran-
domly. The maximum object size is incremented by two pixels
so that odd number sizes only appear in the random case. After
that, examinees choose one of two characters again. The enlarge-
ments and choices are repeated until the maximum object size of
one of the character is incremented to eighteen. The last chosen
character has the best maximum object size for the examinees,
and the size is recorded as a score. Results of the evaluation are
shown in Table 5. In both “fillRect” and “fillOval”, eighteen-pixel
square is the best recognized maximum object size for some ex-
aminees, but not for others. However, the maximum object size is
randomly chosen, and this evaluation stops when the maximum

object size of one of the characters is incremented to eighteen.
Therefore, all sizes do not always appear in an experiment. How-
ever, almost all of the examinees do not possess the scrutiny to
recognize a large character with jagged lines, because lines ap-
pear smoother when the maximum object size is smaller. Results
show that some examinees have the same subjective size judg-
ment that we do.

6.4 Preparation of Data
We prepared two kinds of data sets, which were drawn with

“fillRect” and “fillOval.” The maximum object size was set to
eighteen for both data sets. We used the same DCNN models as
those in Section 5.3. The letter “A” was chosen as a representative
of characters for the data sets. There were also three types of pat-
terns: ‘complete,’ ‘incomplete,’ and ‘dummy,’ which are the same
as the types from our previous research. We collected 600 sheets
of images for each type. Via our previous experiment, AlexNet,
with two labels, was chosen for the DCNN model, because it is
the most accurate and the fastest.

6.5 Results of Experiments
The left column in Tables 6, 7 and 8 shows the number of loops

in learning phase. “TRAIN” represents the accuracy of training
samples, and “TEST” represents the accuracy of test samples.
The attribute, ‘mean,’ is average; and ‘std’ is standard devia-
tion. Results of “fillRect” and “fillOval” are shown in Table 7
and Table 8. The average of results of “original” is shown in
Table 6. We tested ten times for results without jagged edges.
The average of results of “original” is shown in Table 6, and re-
sults of “fillRect” are shown in Table 7. It appears that the num-
bers in the tables have certain differences between “fillRect” (or
“fillOval”) and “original”. For instance, the mean of the accuracy
in the initial loop in TEST decreases from 0.907 to 0.893 when
jagged edges by “fillOval” are applied. However, the correspond-
ing standard deviations are much larger than the differences be-
tween those numbers as the last columns in the tables. The tables
rather show that the difference of the accuracies between “fill-
Rect” (or “fillOval”) and “original” for each loop is smaller than
the standard errors of the means, which are approximately equal
to the standard deviations divided by the square root of the num-
ber of trials. Thus, as the results of the experiments, the jagged
edges do not significantly affect the recognition rate by the CNN
in statistical meaning.

6.6 Consideration
The results shown in Section 6.5 indicate that character edges

are not important for recognition by CNNs, just as they do not in-
fluence visual performance in humans. In addition, for any char-
acter edge, the accuracy finally exceeds 99%. This fact suggests
that CAPTCHA can be fully broken by independent malware that
we regard as an enemy. The decrease of the accuracy at Loop
00 is not so effective to prevent attackers from training since they
can use their own high-spec computers for the training. Someone
may think that it is effective to prevent independent malware from
training since malware is often executed on victims’ low-spec
computers. However, independent malware cannot learn from
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Table 6 Result by original drawing.

mean std
Loop TRAIN TEST TRAIN TEST

0 0.714 0.907 0.020 0.046
1 0.933 0.960 0.013 0.022
2 0.962 0.975 0.007 0.010
3 0.966 0.977 0.014 0.007
4 0.978 0.982 0.005 0.006
5 0.981 0.985 0.003 0.011
6 0.985 0.987 0.005 0.006
7 0.986 0.989 0.004 0.006
8 0.990 0.986 0.003 0.012
9 0.988 0.990 0.004 0.008

