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Abstract: In embedded network software running on embedded systems within the Internet of Things (IoT), high
levels of runtime efficiency and user productivity are required. As an approach to improve the productivity of soft-
ware development, the mruby on TOPPERS embedded component system (TECS) framework has been proposed;
note that mruby on TECS framework employs a scripting language (i.e., a lightweight Ruby implementation) and
supports component-based development. In this paper, we propose an extended mruby on TECS framework for its
application in developing software for IoT devices, including sensors and actuators. Our proposed framework enables
mruby programs to utilize Tomakomai Internetworking (TINET), a TCP/IP protocol stack specifically designed for use
in embedded systems. Further, the proposed framework incorporates two component-based functions, i.e., a compo-
nentized TINET stack called TINET+TECS and a componentized Two-Level Segregate Fit (TLSF) dynamic memory
allocator called TLSF+TECS. Here, TINET+TECS improves configurability and scalability and offers software de-
velopers high levels of productivity through variable network buffer sizes and the ability to add or remove various TCP
(or UDP) functions. TINET+TECS utilizes a dynamic TECS component connection method to satisfy the original
TINET specifications. Further, TLSF+TECS is a thread-safe memory allocator that runs at high speeds and efficiently
consumes memory. The experimental results of the comparison between TINET+TECS and the original TINET show
that execution time and memory consumption overhead are both reduced; further, we conclude that configurability
is improved. Finally, the TLSF+TECS function which obtains and reports statistical information regarding mruby’s
virtual machine (VM) memory usage, helps developers debug and verify their embedded IoT systems.
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1. Introduction

As an essential next evolutionary step for the Internet, the Inter-
net of Things (IoT) connects various items and platforms such as
wearable devices and smart devices, via the Internet to further en-
rich people’s lives [1]. The IoT uses embedded systems, such as
data sensors and controlling actuators, as elemental constituents;
therefore, these devices must demonstrate consistently high lev-
els of quality and runtime performance. These requirements have
consequently led to an increase in their complexity and scale; fur-
ther, to be successful and widely adopted by users, these systems
must have low production costs and short development cycles.

Complex and large-scale software systems can be developed
efficiently using component-based techniques [2], [3]. Particu-
larly, component-based development is a design technique that
is applicable to the development of reusable software. Given
its importance in terms of reliability, verification of component-
based systems has been extensively researched [4], [5]. Individ-
ual component diagrams enable the visualization of an entire sys-
tem. Further, component-based systems are flexible in terms of
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their extensibility and resilience to specification changes. Typical
component-based development environments focused on embed-
ded systems include the TOPPERS embedded component system
(TECS) [6], AUTOSAR [7], and SaveCCM [8].

In addition to specific development environments, scripting
languages, such as Ruby, JavaScript, Perl, Python, and Lua, offer
efficient approaches to develop quality software. Currently, most
embedded software is implemented using the C language, but de-
velopment in C typically results in large code size, high costs,
and significant development time. However, the use of scripting
languages improves the efficiency of software engineering and
can shorten the development period because it effectively sup-
ports and promotes the development of reusable scripts.

Embedded systems often have real-time requirements; there-
fore, real-time properties, such as estimating worst-case execu-
tion times, are very important. Although scripting languages are
easy to use and read, their execution typically requires more time
than that required for executing the code written in C. Therefore,
applying scripting languages to embedded systems poses a major
difficulty. To address this limitation, in Refs. [9] and [10], mruby
on TECS has been proposed as a component-based framework for
efficiently running script-based programs. This framework inte-
grates two key technologies, i.e., mruby, which is a lightweight
implementation of Ruby designed specifically for embedded sys-
tems [11], [12] and TECS, which is a component-based frame-
work also designed specifically for embedded systems [6].

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

In this paper, we propose an extended framework for mruby on
TECS that can be applied to embedded network software devel-
opment involving IoT devices. The proposed framework makes
it possible to utilize Tomakomai Internetworking (TINET) func-
tions from within the mruby programs. Note that TINET is a
compact TCP/IP protocol stack for embedded systems [13] that
comprises a number of complex source code files, i.e., it contains
many files and defines many macros, which can be problematic
for software developers seeking to maintain, extend, and analyze
the software. To overcome the above problem, TINET+TECS is
a componentized TINET implementation that incorporates TECS
to improve the configurability and scalability of TCP/IP software.
For IoT applications that should only be sending values obtained
by one or more than one sensors, it is ideal to easily customize
the minimum configuration of the TCP/IP protocol stack, e.g., by
removing unused functions. This improved configurability also
leads to satisfying strict memory constraints of IoT devices.

In addition to TINET+TECS, the proposed framework incor-
porates a component-based dynamic memory allocator based on
Two-Level Segregate Fit (TLSF) called TLSF+TECS. Note that
TLSF is a dynamic memory allocator designed specifically for
real-time systems that always run in constant time (i.e., O(1)) and
improves memory usage efficiency by dividing memory blocks
in two distinct stages. In the current version of TLSF, memory
contention may occur when multiple threads run simultaneously.
To address this problem, TLSF+TECS is a componentized TLSF
memory allocator that is also entirely thread-safe because each
component has its own heap area from which memory is actually
allocated. In TLSF+TECS, developers can also obtain statistical
information regarding memory usage, which is crucial in analyz-
ing memory operations and locating bugs.

Contributions: The proposed framework provides the follow-
ing three contributions.

Applicability to various devices. The proposed framework
does not depend on real-time operating systems (RTOSs) or spe-
cific hardware; instead, it can be utilized by various devices, i.e.,
mruby code is portable. Therefore, it is possible to run the same
program on different devices.

