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Abstract: We propose a joint map-matching for estimating unobservable paths from GPS traces.
Our method is the first to maximize the posterior probability of stochastic generative model, in
which traces are emitted as vehicles drive the roads. We employed the EM algorithm to find the
parameters of the generative model, as well as to evaluate the expectations of the latent variable,
which is indeed the estimated unobservable path. The EM algorithm is reduced to the exploratory
search of the route graph, which is the geometric graph that is most likely emitting the traces and
corresponds to the parameters of the model. Due to this stochastic formulation, our method works
well with the presence of sampling noises in the traces. We report that the residual degradation of
the estimated paths was no more than 7.0% even when they are sampled at a rate as low as 40%.
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1. Introduction
The ability to obtain spatio-temporal information is now

commonplace as vehicles and smartphones are equipped
with GPS devices. On the other hand, governments,
dedicated private companies, and social communities have
been providing and maintaining digital road maps (DRM).
Among the various information services enabled by these
DRMs, the analyses of the flows of cars and people has en-
joyed the most commercial success. For instance, analyzing
traffic demands provides feedback for urban traffic design
and the identification of typical routes improves the effi-
ciency of distribution services [3], [8], [10], [15], [16], [20],
[25].

GPS observations are collected from individual cars in-
dependently and asynchronously. Further more, they also
contain observation noises, especially in urban areas with
tall and large buildings. Before analyzing such irregular and
unreliable GPS observations, a map-matching technique is
commonly used to attach the observed trajectories on to
a DRM. The authors of [4] surveyed the range of map-
matching techniques, and those in [23] discussed recent de-
velopments and remaining problems.

Earlier proposals for on-line map-matching algorithms at-
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tach each observation to one of the neighboring road seg-
ments while considering the local connectivity of the seg-
ments [7], [11], [26]. Then, off-line map-matching algorithms
were proposed, which consider the topological distances be-
tween trajectories and paths on a DRM [1], [6], [9], [12], [18],
[19], [24], [27]. Probabilistic map-matching algorithms have
also been proposed for estimating the road links from which
observations are made [2], [21], [22]. Due to the limited net-
work bandwidth or the constraint on power consumption,
map-matching low-sample trajectories has attracted recent
interest. One advanced algorithm utilizes observations from
other trajectories to map a trajectory onto a DRM [13], [14].
Another maps trajectories to the segments embedded in a
DRM all at once by formalizing map-matching as an opti-
mization problem [17].

Most of these preceding approaches, however, mainly fo-
cused on assigning trajectories that seem natural on a DRM.
By contrast, less attention has been paid to estimating un-
observable paths, which are unaccessible in practical situ-
ations. In addition, we must pay more attention to iden-
tifying major streams in the trajectories to provide useful
insight for realizing applications such as demand analysis
and urban design, as mentioned above. In this paper, we
propose a joint map-matching method, which is formulated
to maximize the posterior probability of a stochastic gen-
erative model. This model represents a process in which
GPS devices on vehicles generate observations as they drive
along the paths, which are actually unobservable. Using
this stochastic model whose latent random variable repre-
sents an occurrence of a drive on a path, our method is able
to directly estimate the unobservable paths from the ob-
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served trajectories. Our contributions are as follows: first,
we present the process that generates GPS observations and
formulate it as a stochastic generative model whose latent
random variable represents the occurrence of a drive on a
path, and whose observed random variable represents the
distance between the path and the trajectory. Second, we
formulate an EM algorithm that maximizes the posterior
probability of the generative model. Then, we show that
the log-likelihood of the posterior probability should be re-
duced to an object function consisting of the residual of the
trajectories from their maximizing paths and the description
length of the DRM. Finally, we present our algorithm, which
iteratively explores the subgraphs likely to emit the obser-
vations. The experimental results show that the residual
degradation was within 7.0% even if we map-match trajec-
tories sparsified at a rate of 40%.

The remainder of this paper is organized as follows. Af-
ter providing a brief review of related works in section 2, we
propose the new map-matching problem and describe its key
features along with a few preliminaries in section 3. Next,
we present our experimental results in section 4. Finally, we
conclude the paper and suggest future work in section 5.