10 0.996 0.994 0.002 0.004
11 0.998 0.995 0.001 0.003
12 0.998 0.995 0.001 0.004
13 0.998 0.995 0.001 0.004
14 0.999 0.995 0.001 0.003
15 0.999 0.996 0.001 0.003
16 0.999 0.996 0.001 0.004
17 0.999 0.996 0.000 0.003
18 1.000 0.995 0.000 0.004
19 1.000 0.995 0.000 0.003

Table 7 Result by fillRect.

mean std
Loop TRAIN TEST TRAIN TEST

0 0.744 0.930 0.020 0.065
1 0.935 0.957 0.012 0.041
2 0.950 0.959 0.013 0.038
3 0.961 0.965 0.006 0.028
4 0.965 0.967 0.009 0.032
5 0.969 0.969 0.007 0.029
6 0.972 0.967 0.010 0.030
7 0.972 0.965 0.012 0.045
8 0.973 0.975 0.010 0.031
9 0.979 0.983 0.009 0.024

10 0.992 0.991 0.003 0.012
11 0.995 0.991 0.002 0.011
12 0.995 0.992 0.003 0.010
13 0.997 0.993 0.002 0.009
14 0.997 0.994 0.001 0.007
15 0.998 0.994 0.001 0.007
16 0.999 0.996 0.001 0.006
17 0.999 0.994 0.001 0.007
18 0.999 0.996 0.001 0.005
19 0.999 0.997 0.001 0.004

Table 8 Result by fillOval.

mean std
Loop TRAIN TEST TRAIN TEST

0 0.712 0.893 0.019 0.074
1 0.906 0.934 0.013 0.051
2 0.940 0.945 0.015 0.040
3 0.958 0.966 0.007 0.025
4 0.962 0.972 0.010 0.019
5 0.972 0.980 0.008 0.011
6 0.979 0.980 0.007 0.017
7 0.982 0.986 0.007 0.011
8 0.989 0.986 0.005 0.009
9 0.989 0.990 0.006 0.012

10 0.994 0.996 0.007 0.004
11 0.997 0.995 0.001 0.004
12 0.997 0.996 0.001 0.004
13 0.998 0.997 0.001 0.004
14 0.998 0.996 0.001 0.004
15 0.998 0.997 0.001 0.004
16 0.999 0.995 0.001 0.005
17 0.999 0.997 0.001 0.004
18 0.999 0.997 0.000 0.005
19 0.999 0.996 0.000 0.004

images since it cannot put labels on the images by itself, as men-
tioned in Section 1. On the other hand, directly controlled mal-
ware can always renew its models for attacks by updating them
from outside.

We prepare character images in experiments both in this pa-
per and in our previous work, because we should set images of
characters to DCNNs for comparison. Alternatively, computers
prepare the images from frames of a video in actual attacks, and
there are many frame combinations, because computers do not
know when the target character appears. Furthermore, highly spe-
cialized computers are used for the experiments, as shown in Sec-
tion 6. Yet, computers which are used for actual attacks are rarely
highly specialized; bots are usually housed on ordinary comput-
ers.

7. Evaluation of DCNN learned from Non-
shielded Data

Experiments thus far have used datasets consisting of images
of characters with attached shields for both training and testing.
However, in situations where CAPTCHAs are actually applied,
attackers are less likely to have a priori information about the
shielding of the image based on amodal completion. Although
all experiments so far show negative results with respect to the ef-
fects of ergonomic designs against DCNNs, they are unfair for the
CAPTCHAs since DCNNs are learned from the images of char-
acters with shielding. This assumption that images with shielding
is in the training data as well as the validation data means that at-
tackers have a priori information about the positions of the shields
based on amodal completion. Therefore, in order to measure the
ability of DCNN against Amodal CAPTCHA in more realistic
situations than in the previous experiments, we used training data
consisting of images of characters without shielding. The experi-
ments in this section are disadvantageous to DCNNs, since the lo-
cations or even the existence or absence of shields are not known
by the machines.