Improved configurability. Because TINET+TECS is a
component-based system, its software can flexibly change in re-
sponse to system configuration changes, such as resizing of net-
work buffers, adding or removing TCP (or UDP) functions, and
supporting both IPv4 and IPv6. Further, the use of individual
component diagrams enables visualizations of the entire system.

Thread-safe memory allocation TLSF+TECS safely runs
multiple threads without exclusive control even if the threads op-
erate concurrently. To achieve this, each thread can easily set up
its own heap area. Further, statistical information is available to
help developers debug and verify the specific memory usage of
the given system.

Organization: The remainder of this paper is organized as fol-
lows. Section 2 introduces the system model and fundamental
technologies, i.e., TECS, mruby, and mruby on TECS. Next, Sec-
tion 3 describes the design and implementation of the proposed
framework, including TINET+TECS and TLSF+TECS. In Sec-
tion 4, we provide a detailed evaluation of the proposed frame-

work. Finally, related work is discussed in Section 5 and Sec-
tion 6 concludes this paper.

2. System Model

This section describes the system model of the proposed frame-
work, including fundamental technologies such as TECS and
mruby. The proposed framework is an extension of mruby on
TECS framework [9], [10], and utilizes two technologies: mruby
and TECS. The system model of the proposed framework is
shown in Fig. 1. In the proposed framework, each mruby pro-
gram runs on a RiteVM mapped to a componentized task of an
RTOS. mruby programs can call the TINET functions required
for network software through the mruby-TECS bridge, and thus
software to be embedded in IoT devices can be developed.

Requrements: The requirements of the proposed mruby plat-
form for IoT devices are defined as follows.
R1: TCP/IP functions can be utilized from mruby programs and

the protocol stack can be easily configured for productivity
since the network function is essential to the IoT systems.

R2: Multiple mruby programs can run concurrently to improve
the productivity of software development. A thread-safe
memory allocator is required to prevent the multiple mruby
tasks from conflicting their memory.

The following subsection explains TECS, mruby, and mruby
on TECS framework.

2.1 TECS
TECS is a component system suitable for embedded systems.

TECS can increase productivity and reduce development costs
due to improved reusability of software components. TECS also
provides component diagrams, which help developers visualize
the overall structure of a system.

TECS statically performs component deployment and com-
position. Consequently, connecting components does not incur
significant overheads and memory requirements can be reduced.
TECS can be implemented in C, and demonstrates various fea-
tures such as source level portability and fine-grained compo-
nents.
2.1.1 Component Model

Figure 2 shows a component diagram. A cell, which is an in-
stance of a TECS component, consists of entry ports, call ports,
attributes and variables. An entry port is an interface that pro-
vides functions to other cells, and a call port is an interface that

Fig. 1 System model of the proposed framework.
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Fig. 2 Component diagram.

Fig. 3 Signature description.

Fig. 4 Celltype description.

Fig. 5 Build description.

enables the use of other cell’s functions. A cell has one or more
entry ports and call ports. Cell functions are implemented in C.

The type of entry/call port is defined by a signature, which is
a set of functions. A signature is the interface definition of a cell.
The cell’s call port can be connected to the entry port of another
cell by the same signature. Here, celltype defines one or more
call/entry ports, attributes, and internal variables of a cell.
2.1.2 Component Description

In TECS, components are described by signature, celltype, and
build written in component description language (CDL). These
components are described as follows.
Signature Description The signature defines a cell interface.

The signature name follows the keyword signature and takes
the prefix “s” e.g., sMotor (Fig. 3). In TECS, to clarify the
function of an interface, specifiers such as [in] and [out] are
used, which represent input and output, respectively.

Celltype Description The celltype defines entry ports, call

ports, attributes, and variables. A celltype name with the
prefix “t” follows the keyword celltype, e.g., tCaller (Fig. 4).
To define entry ports, a signature, e.g., sMotor, and an en-

try port name, e.g., eMotor, follow the keyword entry. Call

ports are defined similarly. Attributes and variables follow
the keywords attr and var, respectively.

Build Description The build description is used to instantiate
and connect cells. Figure 5 shows an example of a build de-
scription. A celltype name and cell name, e.g., tMotor and
Motor, respectively, follow the keyword cell. To compose
cells, a call port, cell’s name, and an entry port are described
in that order. In Fig. 5, entry port eMotor in cell Motor is
connected to call port cMotor in cell Caller. C EXP calls
macros defined in C files.

Fig. 6 Development flow using TECS.

2.1.3 Development Flow
Figure 6 shows the development flow using TECS. TECS gen-

erator generates the interface code (.H and .C) and the configure
file of the RTOS (.cfg) from the CDL file.

Software developers using TECS can be divided into compo-
nent designers and application developers. Component designers
define signatures, which are interfaces between cells, and cell-

types, which are types of cells. Using the template code generated
from the CDL file in which these are defined, component design-
ers implement the functions and behaviors of the component in
C language. The source code implementing the function of the
component is called a celltype code. Application developers de-
velop applications by using component diagrams and predefined
celltype to connect cells with build description. An application
module is generated by compiling and linking the header, the in-
terface code, and the celltype code.