2. Related works
On-line or local map-matching methods attach a newly

observed GPS point to one of the neighboring links in the
DRM. These methods use the coordinates, directions, and
speeds localized to the current point to take into account the
connectivities of these links [7], [11], [26]. By contrast, off-
line or global map-matching methods consider the distance
between a trajectory and a path in a DRM in the topological
sense, from its origin to destination [6]. Alt et al. proposed
a map-matching algorithm that utilizes Fréchet distance [1].
Algorithms with the relaxed Fréchet distance have also been
proposed [6], [9]. All these approaches simply map individ-
ual trajectories to the nearest paths in accordance with their
own policy or distance function.

Due to the constraints on power consumption and trans-
mission cost, trajectories are very sparse, and the above
approaches do not always work well with low-sampled tra-
jectories. To tackle these problems, probabilistic meth-
ods estimate the link from which the observation is made
[19], [21], [27]. A joint map-matching method exploits the
ensemble nature buried in the trajectories. It iteratively es-
timates the order of observations from different trajectories
and the most likely segments from which they come [14]. A
joint map-matching enumerates fixed-sized segments from
a DRM and, using them as variables of the optimization
problem, it discovers the paths to which the trajectories are
assigned such that they seem to be as natural as paths [17].
This method, however, requires hyper parameters to balance
the features such as the distance to the segments, stitching
of segments, and regularity of the solution.

Many applications have been proposed for the analysis
and prediction of traces. Some learn the repeated patterns
of a car owner’s history, e.g., commuting routes, the drop-

ping off and picking up of family members, and visiting rel-
atives or friends [10]. Turn prediction is another typical
application for predicting which directions a car will take at
an intersection, based on the route taken up to this point
by learning others’ traces [16]. These applications, however,
are developed to predict particular purposes.

3. Proposed method

3.1 Preliminaries
Let i, j, k, n, p, q,N,K ∈ N and we call G = (V,E) a ge-

ometric graph, or simply a graph, where V = {(lon, lat) |
lon, lat ∈ R}, E = {(u, v) | u, v ∈ V and u ̸= v}. Note
that a geometric graph and its edges are interchangeable
when we identify a graph with the edges E and the ver-
tices given as V =

∪
(u,v)∈E{u, v} . Hereafter, we re-

fer to this graph as an edge-induced graph G(E). Given
two graphs as G1 = (V1, E1), G2 = (V2, E2), we denote
G1 \G2 = G(E1 \E2) and G1 \E2 = G(E1 \E2) . In addi-
tion, we call the element in P = {u(i) ∈ R2 | i = 0, · · · , p}
a polyline of length p, or a trajectory, and the element in
PG = {v(j) ∈ V | i = 0, · · · , q} a polyline of length q on the
graph G, or a path. Obviously, we have PG ⊂ P.
Definition 1. (Distance function): Let d : P × P → R be
a distance function between polylines, where the following
inequality and equalities hold for all α, β ∈ P:

d(α, β) ≥ 0, d(α, β) = 0, d(α, β) = d(β, α).

Definition 2. (Single-track map-matching) Let G = (V,E)

be a geometric graph and d(α, β) be a distance function
between polylines. Given a trajectory α ∈ P, a single-
track map-matching algorithm, or simply a map-matching
algorithm, MG : P → PG × R finds its minimizing path
and its minimum distance β̂G(α) = argminβ∈PG

d(α, β) and
d̂G(α) = minβ∈PG

d(α, β), respectively.

3.2 Stochastic generative model
Let b(s) ∈ R2, 0 ≤ s ≤ q be a route, which is also de-

scribed as a path β ∈ PG, such that:

b(s) =

{
v(j) if s = j,

(⌈s⌉ − s)v(⌊s⌋) + (s− ⌊s⌋)v(⌈s⌉) otherwise.

(1)

Note that, without losing generality, we attached the origin
and destination of the route to the first and last vertices of
the path, respectively.

