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Abstract: The design of appropriate curricula is one of the most important issues in higher educational institutions,
and there are many features to be considered. In this paper, the two key features (“locality bias” and “combination
of two simple factors”) were discovered by investigating the actual computer science (CS) curricula of the top-ranked
universities on the basis of Computer Science Curricula 2013 (CS2013), where the CS topics are classified into the
18 Knowledge Areas (KAs). We applied a machine learning method named simplified, supervised latent Dirichlet
allocation (ssLDA) to the actual syllabi of the CS departments of the 47 top-ranked universities. ssLDA estimates the
relative weights of the KAs of CS2013 in each syllabus. Then, each CS department was characterized as the averaged
weights of the KAs over its included syllabi. We applied the three well-known data analysis methods (hierarchical
cluster analysis, principle component analysis, and non-negative matrix factorization) to the averaged weights of each
department and found the above two key features quantitatively and objectively.
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1. Introduction

It is needless to say that a curriculum is important for educa-
tion. A curriculum should represent a characteristic educational
activity that each university offers to students. However, it is not
easy to design an appropriate CS curriculum with the limited time
and resources, due to the rapid expansion of the field of com-
puter science. The ACM and IEEE have been putting much effort
into providing the standard curricula series for over 40 years be-
cause faculty members and instructors need curricular guidelines
to design their own CS curriculum for their universities. Com-
puter Science Curricula 2013 (CS2013) [1] is the latest edition of
curriculum guidelines for undergraduate degree programs in CS,
which is released by the ACM and IEEE. Our ultimate purpose
is to provide some useful and actionable additional guidelines for
developing or improving the CS curricula appropriately by utiliz-
ing CS2013. In other words, we attempt to propose the guidelines
which support to assign the time resources appropriately to the
CS topics and to design an attractive curriculum.

There are many previous works such as design tools [27], the
repository [24], course-knowledge unit relations [14], [25], the
change visualization [10]. On the other hand, we have em-
ployed a data science approach using a statistical machine learn-
ing method [16], [17], [19]. They collected the actual syllabi of
the course curriculum from the CS departments of the top-ranked
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universities. Then, in order to convert the syllabi into quantitative
data, they employed simplified, supervised latent Dirichlet allo-
cation (ssLDA) [19], which can estimate the relative weights of
the Knowledge Areas (KAs) of CS2013 in each syllabus without
human intervention. KA corresponds to a principal topic of study
in CS. Table 1 shows the names and abbreviations of KAs. Each
syllabus is projected to a point in the KA space, where each coor-
dinate represents the strength of the connection between the syl-
labus and the corresponding KA. Then, each curriculum was rep-
resented as the center of the points corresponding to its included
syllabi. By applying the well-known data analysis methods to
the centers, they could discover some useful facts for designing
appropriate curricula.

In this paper, we employed the same data science approach.
From the investigation results, we discovered the following two
key features from the actual curricula: “locality bias” over the
world and “combination of two simple factors” in curriculum de-
sign. First, some countries are working hard to develop a national
curriculum [15] and it is clear that there is some locality bias.
However, the details of the locality bias have not been estimated
quantitatively. For example, it is not clear yet which countries are
grouped. Our investigation disclosed the properties of the locality
bias quantitatively and objectively. Second, the weighting of each
KA in a curriculum is quite important for designing an appro-
priate curriculum, and CS2013 provides the guidelines (named
“Core Tier-1,” “Core Tier-2” and “Elective”). However, it is not
always so easy to utilize the guidelines in practice because it is
not based on the actual curricula. Our investigation extracted the
two simple factors from the actual curricula, which are easier to
use in practice. This paper is an extended and elaborated version
of Ref. [19] with more massive datasets and much more intensive
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Table 1 KAs of CS2013.