2.2 mruby
mruby is a light-weight implementation of the Ruby program-

ming language complying to part of the ISO standard [12]. Ruby
is an object-oriented scripting language [14] with classes and
methods, exceptions, and garbage collection functions. It is easy
to use and read due to its simple grammar and Ruby requires
fewer lines of code than C. Ruby improves the productivity
of software development due to its simple grammar and object-
oriented functions.

mruby, which retains the usability and readability of Ruby, re-
quires fewer resources, and thus, is suitable for embedded sys-
tems. In addition, mruby includes a VM mechanism, and thus,
mruby programs can run on any operating system as long as a
VM is implemented. The mruby/RiteVM mechanism is shown
in Fig. 7. The mruby compiler translates an mruby code into a
bytecode, which can be interpreted by a RiteVM; thus, mruby
programs can be executed on any target device with a RiteVM.

2.3 mruby on TECS
mruby on TECS is a component-based framework for running

an mruby script language on embedded systems. This framework
integrates two technologies, mruby and TECS, and enables the
development of embedded software using a script language with-
out slowing down the execution time.
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Fig. 7 mruby/RiteVM mechanism.

Fig. 8 mruby-TECS bridge.

2.3.1 System Model of mruby on TECS
Each mruby program, which is a bytecode, runs on its own

RiteVM as a componentized task of an RTOS. TECS compo-
nents support various embedded drivers such as motor and sen-
sor drivers. An mruby-TECS bridge provides native libraries for
mruby and can call a native program (e.g., C legacy code) from
an mruby program. The mruby-TECS bridge also provides TECS
components for receiving the invocation from an mruby program.

In this paper, TOPPERS/ASP3 [15], [16] is the target RTOS
and is based on µITRON [17] . However, mruby on TECS does
not depend on the RTOS because TECS supports not only TOP-
PERS/ASP3 but also the other RTOSs such as OSEK [18] and
TOPPERS/HRP2 [19], [20].
2.3.2 mruby-TECS Bridge

There is a significant difference between the execution times of
mruby and C language codes. According to Ref. [9], mruby pro-
grams are several hundred times slower than C programs and the
execution of an mruby bytecode on a RiteVM is not as efficient
as that of C code. Thus, it is difficult to use mruby exclusively.

Using Ruby on embedded devices improves productivity and
maintainability because it is easy to use and read. However, some
C language codes are required to manipulate actuators and sen-
sors and ensure that critical sections of the code run quickly.

Figure 8 illustrates an mruby-TECS bridge used to control a
motor. The left side of BridgeMotor belongs to the mruby pro-
gram. The right side of BridgeMotor belongs to the TECS com-
ponent.

The mruby-TECS bridge generates a celltype, which is called
from the mruby code, and an mruby class, which corresponds to
a developer-specified TECS component to invoke a C function
from the mruby program. The generated mruby-TECS bridge
supports the registration of classes and methods for mruby. Meth-
ods in an mruby class are defined by generation codes for an
mruby-TECS bridge, such as setPower and stop. Thus, when a
method is called in an mruby program, the mruby-TECS bridge
calls the function defined in the TECS component such as a Mo-
tor cell.

3. Proposed Framework

The proposed framework is an extended mruby on TECS
framework to develop network software for IoT devices. De-

Fig. 9 TINET and TOPPERS/ASP3 hierarchy diagrams.

velopers can use TCP- and UDP-related functions from mruby
programs. The proposed framework incorporates two function-
alities: TINET+TECS and TLSF+TECS. TINET+TECS is a
component-based TCP/IP protocol stack comprised in the pro-
posed framework, and it compensates for the original TINET’s
weak point that it is hard to maintain, extend, and analyze the
software due to many complex source codes and improves the
configurability. TLSF+TECS which is a component-based dy-
namic memory allocator is used for the memory management of
RiteVMs and TCP/IP buffers in the proposed framework. Since
each TLSF component maintains its own heap area, TLSF+TECS
allows concurrent operation without exclusive control while im-
proving the efficiency of memory consumption, which is the ad-
vantage of TLSF.

3.1 TINET+TECS
3.1.1 TINET

TINET is a compact TCP/IP protocol stack for embedded sys-
tems based on the ITRON *1 TCP/IP API Specification [21], de-
veloped by the TOPPERS Project [22]. TINET has been released
as an open-source tool. To satisfy restrictions for embedded
systems in terms of, for example, memory capacity, size, and
power consumption, TINET supports functions such as minimum
copy frequency, elimination of dynamic memory control, asyn-
chronous interfacing, error detailing per API.

Overview: TINET runs as middleware on TOPPERS/
ASP3 [15], [16], a real-time kernel based on µITRON [17]. As it
is compatible with TOPPERS RTOS, TINET also supports other
RTOSs such as TOPPERS/ASP and TOPPERS/JSP.

Figure 9 shows the hierarchy diagram of TINET and TOP-
PERS/ASP3. Users send and receive data using a Communica-
tion End Point (CEP), an interface that functions like a socket.
In the transmission process, headers are attached to the data body
passed to the CEP at each protocol layer before the data are trans-
mitted from the network device. In the reception process, the
headers of the data bodies received by the network device are an-
alyzed at each protocol layer, and the data are then passed to the
CEP.

A TCP reception point called the REP stands by to receive
connection requests from the partner side. The REP has an IP
address (myaddr) and a port number (myportno) as attributes and
performs functions such bind() and listen().