The observations in a trajectory α ∈ P are emitted on the
route b(s) at s ∈ {s(i) | i = 0, · · · , p} such that s(i) < s(j)

for all 0 ≤ i < j ≤ p. Additionally, assuming the first and
last observations are made from the origin and destination
of the route, respectively, we have s(0) = 0 and s(p) = q.
Each observation has its observation noise ϵi ∈ R2 and thus
we have:

u(i) = b(s(i)) + ϵi. (2)
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Also note that a trajectory has sampling noises that are
induced by interpolating the finite number of observations
comprising the trajectory.

In summary, the routes are unobservable, the trajectories
are observed and are emitted from one of the routes. We
introduce the stochastic generative model with the observed
and latent random variable X,Z ∈ RK , as follows:
Latent variable Z is a 1-of-K random variable whose re-

alization is z = (zk)
K
k=1, where zk ∈ {0, 1}. There is a

k∗ such that zk = 1 if k = k∗ and zk = 0 otherwise,
which represents that a drive on the k∗-th route out
of K possible routes occurred. Its occurrence follows
the prior probability distribution of P (z) =

∏K
k=1 πk

zk

such that
∑K

k=1 πk = 1.
Observed variable X is a random variable whose re-

alization is x = (xk)
K
k=1, which represents the

distance between trajectory and path. This dis-
tance follows the probability distribution of P (x|z) =∏K

k=1 N (xk|0, σ2)zk . For simplicity, the mean and de-
viation are independent of k and known to be 0 and σ2,
respectively. σ differs in accordance with the extent of
the sampling noises.

3.3 Maximizing posterior probability
Given a collection of traces T = {αn | n = 1, · · · , N} and

if let xn and zn be the independent realizations of the ran-
dom variables X and Z, respectively, we have the concrete
E-step and M-step for the joint map-matching by applying
the above probability distributions to the generic EM algo-
rithm in a similar manner as that for a Gaussian mixture
model [5]. With an initial πold, it iterates the following E-
step and M-step by replacing πold with πnew until either Q′

or π converges:
E-step evaluates the responsibility γ(znk) with the pa-

rameter πold, and
M-step finds πnew that maximizes the log-likelihood of

posterior probability Q′(π, πold) .
The responsibility and the log-likelihood are respectively

defined as follows:

γ(znk) =
πkN (xnk|0, σ2)∑K

k′=1 πk′N (xnk|0, σ2)
, (3)

Q′(π, πold) = −
N∑

n=1

K∑
k=1

γ(znk)
xnk

2σ2
+

K∑
k=1

zk lnπk. (4)

Although there are too many paths on the graph, it is
practically sufficient to consider the paths that have shorter
distances from each trajectory. This is feasible if we employ
an algorithm [24] that can enumerate all the paths whose
distances from the trajectory are within a certain threshold,
such as σ. In extreme, considering just the minimizing path
βk∗ = β̂G(α), we have γ(znk) = 1 if k = k∗ and γ(znk) = 0

otherwise. Assuming that the prior distribution is uniform,
namely πk = 1/K for all k, the second term of Eq. (4) is
straightforward and equal to −K. If we accept that K is
roughly proportional to the description length of the geo-
metric graph G, the joint map-matching is equivalent to the

minimization problem below.
Definition 3. (Route graph discovery) Let a hypothesis
space of a graph be G, a single-track map-matching be MG,
and a collection of trajectories be T . A graph G ∈ G most
likely emits the trajectories T if it minimizes the following
loss function:

L(G;T ) =
∑
α∈T

d̂G(α) + λ∥G∥, (5)

where ∥G∥ is the description length of the graph G, such as
the total length of its edges, and λ > 0 is a hyper parameter.

The first term is for the residual and the second term is
for the regularization. This problem is equivalent to single-
track map-matchings if λ is zero. Otherwise, some edges are
left unused so that ∥G∥ decreases even though the distance
d(α, β) becomes longer for some trajectories.

3.4 Graph exploration algorithm
To minimize L(G;T), we employ an exploratory search in

the graph space, and obtain a decreasing series of graphs
G(t−1) ⊃ G(t) for t = 1, 2, . · · · such that their losses also
decreases. Let us denote the output of map-matching MG(t)

β̂
(t)
α = β̂G(t)(α) and d̂

(t)
α = d̂G(t)(α) for short.

