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A Study on Stepwise Satisfaction Method of Constraints for
Many Constrained Optimization Problem

Tomohiro Yoshikawa1,a) Kento Niwa1,b)

Abstract: Due to the improvement of performance of computers, Genetic Algorithm is actively applied to actual en-
gineering problems. Most of engineering problems are constrained optimization problems which optimize objective
functions under the conditions of many constraints. Penalty method is well-known as the optimizer for such constrained
optimization problems. However, the benchmarks of constrained optimization problems have only small number of
constraints. Thus, the effectiveness of penalty method has not been investigated in many constrained problems. In
many constrained optimization problems, the penalty method has a risk that all constraints cannot be satisfied. This
paper proposes the stepwise satisfaction method of constraints to satisfy many constraints. In the proposed method,
the priority of constraints to be satisfied is defined based on the initial population. In the experiment, the performance
of the proposed method and the penalty method was compared in two problems which have more than 50 constraints.

Keywords: multi-constrained optimization problem, stepwise satisfaction method of constraints, difficulty of con-
straints, penalty method,

1. Introduction
Recently, the diversification of user needs has advanced in var-

ious fields. In order to respond to this needs, it is necessary to
produce small amount but various kinds of industrial products.
However, the production of small amount and various kinds in-
creases the development and production cost. Therefore, a sys-
tem of supporting design is needed. Genetic Algorithm attracts
attention for this request, and various engineering applications of
Genetic Algorithm have been reported [1], [2], [3]. Most of en-
gineering applications are multi-constrained optimization prob-
lems.

A multi-constrained optimization problem optimizes the objec-
tive functions under some constraints, which often has many con-
straints. Penalty method [4], [5] is often applied to constrained
optimization problems. Generally, the performance of these al-
gorithms is investigated by applying to benchmark problems, C-
DTLZ [6] and CF [7] are the representative examples. However,
it is pointed out that the number of constraints is too small in these
problems [8] (Table 1) considering the actual engineering appli-
cations. For this reason, these methods do not take into account
many constraints and treat all constraints concurrently. However,
when the constraints in a problem have different difficulties to be
satisfied, it tries to satisfy easier constraints first due to the charac-
teristics of Genetic Algorithm. That may result in a local solution
for the constraint satisfaction and all constraints may not be sat-
isfied. To satisfy all constraints, it is necessary to define search
priority for constraints.
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Table 1: Benchmark of Constrained Optimization Problems
Problems Number of objective functions Number of constraints
C-DTLZ Variable 1
CF1-3 2 1
CF4-7 2 1 or 2
CF8-10 3 1

Thus we propose a stepwise satisfaction method of constraints
in this paper. The proposed method focuses on the difficulty of
constraints and define the search priority for constraints based
on their priorities. The proposed method defines the difficulty
of constraints based on the information of initial population. In
the parent selection, individuals which satisfy more difficult con-
straints are given priority.

We conducted experiments to show the effectiveness of the pro-
posed method. In the experiments, the proposed method was
applied to two problems and compared with the static penalty
method [9]. The problems which employed in the experiments
were MOPTA08 [10] and the simultaneous design optimization
benchmark problem of multiple car structure using response sur-
face method [11], which have more than 50 constraints.

2. Constrained Optimization Problems
Eq. (1) and (2) show the general definition of the constrained

optimization problems.

Minimize f (x) (1)

subject to gi(x) ≥ 0 (i = 1, 2, ..., k) (2)

x is a solution. f (x) is the objective function and gi(x) are the
constraints. The amount of constraint violation v(x) and the total
amount of constraint violation Ω(x) are defined by eq. (3) and
(4).
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vi(x) =

 |gi(x)| i f (gi(x) < 0)
0 otherwise

(i = 1, 2, ..., k) (3)

Ω(x) =
k∑

i=1

vi(x) (4)

In addition to them, we use the number of constraint violation
N(x).

ni(x) =

 1 i f (gi(x) < 0)
0 otherwise

(i = 1, 2, ..., k) (5)

N(x) =
k∑

i=1

vi(x) (6)

When N(x) = 0, the solution x is a feasible solution, otherwise,
the solution x is an infeasible solution.