In TINET, the amount of data copying at each protocol layer is
minimized. In standard computing systems, the TCP/IP protocol

*1 ITRON is an RTOS developed by the TRON project.
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Fig. 10 Component diagram of a protocol stack.

stack has large overheads in terms of execution time and memory
consumption because the data are copied at each protocol layer.
To solve this problem, TINET does pass the pointer of the data
buffer between each protocol layer instead of data copying.
3.1.2 Component Design of TINET+TECS

TINET+TECS, the proposed componentized TCP/IP protocol
stack, comprises a number of some TECS components. This sec-
tion describes the components of the TINET+TECS framework
with the aid of component diagrams.
Components of a protocol stack

The components of the TINET+TECS protocol stack are
shown in Fig. 10. Note that some small particle components, such
as a kernel object, data queues, and semaphores, are omitted to
simplify the component diagram. In TINET+TECS, the compo-
nents are divided for each protocol, and functionalities such as in-
put/output functions are defined as respective components. By us-
ing such small grain components, software visibility is improved.
The components of each protocol are described as follows.

Application layer: An application in TINET+TECS is im-
plemented as a component such as tApplication. Software
with TINET uses ITRON TCP/IP API [21] such as tcp snd dat

and tcp rcv dat. In TINET+TECS, the application component
calls TECS functions such as cTCPAPI sendData and cTC-

PAPI receiveData. Moreover, in TINET+TECS supporting a
TECS adapter, an existing application with TINET can run on
the TINET+TECS framework without transporting, and there-
fore, software can be developed either using existing methods or
as TECS components.

Transport layer: tTCPCEP (tUDPCEP) and tREP are, respec-
tively, CEP and REP components. For example, a server pro-
gram supporting multiple clients can be developed by preparing
multiple tTCPCEP components. tTCPInput and tTCPOutput are
components for performing, respectively, receiving and sending
processing in the transport layer.

Fig. 11 Component diagram of tMemoryAllocator.

Network layer: The tIPv4Input and tIPv4Output compo-
nents perform, respectively, the receiving and sending process-
ing in the network layer. The tIPv4Functions component per-
forms functions such as checksum, the tICMP component is
used for the Internet Control Message Protocol (ICMP), and the
tIPv4RoutingTable component operates a routing table.

Data link layer: tEthernetInputTaskBody and tEthernetOut-
putTaskBody (tEthernetOutput) are components for performing,
respectively, receiving and sending processing in the data link
layer. The tArp component is for implementing the Address Res-
olution Protocol (ARP).

Physical layer: The tNetworkInterfaceContoroller component
implements a network device driver. Software can be run on other
devices by replacing the component because only the component
depends on the target device.

To utilize the protocol stack in the same manner in the orig-
inal TINET, communication object components such as tTCP-
CEP, tUDPCEP, and tREP are defined as an interface between
TINET+TECS and applications. The communication object
component corresponds to a CEP or REP of the original TINET.
Application developers can utilize TINET+TECS functionalities
by generating and combining as many components as necessary.

TINET+TECS supports the coexistence of multiple protocols.
Though its use of IPv6 and Point-to-Point Protocol (PPP) compo-
nents, TINET+TECS can make IPv4 and IPv6 coexist and sup-
port PPP without modification of component implementation.
Memory allocator component

The original TINET eliminates dynamic memory control to
meet the severe memory restrictions of embedded systems. A
memory area for sending/receiving data in the protocol stack is
allocated and released within a predetermined area. The memory
allocator component allows for the elimination of dynamic mem-
ory control in TINET+TECS by providing a requested memory
area from the statically allocated memory area.

The memory allocator component connects to as many tFixed-
SizeMemoryPool as required, as shown in Fig. 11. tFixed-
SizeMemoryPool is a componentized kernel object of TOP-
PERS/ASP3 for allocating and releasing memory areas of a re-
quested size. tFixedSizeMemoryPool components of various
sizes are prepared, and an appropriate memory area can be allo-
cated according to the used data size. On the other hand, all com-
ponents that need to allocate or deallocate memory, e.g., tTCPIn-
put and tEthernetOutput, connect to the memory allocator com-
ponent.

In addition, TINET+TECS utilizes the TECS send/receive

specifier to minimize the memory copy frequency, which is a
functionality supported by TINET.

Send/receive specifiers: TECS supports send/receive inter-
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Fig. 12 Differences between in/out and send/receive.

Fig. 13 Signature description of the nic driver (An example of send/
receive).

face specifiers [23]. TINET+TECS uses send and receive spec-
ifiers instead of in and out to reduce the number of copies:
• in is a specifier for input arguments. A callee side uses

the memory of arguments with in when executing the callee
function. When the processing returns to the caller side, the
caller can reuse and deallocate the memory.

• send is another specifier for transferring data to a callee from
a caller. The difference between in and send is whether the
data memory is deallocated in the caller or callee, as shown
in Fig. 12. In the case of the in specifier, both allocating and
deallocating of the data memory are performed in the caller.
By contrast, in the case of send, the caller allocates the data
memory and the callee deallocates it.

• out is a specifier for output arguments through which a callee
writes data in the memory allocated by a caller while the
caller receives the data.

• receive is another specifier for a caller receiving data from
a callee. The difference between out and receive lies in
whether the data memory is allocated in the caller or callee,
as shown in Fig. 12. In the case of out, the callee writes data
in the memory allocated by a caller, whereas in the receive

case, the callee allocates the data memory. Deallocating of
the memory is performed in the caller in both cases.

As shown in Fig. 13, sending and receiving arguments such
as outputp and inputp are defined using, respectively, the
send/receive specifier in the signature description. Developers
hardly make mistakes of memory operation because these speci-
fiers completely pass an ownership of memory. Common object
request broker architecture (CORBA) does not consider memory
sharing; CORBA has no functionalities such as send/receive.
3.1.3 Dynamic Connection in TECS

TECS supports a dynamic connection, a method for switching
the binding of components at runtime (Fig. 14) as a new function-
ality. In Fig. 14, the solid line represents binding and the dotted
line represents non-binding. Note that all components are stat-
ically generated in TECS, which can optimize the overhead of
componentization because components are statically configured.
Dynamically generating components causes a good deal of mem-

Fig. 14 Dynamic connection.