Before presenting the important property that drives the
exploration, we note that d̂

(t−1)
α ≤ d̂

(t)
α always holds. This

is trivial because if there were a path closer to α in G(t), it
must be closer to α than the minimizing path in G(t−1) and
this is contradictory. We do not care how the map-matching
is implemented as long as it satisfies the inequality above.

The following theorem gives the condition that ensures
that decreasing series of graphs decreases their losses. In-
terested readers can find the proof in the full-paper.
Theorem 1. Given a collection of trajectories T , and two
graphs G(t−1) and G(t), L(G(t);T ) < L(G(t−1);T ) holds iff
the following inequality holds:

λ∥∆(t)∥ >
∑

α∈T|∆(t)

{
d̂(t)α − d̂(t−1)

α

}
, (6)

where ∆(t) = G(t−1)\G(t) and T|∆(t) denotes the collection
of trajectories whose minimizing paths run through ∆(t).

Alg. 1 is the pseudo-code for the route graph discovery.
Given a collection of trajectories T and an initial graph G(0),
e.g., a DRM, it finds the final graph that minimizes the loss
(line 7). Note that B maintains a minimizing path and the
minimum distance for each trajectory α throughout every t-
th stage (line 18). The main loop (line 2–6) explores a series
of subgraphs with decreasing losses as explained in Thm. 1.
First, an edge e is selected, for instance, in increasing order
of the cardinality, which is the number of the minimizing
paths running through it (line 3), and a new graph G(t) is
obtained by re-routing with the edge e disabled (line 4). We
explain later what re-routing is. Then, the graph G(t) is
probabilistically accepted or rejected (line 5). Finally, the
main loop either continues or breaks in accordance with the
history of the obtained graphs (line 6).
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Algorithm 1 Building route graph
Require: trajectories T , minimizing paths B

1: procedure main(G(0))
2: for all t = 1, 2, 3, · · · do
3: select e from edges in G(t)

4: G(t) ← apply(e, G(t−1))
5: accept G(t) with some probability
6: break by history · · · , G(t−1), G(t)

7: report G(t)

8: function apply(e, G(t−1))
9: let ∆(t) be subgraph only T|{e}run

10: ϵ← 0

11: for all α ∈ T|{e} do
12: β̂

(t−1)
α , d̂

(t−1)
α ← B[α]

13: β̂
(t)
α , d̂

(t)
α ←MG\{e}(α)

14: ∆(t) ← ∆(t) \ β̂(t)
α

15: ϵ← ϵ+ (d̂α(t)− d̂
(t−1)
α )

16: if ∥∆(t)∥ < ϵ then
17: return G(t−1)

18: update B[α] with β̂
(t)
α , d̂

(t)
α

19: return G(t−1) \∆(t)

Next, we explain how to obtain the new graph G(t) by
finding ∆(t). The re-routing technique serves this purpose
by map-matching with some edges of graph G(t) disabled
(line 13). Note that trajectories not in ∆(t) is irrelevant
to ∆(t) and that any edge e ∈ ∆(t) satisfies the following
inequality:

{e} ⊆ ∆(t) ⊆ ∆
(t)

, (7)

∆
(t)

= G(t−1) \
∪

α/∈T|{e}

β̂(t−1)
α , (8)

where T|{e}is the collection of trajectories whose minimizing
paths run through the edge e. Thus, the following strategy
works: first conservatively select an edge e from G(t) and
optimistically initialize ∆(t) with ∆

(t) (line 9), as well as
the cumulative differential residual ϵ with 0 (line 10). Then,
as we re-route a trajectory in T|{e}, ∆(t) is subtracted by
β̂
(t)
α , and ϵ is added by the differential residual before and

after the re-routing (line 13–15). In this implementation, we
employed Zeheng et al.’s algorithm [27] for re-routing.

The procedure terminates as soon as it becomes obvious
that Eq. (6) will never be satisfied (line 16,17). This is safe
because of Thm. 1 and, notably, this saves much compu-
tation by skipping unnecessary map-matchings. If no early
termination has occurred, the procedure returns with the
new graph reduced by ∆(t) as G(t) (line 19).