3. Penalty Method
The static penalty method adds a penalty to the objective func-

tion value (eq. (7)). The individuals that have better objective
function values and satisfy more constraints are more likely to
survive by eq. (7). In eq. (7), p is the penalty factor.

F(x) = f (x) + p ×Ω(x) (7)

4. Proposed Method
In the proposed method, the difficulty of constraints is defined

by the rate of initial individuals violating the constraints. The
individuals satisfying more difficult constraints are given prior-
ity in the selection of parents for crossover. By this operation,
difficult constraints are satisfied earlier than easy ones. After all
constraints are satisfied, the objective function(s) are optimized.
In the selection of individuals for the next generation, the individ-
uals sorted by the number of constraint violation N(x) at first, the
total amount of constraint violation Ω(x) for the individuals with
same N(x), and the objective function value f (x) at last. By this
sorting, we add selective pressure to satisfy all constraints before
optimizing the objective function(s).

4.1 Definition of Difficulty of Constraints
In the proposed method, difficulty of constraints is defined ac-

cording to the following procedure.
1. Generating individuals randomly as the initial population.
2. Calculating the rate of individuals violating the constraints

(Fig. 1).
3. Defining the difficulty of constraints in order of the violation

rate (Fig. 2).

4.2 Selection of Parents for Crossover
In the parent selection for crossover, we employ tournament

selection using difficulty of constraints. The individuals satisfy-
ing more difficult constraints are given priority of selection. The
detail procedure is described below (Fig. 3).

1. Ntour individuals are randomly extracted from the popula-
tion. Ntour is the tournament size.

2. Focusing on the most difficult constraint (the target con-
straint t) and its vt(x).

Constraint1 Constraint2 Constraint3 Constraint4

Individual1

Individual2

Individual3

Individual4

Violation rate 0.00 0.75 0.25 1.00

Fig. 1: Calculation of violating rate
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Fig. 2: Defifnition of difficulty of constraints

(a) When no individuals in Ntour satisfy the target constraint:
The individual having the least amount of constraint viola-
tion vt(x) is selected as the parent individual (Fig. 3(a)).

(b) When only one individual satisfies the target constraint:
The individual is selected as the parent individual (Fig.
3(b)).

(c) When some individuals satisfy the target constraint:
After the individuals violating the target constraint are ex-
cluded, the target constraint is moved to the next difficult
constraint, and return to 2. (a) (Fig. 3(c)).

(d) When some individuals satisfy all constraints:
The individual having the best objective function value is
selected as the parent individual (Fig. 3(d)).

4.3 Selection of Next Generation
In the selection of next generation, the number of constraint

violations N(x), the total amount of constraint violation Ω(x) and
the value of objective function f (x) are employed in this priority
order as the evaluation criteria to sort the individuals. After sort-
ing the individuals, we select from the top as the next generation.
The number of selecting individuals is the population size.

5. Experiment
The experiments were conducted. First, in the section 5.1, the

experimental condition is described. Next, in the section 5.2,
it was confirmed the calculated values of the difficulty of con-
straints in each trial. Finally, the penalty method and the pro-
posed method were applied to two constrained optimization prob-
lems. In the section 5.3, they were applied to MOPTA08 [10]. In
the section 5.4, the simultaneous design optimization benchmark
problem of multiple car structure using response surface method
[11] was employed.

5.1 Experimental Conditions
MOPTA08 and the simultaneous design optimization bench-

mark problem of multiple car structure using response surface

2ⓒ 2018 Information Processing Society of Japan

Vol.2018-MPS-119 No.7
2018/7/30



IPSJ SIG Technical Report

Constraint4

Constraint2

Constraint3

Constraint1

Constraint4

Constraint2

Constraint3

Constraint1

Difficult

Easy

Individual 1 Individual 2

Selected

v
t
of individual 2 is 

smaller than that of 1. 