Fig. 15 Dynamic connection between CEP and REP.

Fig. 16 Signature and celltype description for the dynamic connection.

ory consumption, which is a serious problem for embedded sys-
tems with strict memory constraints. The proposed framework
can take advantage of the componentization in TINET while sat-
isfying the memory constraint because components are statically
generated and dynamically connected in TECS.

TINET+TECS utilizes the dynamic connection to switch be-
tween CEP and REP components, as shown in Fig. 15. In a server
application, CEP is associated with REP in the state of waiting for
a connection request from clients *2. For example, when process-
ing with the HTTP protocol, CEP passively opens with an REP
of port number 80.

To utilize dynamic connectivity, a selector should be defined.
A selector connects all components that can be dynamically con-
nected under a common descriptor that serves as an identifier to
access each component [24]. The cREP ports form a call port ar-
ray connecting to connecting to all tREP cells (Line 8 in Fig. 16).
[ref desc] is used to identify call ports referring to descriptors. In
the case of Fig. 15, the tRepSelector cell connects all tREP cells.

A CEP component has two call ports: the cRepSelector port,
which connects to the eRepSelector port of tRepSelector cell, and
the cREP4 port, which connects to either of the tREP cells (Lines
11–13 in Fig. 16). The cREP port is defined using [dynamic] to
identify the call port used to dynamically switch the components.
The call port with the [dynamic] specifier is not optimized and is
allocated in RAM using a plug-in.

Figure 17 shows a sample code of the dynamic connection.
The eAPI accept function is the function wrapping tcp acp cep

under TECS, which is set as the state waiting for a connection
request. The dynamic connection in the function is performed
as shown in Fig. 17. First, the descriptor of REP to be joined is

*2 tcp acp cep(ID cepid, ID repid, T IPV4EP *p dstaddr, TMO tmout).

c© 2018 Information Processing Society of Japan
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Fig. 17 Accept function (a dynamic connection example).

Fig. 18 TLSF algorithm.

obtained (Line 3 in Fig. 17). The first argument, &desc, is a vari-
able used to store the descriptor information, whereas the second
argument, repid, is the index of tREP cells. Next, the descriptor
is set (Line 5 in Fig. 17), and the cREP port combines the tREP
cell specified by the descriptor, enabling the tCEP cell to call the
function of the tREP cell to be joined (Line 7 in Fig. 17).

3.2 TLSF+TECS
3.2.1 TLSF

The TLSF (Two-Level Segregate Fit) memory allocator [25],
[26] is a dynamic memory allocator that is suitable for use in the
real-time systems. As such, the TLSF memory allocator provides
the following two features.

Real-time property. In TLSF, the worst-case execution time
required for allocating and deallocating memory does not depend
on the given data size. Instead, TLSF always runs in constant
time (i.e., O(1)), and it is possible to estimate response time.

Efficient memory consumption. Memory efficiency is im-
proved by suppressing memory fragmentation. Various experi-
ments have achieved an average fragmentation of less than 15%
and a maximum fragmentation of less than 25% [26].
3.2.2 TLSF Algorithm

As illustrated in Fig. 18, the TLSF algorithm classifies mem-
ory blocks into two stages and searches for a memory block that
optimally lines up with the requested memory size. Particularly,
consider the case in which a request to dynamically allocate 98
bytes is made via malloc(98). First, the request is classified based
on the leftmost 1 bit in the requested memory size. In this exam-
ple, since 98 is represented in binary as byte 01100010, it falls in
the range of 64-128 based on the leftmost 1 bit. Second, the re-
quest is further classified as follows. The range from 64 to 128 is
further divided into four equally sized groups, with 98 falling into
the block ranging from 96 to 111. A free block *3 in this range is
then used to fulfill the memory allocation request.

Without using the above approach, a simple fixed-size memory
block allocator results in wasted memory blocks of up to 50%. As
illustrated above, TLSF classifies the memory allocation process

*3 A free block is an available memory block.

Fig. 19 Signature description of memory management.

Fig. 20 Celltype description of TLSF memory allocator component.

Fig. 21 TLSF before componentization.

finely in two steps. Therefore, it is a memory efficient algorithm.
Fortunately, given its design, TLSF searches for memory blocks
in constant time (i.e., O(1).
3.2.3 Component Design of TLSF+TECS

In this subsection, we describe the component design of the
TLSF memory allocator. Note that we use TECS to componen-
tize TLSF. Further, the version of TLSF used is 2.4.6 *4.

In Fig. 19, we summarize the signature used by the allocator
for dynamic memory management. Particularly, this component
defines the memory pool initialization function initializeMemo-

ryPool(), memory allocation functions calloc(), malloc(), and re-

alloc(), and the memory release function free().
Next, Fig. 20 shows the celltype description for the TLSF

memory allocator component. Here, entry port eMalloc is con-
nected to all components that perform memory management in-
cluding malloc() and f ree(). Further, [inline] is a specifier to
suggest to the TECS generator to implement as an inline func-
tion. Memory pool size is defined as an attribute, and a pointer to
a memory pool is defined as a variable. Note that each component
maintains its own heap area. Therefore, even when calling mem-
ory management functions simultaneously from different threads,
it is possible to operate without any memory contention.