4. Experimental Results

In this section, we examine whether our algorithm is able
to estimate unobservable paths from sampled trajectories
using the benchmark datasets. First, we explain the exper-
imental configurations and then present the results.

4.1 Experimental configurations
We use the benchmark datasets of GPS traces, which are

collected and shared by various research groups or volun-

GPS OSM
name #pts #trace #nodes #edges
icdm 2859950 4257 18716 35170
chicago 118360 889 46533 88942
bikely 549920 3150 262699 540017

Fig. 1 Popular GPS trace datasets

teers. The DRM should be contemporary with the GPS
traces, although we utilized the Open Street Map (OSM)
of 2017. Figure 1 shows descriptions of the datasets and
their corresponding DRMs. Note that they might differ from
those in other reports because those datasets were prepro-
cessed differently.

In the experiments, we sampled observations in a
trajectory-wise manner with variable rates, and compared
the residuals of the following:
( 1 ) the unsampled trajectory and the DRM (lower bound),
( 2 ) the unsampled trajectory and the route graph (pro-

posed),
( 3 ) the sampled trajectory and the DRM (upper bound).

The first situation gives the lower bounding residual, in
that no algorithm can do better than this method, as we
had accepted the three assumptions made in the full-paper.
The second method is our proposed method. To evaluate
how well the route graph represents the major streams in
the GPS traces compared to the DRM, we evaluated the
residual of the unsampled trajectory and the route graph.
The third method evaluates the residual arising from the
injection of sample noises. This gives the upper bounding
residual in the sense that no off-the-shelf single-track map-
matching does worth than this.

4.2 Experimental results
Figure 2 describes the residuals of the three methods

with variable sampling rates. Note that the lower bound is
constant because the first method is unaffected by the sam-
pling rates. In the figure, we can see that the upper bound
curve steeply increases as the sampling rate decreases. This
is what we expected, as the lower is the sampling rate, the
more the residual experiences injected sampling noises.

In contrast, the curve for the proposed method increases
much more moderately. For instance, in the icdm and
chicago datasets, the proposed method reduced the resid-
ual by more than 70% and 40%, respectively, for the upper
bound at sampling rate of 40%. The reduction rate tends
to increase when the dataset has a larger number of tra-
jectories, which means that the proposed method leverages
the residual using the other trajectories. Indeed, we can see
that the icdm was able to decrease the sampling rate to 40%
while its residuals remained nearly constant at 7.0%.

The residual is slightly larger than the upper bound at a
sampling rate of 100%, this is because our algorithm accepts
a slight increase in the residuals to reduce the route graph.
The behavior of the residual as well as the empirical loss is
well understood in the regularization technique. The results
may accordingly indicate that our algorithm may further
exploit the observation and sampling noises.
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Fig. 2 Residuals of icdm (top), chicago (middle), and bikely
(bottom).

5. Conclusion
In this paper, we proposed a joint map-matching method

based on the generative model for estimating unobservable
paths by maximizing the posterior probability. Maximiza-
tion is achieved by the EM algorithm whose object function
consists of residual and regularization terms. We presented
an iterative algorithm for exploring the route graph, which
avoids as many map-matchings as possible by taking ad-
vantage of the proven property holding of the residual and
the regularization terms. The experimental results showed
that the residual degradations from the lower bound were
no more than 7.0% when the sampling rate was reduced to

40%. This means that this algorithm reduces the volume
of sampling noises and identifies the major streams in the
trajectories.

In the future, we plan to continue this work in three di-
rections: first, by realizing performance enhancements by
further reducing the costly map-matching. One idea is to
localize the re-routing to the disabled links without perform-
ing map-matching from the origin to destination of the tra-
jectories. The other idea is to extend our algorithm to the
on-line that updates the route graph as trajectories arrive in
sequence. The second direction is to develop more sophisti-
cated formulations of the EM algorithm without considering
the extreme case, or applying another generative model such
as the Hidden Markov Model. The third and final direction
is to apply our method to demand analysis, urban design,
and other applications.
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