7.1 Preparation of Data
We conducted an experiment with CAPTCHA without occlu-

sion as training data and CAPTCHA with shielding as test data.
We acquired the same number of images and the same charac-
ters as CAPTCHA without shielding as a small data set described
in Section 5.1. An acquired image is shown in the Figs. 13–
18. We used AlexNet, the same as for the small data set in
Section 5.1. We captured each of {‘A,’ ‘B,’ ‘K,’ ‘R,’ ‘M,’ and
‘W’} CAPTCHAs with shields; CAPTCHA without shields each
acquired 120 images, totaling 1,420 images. Thus, this experi-
ment is a six-image classification problem. Other hyperparame-
ters such as the learning rate are also the same as in Section 5.1.

7.2 Results of Experiments
We carried out ten trials, the test rates of which are all over

95%. The final accuracy amounted to 0.990. This was exactly
the same number as the result of Table 4 of Section 5.3. DCNN
was able to break CAPTCHA despite being in a disadvantageous
situation. In other words, it was able for the DCNN to recognize
Amodal CAPTCHA precisely even if learning was carried out
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Fig. 13 Original A.

Fig. 14 Original B.

Fig. 15 Original K.

Fig. 16 Original M.

Fig. 17 Original R.

Fig. 18 Original W.

Table 9 Average of the evaluation of original and Amodal.

Loop TRAIN TEST P R F
0 1.0 0.977 0.912 0.887 0.890
1 1.0 0.960 0.952 0.952 0.950
2 1.0 0.975 0.969 0.964 0.966
3 1.0 0.977 0.971 0.968 0.969
4 1.0 0.982 0.978 0.975 0.976
5 1.0 0.985 0.981 0.980 0.980
6 1.0 0.987 0.984 0.982 0.982
7 1.0 0.989 0.986 0.984 0.985
8 1.0 0.986 0.981 0.985 0.982
9 1.0 0.990 0.989 0.984 0.986

only with images without shielding. When we used fillRect or
fillOval, DCNN was still able to recognize characters precisely
even if the edges of characters were randomly changed. From
this, we must conclude that the collapse of some edges due to
shielding will not affect the recognition ability of DCNNs. Al-
though this result is surprising, it is estimated that the generaliza-
tion ability of DCNNs worked well in this case. Since the topo-
logical shape of the character does not change on the whole even
if a shield is on it, its silhouette does not significantly destroyed.

8. Conclusion

Our Amodal CAPTCHA had been effective against threats be-
fore DCNN became famous in image classification. First, we
explained the difference of Amodal CAPTCHA from other nor-
mal text-based CAPTCHA in terms of visibility for human be-
ings. Next, we evaluated Amodal CAPTCHA by DCNN. As a
result, we learned that DCNN can almost perfectly break Amodal
CAPTCHA without emulating amodal completion. DCNN rec-
ognized characters of Amodal CAPTCHA at better than 95% in a
small dataset. The rate reached to 99% in a large data set. More-
over, we found that only four images were required for learning
to maintain accuracy.

We tried to decrease the accuracy of DCNN to Amodal
CAPTCHA without applying distortion or noise. We applied er-
gonomically jagged edges to characters of Amodal CAPTCHA
by drawing various rectangles and circles. This succeeded in de-
creasing the accuracy of several initial loops of DCNN in training,
but the accuracy soon recovered to the values which were similar
to those of the previous experiment. When the jagged edge was
created by drawn circles, the accuracy of the first loop was lower
than before. However, attackers of CAPTCHA can let DCNN
learn many times with their own high-spec machines so that the
decrease does not affect the prevention of attacks.

We also confirmed that DCNN can recognize characters not by
positions of shields but by the shape of characters. We let DCNN
learn from characters without shields and tested it using charac-
ters with shields. DCNN almost perfectly classified the charac-
ters in this experiment so that we concluded that the position of
shields does not affect the character recognition by DCNN.

Our results in this paper show that any ergonomic effects such
as amodal completion and jagged edges are no longer counter-
measures against character recognition by computers. We think
that it is necessary to apply image processing specialized for
deep learning such as the adversarial examples of Goodfellow
et al. [26]. Adversarial examples are images which contain per-
turbations calculated from the images in training. It is known
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that adversarial examples can make DCNN misclassify images.
In future, we will try to apply the adversarial examples to our
Amodal CAPTCHA and will evaluate the rate of misclassifica-
tion by DCNN.
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