As shown in Fig. 21, since TLSF before componentization
shares the heap area with multiple threads, if memory is allo-
cated or released simultaneously via multiple threads, memory
contention may occur in some cases, thus causing intermittent
synchronization problems that can be extremely difficult to de-
bug. In this study, TLSF is componentized using TECS, as shown
in Fig. 22. It is possible to operate in thread safe without exclu-
sive control because each component independently holds a heap
area and manages memory within it.

Next, Fig. 23 shows the build description of the TLSF memory

*4 http://www.gii.upv.es/tlsf/main/repo
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Fig. 22 TLSF after componentization.

Fig. 23 Build description of TLSF memory allocator component.

Fig. 24 Example of TLSF memory allocator component.

allocator component illustrated in Fig. 22 *5. Here, two sets of
task components and TLSF components are combined. Further,
each memory pool size can be configured as a variable (lines 5
and 11 in Fig. 23). Figure 24 presents the code that actually
calls functions of the TLSF memory allocator component. The
use part shows a function in which the RiteVM allocates mem-
ory within the mruby on TECS framework [9], [10], which we
introduced in Section 2.3 above. Line 8 calls the free() function
of the TLSF memory allocator component. cMalloc represents
the name of the call port on line 2 in Fig. 23. Similarly, lines 13
and 17 call the memory allocation function. Particularly, the heap
area for the TLSFMalloc 001 component is used if the code from
24 is executed in Task 001; conversely, if that code is executed
in Task 002, the heap area of the TLSFMalloc 002 component
is used. Using this approach, in component-based development
using TECS, it is possible to operate with the same code with-
out modifying the underlying C code, although the resulting cells
differ.
Multiple RiteVM instances

The proposed framework uses the TLSF memory allocator for
memory management within RiteVMs; however, since it is dif-
ficult to hundle multiple memory pools in the existing TLSF, if

*5 Other call/entry ports, attributes, and valuables are actually described,
but it is omitted here for simplicity.

Fig. 25 Component description of RiteVM and TLSF+TECS.

Fig. 26 Fixed-size and TLSF memory allocator components.

memory is allocated or deallocated from multiple threads, mem-
ory contention will likely occur. Here, as a RiteVM allocates
and deallocates memory at high frequencies, memory contention
quickly occurs when multiple RiteVMs are instantiated. Note that
the TLSF components are connected to the RiteVMs to ensure
that each component has its own heap area within each RiteVM,
as illustrated in Fig. 25. Since each TLSF component maintains
its own memory pool, multiple RiteVMs can be executed with-
out the possibility of any memory contention. In Fig. 25, we ob-
serve that the first RiteVM has a heap area of 1 MB (i.e., 1,024 ×
1,024 bytes) and the second RiteVM has a heap area of 2 MB
(i.e., 2 × 1,024 × 1,024 bytes). As illustrated in Fig. 25, it is easy
to configure different-sized heap areas for each RiteVM. Further,
each RiteVM performs incremental garbage collection (GC), and
a RiteVM that has started GC does not disturb the execution of
other RiteVMs in its GC execution.
Memory management for sending and receiving data

In the TCP/IP protocol stack, memory allocation and subse-
quent deallocation are repeated in each layer, including the TCP,
IP, Ethernet, and other layers. Therefore, the role of the mem-
ory allocator is critical. The TINET+TECS framework combines
all components that manage memory within the allocator. The
TLSF memory allocator can execute at the same speed as that
of the fixed-size memory allocator that TOPPERS/ASP3 sup-
ports as standard; further, the TLSF memory allocator can im-
prove memory efficiency. As illustrated in Fig. 26, the fixed-size
memory allocator prepares memory pools of different sizes and
selects a memory pool whenever it is necessary. Conversely,
TLSF+TECS efficiently manages memory without the need to se-
lect a memory pool. Finally, TLSF+TECS can be easily extended
to TINET+TECS since TINET+TECS is a component-based sys-
tem.

3.3 Use Case
In the proposed framework, applications can call TINET func-

tions, such as specific TCP- and UDP-related functions, from
mruby programs because the mruby-TECS bridge automatically
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Fig. 27 An example of mruby application.

generates the code to link mruby and C. Figure 27 shows an ex-
ample of mruby program that transmits the value acquired from
the sensor to another device or a server. In general, mruby makes
it easier to develop applications than using C with the existing
TINET.

For a simple application, typically only a few functions are
used, with numerous unused functions. As an example, the ap-
plication code shown in Fig. 27 only uses a function to send data
via TCP. The proposed framework incorporates TINET+TECS
and can easily customize the TCP/IP protocol stack by remov-
ing functions, such as UDP functions, functions that support only
IPv4, or TCP receiving functions. As such, the proposed frame-
work can be applied to embedded systems with strict memory
constraints by removing many unused functions.

4. Evaluation

This section describes the experimental evaluation used to
demonstrate the effectiveness of the proposed framework. GR-
PEACH was employed as the evaluation board. Detailed spec-
ifications of the board are shown in Table 1. We also employ
TINET 1.5.4 and the compiler arm-none-eabi-gcc 5.2 To pretest
the system, we connected the board to a host PC via a LAN cable
and evaluated the data sending and receiving.

4.1 Improved Configurability
As shown in Table 2, the code lines for modification were mea-

sured to demonstrate the improved configurability. This demon-
strated the ability to change the composition of the protocol stack
with a small workload, confirming that the proposed framework
improves the configurability.