(a) No individual satisfy the target constraint.
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(b) Only one individual satisfies the target constraint.
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(c) Some individuals satisfy the target constraint.
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Selected

f(x) f(x)

Easy

(d) Some individuals satisfy all constraints.

Fig. 3: Parent Selection

(a) MOPTA08 (b) Simultaneous design optimization benchmark problem

Fig. 4: Average of violation rate in test problems

method were employed in this paper. MOPTA08 has 68 con-
straints and the simultaneous design optimization benchmark
problem has 54 constraints. In MOPTA08, the number of design
variables was 124, the population size was 100, the search ended
at the 100th generation, the tournament size Ntour was 5 and the
penalty factor was 100. The crossover operator was SBX [12]
(ηc = 10, Pc = 1.0) and the mutation operator was Polynomial
Mutation [12] (ηm = 10, Pm = 1/124). 50 trials were conducted.
In the simultaneous design optimization benchmark problem, the
number of design variables was 222, the search ended at the 300th
generation, the penalty factor was 1 and Pm = 1/222. Other con-
ditions were same with MOPTA08.

5.2 Difficulty of Constraints
In the proposed method, the difficulty of constraints depends

on the initial population. It is necessary to confirm how much
variation of difficulty of constraints is made for each trial. Fig. 4
shows the average and the standard deviation of violation rate. In
both problems, it turns out that the difficulty of constraint were
not varied in each trial and were calculated properly.

5.3 Result of MOPTA08
Fig. 5 shows the result of MOPTA08. In the penalty method, as

shown in Fig. 5 (a) and (b), there were several constraints which
could not be satisfied. The constraints which could not be satis-
fied were g1(x) and g9(x). As shown in Fig. 4, according to the
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Fig. 5: Result of MOPTA08
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(b) Total amount of constraint violation
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Fig. 6: Result of simultaneous design optimization benchmark problem

difficulty of constraints defined by the proposed method, these
two constraints were the most difficult constraints, which were
appropriately defined by the initial populations. In the proposed
method, the number of constraint violations did not decrease as
much as the penalty method in order to satisfy the difficult con-
straints at the beginning of the search. However, it succeeded in
satisfying all constraints including the difficult constraints at the
end. As shown in Fig. 5 (c), the objective function was not opti-
mized before all constraints were satisfied because of giving the
priority for satisfying constraints. However the objective function
was optimized after all constraints were satisfied in the proposed
method, which are the features of the proposed method and they
worked well.

5.4 Result of simultaneous design optimization benchmark
problem

Fig. 6 shows the result of the simultaneous design optimization
benchmark problem. As shown in Fig. 6 (a) and (b), all meth-
ods could satisfy all constraints. However, the proposed method
was inferior to the penalty method. It indicates that the proposed
method was not effective in the simultaneous design optimization
benchmark problem, because there was no local solution in the
satisfaction of constraints and considering all constraints simul-
taneously was more effective in this problem. It can be seen from

Fig. 6 (c), the proposed method was also inferior to the penalty
method in the objective function value.

6. Conclusion
In this paper, the stepwise satisfaction method of constraints

was proposed. This method defines the difficulty of constraints
based on the initial population and satisfies the constraints in or-
der of the difficulties. That was realized by giving priority to
the individuals satisfying more difficult constraints in the parent
selection for crossover. The proposed method and the penalty
method were applied to MOPTA08 and the simultaneous design
optimization benchmark problem of multiple car structure using
response surface method. The results of the experiments showed
that the proposed method could satisfy almost all constraints.
However, the effectiveness of the proposed method depended on
the applied problem. We will analyze the characteristics of the
constraints that the proposed method is effective/ineffective and
study the combination of the proposed method and the penalty
method.
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