4.2 Performance of TINET+TECS
To demonstrate the low overhead of TINET+TECS, we com-

pared its execution time and memory consumption with that
of TINET. The results with TCP are shown in Fig. 28. The
tcp snd dat and tcp rcv dat APIs were used in the evaluation
to, respectively, send and receive TCP data. For tcp snd dat,
we measured the executing time starting from the API call
through the application until the return of the processing result.
In TINET+TECS, this process is performed in the order tAp-
plication, tTCPCEP, tTCPOutputTaskBody, tIPv4Output, tEth-
ernetOutput, tArp, tEthernetOutputTaskBody, and tIfMbed, as
shown in Fig. 10. For tcp rcv dat, we measured the execution
time from the data receipt in the LAN driver until data acquisition
in the application. In TINET+TECS, the process is performed in
the order tIfMbed, tEthernetInputTaskBody, tIPv4Input, tTCPIn-

Table 1 Evaluation board environment.

Board GR-PEACH
CPU Cortex-A9 RZ/A1H 400 MHz
Flash ROM 8 MB
RAM 10 MB
LAN Controller LAN8710A

Table 2 Modified code lines of CDL.

Size Size (– Default) CDL

Default 325.23 KB 0 KB 0 lines
I 305.40 KB – 19.83 KB 18 lines

I + II 304.12 KB – 21.10 KB 27 lines
I + II + III 303.45 KB – 21.77 KB 32 lines

I: Remove TCP
II: Remove ICMP
III: Change network buffer (Remove memory pools)

Fig. 28 Execution times of TINET and TINET+TECS with TCP.

Fig. 29 Execution times of TINET and TINET+TECS with UDP.

Table 3 Memory consumption of TINET and TINET+TECS.

text data bss total

TINET 183.94 KB 5.37 KB 132.03 KB 322.34 KB
TINET+TECS (TCP) 169.48 KB 5.37 KB 149.01 KB 323.96 KB
TINET+TECS (UDP) 169.26 KB 5.37 KB 149.04 KB 323.77 KB

TINET+TECS (TCP+UDP) 170.73 KB 5.37 KB 149.13 KB 325.23 KB

Including the application and kernel objects

put, tTCPCEP, and tApplication, as shown in Fig. 10. The ex-
ecution time of TINET+TECS is close to that of TINET, with
an overhead of about 3 us. Conversely, we evaluated the ex-
ecution times with UDP as shown in Fig. 29. TINET+TECS
can run at the same speed as TINET; therefore, the overheads
of TINET+TECS are low. As the use of the send/receive specifier
enables accessing of the buffer address without data copying, the
componentization overhead does not affect the execution time.

The memory consumptions of TINET and TINET+TECS
are compared in Table 3. The memory consumption of
TINET+TECS is about 1% higher than that of TINET, as the data
and processes such as initialization of cells, descriptors, function
tables, and skeleton functions needed to manage TECS compo-
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Fig. 30 Component diagrams for without/with dynamic connection.

Table 4 Memory consumption in two cases
(with/without dynamic connection).

CEP:1 REP:1 CEP:1 REP:5 CEP:2 REP:5 CEP:5 REP:10

without 324.98 KB 325.34 KB 326.39 KB 331.68 KB
with 325.23 KB 325.32 KB 327.24 KB 330.48 KB

Table 5 CDL code lines of without/with dynamic connection.

without with Diff

CEP:1 REP:1 344 lines 347 lines −3 lines
CEP:1 REP:5 369 lines 367 lines 2 lines
CEP:2 REP:5 387 lines 382 lines 5 lines
CEP:5 REP:10 485 lines 445 lines 40 lines

nents increase memory consumption.

4.3 Dynamic Connection
Memory consumption without and with TECS dynamic con-

nection was then evaluated. As shown in the left of Fig. 30, each
CEP component should be statically connected to all REP com-
ponents if the dynamic connection is not used. As the number of
REPs increases, additional call ports of CEP are required, in turn
increasing the consumption of memory. The dynamic connection
reduces memory consumption because only one CEP-to-REP call
port is required per CEP, as illustrated with red lines in the right
paneof Fig. 30. Even if the number of REPs increases, additional
call ports can be joined through the selector, instead of the CEPs.

Memory consumption of without and with dynamic connection
is shown in Table 4. The dynamic connection case consumes the
more RAM memory because, as mentioned in Section 3.1.3, call
ports with [dynamic] are not optimized and allocated in RAM ar-
eas. However, the overall memory consumption is lower under
the proposed framework.

The code lines in CDL of without and with the dynamic con-
nection is shown in Table 5 to demonstrate improved configura-
bility. As the number of CEPs and REPs increases, the amount of
CDL code lines to be added increases. In the left of Fig. 30, each
CEP connects all REPs as shown in the upper of Fig. 31. In the
right of Fig. 30, a CEP dynamically connects an REP, and only the
selector connects all REPs as shown in the lower of Fig. 31. It is
effective for software that uses many ports because the difference
spreads as the number of CEPs and REPs increases.

4.4 Memory Usage of RiteVMs by TLSF+TECS
The proposed dynamic memory allocator, TLSF+TECS, exe-

cutes multiple tasks without exclusive control concurrently be-
cause each TLSF component holds its own heap area. The
TLSF+TECS framework provides functionality to acquire statis-
tical information describing dynamic memory usage. Therefore,
it is possible to analyze the operational status of the TLSF and

Fig. 31 Two CDL codes (without/with dynamic connection).

Fig. 32 Memory usage of RiteVMs with TLSF+TECS.

GC on RiteVMs.
Figure 32 shows the memory usage of two RiteVMs, with pre-

sented data acquired from the statistical information available via
the TLSF+TECS framework. From the figure, we observe that
when the RiteVM are first activated, a large amount of memory is
allocated for each RiteVM and initialization is performed within
one second. Next, the applications runs for 10 s and the RiteVMs
subsequently terminate. The reduction in memory usage that oc-
curs at regular intervals is due to the GC function of the RiteVM.
Here, an application that allocates tens of KB of memory runs on
RiteVM 1 and an application that allocates hundreds of KB of
memory runs on RiteVM 2. Figure 33 shows the memory usage
when two RiteVMs are executed in one heap area with exclusive
control. In Fig. 4, two applications are finished at 10.837 s, and in
Fig. 33, they are finished at 10.877 s, which demonstrates that the
execution time of the applications has increased due to exclusive
control. In addition to the overhead of execution time, a RiteVM
is not affected by other RiteVMs since TLSF+TECS keeps heap
area independently. GC on a RiteVM is performed periodically;
however, there is a part that GC is not performed periodically in
RiteVM 1 of Fig. 28. In Fig. 33, two RiteVMs share one heap
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Fig. 33 Memory usage of RiteVMs with exclusive control.

area; therefore, RiteVM 2 is affected by RiteVM 1. On the other
hand, in Fig. 32, RiteVM 2 is not affected by RiteVM 1.

As such, the TLSF+TECS framework provides users with the
ability to visualize GC behavior and help verify its operation.
Further, when the RiteVM terminates, the memory used by the
RiteVM is not completely released, i.e., a few kilobytes remain.
This remaining memory causes a memory leak when the num-
ber of RiteVMs increases or a RiteVM repeatedly activates and
shuts down. Using the proposed environment here proves useful
for detecting bugs related to memory, which in practice can be
extremely difficult to detect.

5. Related Work

To develop the software of IoT systems, several approaches
have been proposed [27] such as Wireless Sensor Network
(WSN) macroprogramming, Cloud-based platforms, and Model-
Driven Development (MDD), General-purpose Programming
Languages (GPLs).

WSN macroprogramming provides abstractions to specify
high-level collaborative behaviors, while hiding low-level details
such as message passing and state maintenance. nesC, a program-
ming language used to build applications for the TinyOS plat-
form [28], has been proposed. nesC/TinyOS is designed for WSN
nodes with limited resources e.g., 8 KB of program memory, 512
bytes of RAM, but not supported TCP/IP implementation.

A cloud-based platform reduces development efforts by pro-
viding cloud-base APIs and high-level constructs (e.g., drag-and-
drop) [29]. In addition, it offers easy deployment and evolution
because the application logic is centrally located in a cloud plat-
form. However, it is a platform-dependent design, and restricts
developers in terms of functionality such as in-network aggrega-
tion or direct node-to-node communication locally. The cloud-
based mruby framework, enzi Board [30], has been proposed.
enzi can be developed and simulated on the Web, and the de-
veloper can download and run the program on the board.

To address the issues of development efforts and platform-
dependent design, MDD has been proposed [31]. MDD provides
the benefits of reusable, platform-independent, extensible design,
however it needs a long development time to build MDD systems.

The development using GPLs such as C, JavaScript, Python,
and Android allows the extremely efficient systems based on the
complete control over individual devices. However, GPLs need
more development effort, and it is difficult to reuse software due
to platform-dependent design. Several Open-source runtime sys-

tems for scripting languages have been proposed such as python-
on-a-chip [32], the Owl system [33], eLua [34]. mruby programs
on TECS can be executed approximately 100 times faster than
standard mruby programs [9]. That is, mruby programs can be
executed at the same speed as C, which is faster than other script-
ing languages.

The proposed framework can configure the TCP/IP protocol
stack with minimum set compared to the other platforms. There-
fore, the proposed framework can reduce memory consumption.
In addition, the extended mruby on TECS supports a legacy code
such as a motor driver. mruby has the same syntax as Ruby
which has advantages for web application development as it uses
in Rails framework [35].

6. Conclusion

This paper presented an extended framework of mruby on
TECS, including TINET+TECS and TLSF+TECS. In the pro-
posed framework, mruby programs can call TINET+TECS func-
tions through the mruby-TECS bridge. The development of soft-
ware for IoT devices such as sensors and actuators will be more
efficient due to the high productivity of mruby.

TINET+TECS is a componentized version of TINET, a com-
pact TCP/IP protocol stack that uses TECS. It improves on
TINET configurability while suppressing the overhead of compo-
nentization. Scalability is also improved because the component-
based framework simplifies to add/remove and change protocols
such as TCP/UDP, IPv4/IPv6, and Ethernet/PPP. This paper also
presented the dynamic connection, a new TECS functionality,
to enable dynamic processing while reducing memory consump-
tion. TINET+TECS utilizes the dynamic connection to satisfy
the TINET specification for supporting the static generation of
CEPs and REPs. TLSF+TECS is a component-based dynamic
allocator. Since the TLSF+TECS can hold its own heap area,
memory contention will not occur even if memory is simultane-
ously allocated or released from multiple threads. TINET+TECS
and TLSF+TECS can be applicable to various embedded systems
because these frameworks are executed on TECS and not limited
to mruby.

In addition, the RiteVMs, TINET+TECS, and TLSF+TECS
are implemented as components; therefore, developers can add,
remove, or reuse their functionalities easily as required. Note
that our prototype system and the application programs used in
the performance evaluation are all open-source and can be down-
loaded from our website [36]. In the future, we will support
mruby libraries as mrbgems, which is an mruby distribution pack-
aging system.
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