ID KA

AL Algorithms and Complexity
AR Architecture and Organization
CN Computational Science
DS Discrete Structures
GV Graphics and Visualization
HCI Human-Computer Interaction
IAS Information Assurance and Security
IM Information Management
IS Intelligent Systems
NC Networking and Communication
OS Operating Systems
PBD Platform-Based Development
PD Parallel and Distributed Computing
PL Programming Languages
SDF Software Development Fundamentals
SE Software Engineering
SF Systems Fundamentals
SP Social Issues and Professional Practice

investigation.
This paper is organized as follows. Section 2 describes the re-

lated works. Section 3 explains the collected datasets. Section 4
describes the method projecting each syllabus to the KA space
(named ssLDA) in detail. The appropriateness of ssLDA and the
KA space is verified in Section 5. Investigation results about the
actual syllabi and curricula are shown in Section 6, and they are
discussed in Section 7. Lastly, Section 8 concludes the paper.

2. Related Works

Since a curriculum is one of the most important assets of higher
education, some works developed curriculum design tools and
made it public [7], [27]. In many cases, such tools require teach-
ers to define courses with units of knowledge [14], which takes
a lot of time and effort. Though Tungare et al. created a reposi-
tory system for computer science syllabi [24] and developed tools
such as Syllabus-Maker for creating and comparing syllabi, they
have not developed a technique to grasp characteristics of a whole
curriculum. Though a number of studies have been made on
methodologies and tools for analyzing curricula by using statisti-
cally processed syllabus data [8], [12], [28], they can not compare
the different curricula quantitatively. Marshall tried to quantify
the changes in the CS structure of the ACM/IEEE curricula se-
ries [10] and visualized the structure of a curriculum by modeling
the KAs as a network graph. Gluga et al. developed a web-based
system called PROGOSS that maps curricula learning goals and
mastery levels to individual assessment tasks across entire de-
gree programs [6]. Szabo et al. also developed curriculum anal-
ysis framework which supports the identification of prerequisite
concepts [20]. Mendez et al. reported that they applied several
learning analytic techniques to a curriculum [11], where the long-
standing grade data of students in their institution is used for
the curriculum analysis. Kawintiranon et al. proposed the cur-
riculum analysis method [9] by mapping course materials to the
Computer Engineering Curricular Guideline, CE2016 [2]. They
use keywords extracted from course materials using TF-IDF and
information of web pages gathered by Google Search API. Our
method can directly project syllabi to KA space with a sophis-
ticated method based on Latent Dirichlet allocation (LDA) [5]
without any other additional information.

3. Datasets

It is the key feature of our analysis to characterize the actual CS
curriculum quantitatively by the KAs of CS2013. Each curricu-
lum is regarded as the set of the included syllabi. Each syllabus
is projected to a point in the KA space by ssLDA. Then, each
curriculum is characterized as a point in the KA space, which is
the center of the points of the included syllabi. Here, we describe
the datasets.

3.1 Computer Science Curricula 2013 (CS2013)
The ACM and IEEE Computer Society jointly have been con-

structing curricular guidelines for undergraduate programs in CS
and have been releasing reports roughly every ten years, such as
CC1991 [3], CC2001 [22], and CS2008 [21]. In December 2013,
“Computer Science Curricula 2013” (CS2013) was released as
the latest report in CS. The report includes a set of princi-
ples, a redefined Body of Knowledge (BOK), exemplars of actual
courses and curricula. According to the CS2013 report, the BOK
“does not propose a particular set of courses of curriculum struc-
ture,” but “In Computer Science terms, one can view the Body of
Knowledge as a specification of the content to be covered and a
curriculum as an implementation.” The BOK consists of a set of
18 Knowledge Areas (KAs), each of which corresponds to a prin-
cipal topic of study in CS. Each KA contains about 10 Knowl-
edge Units (KUs), where each KU is a short document. Table 1
shows the names and abbreviations of KAs. By applying a sim-
ple stemming algorithm to obtain nouns in a singular form, 3,304
words were extracted from the BOK of CS2013.

3.2 Collection of Actual Curricula
We collected manually the actual curricula offered by CS de-

partments of higher educational institutions. In order to obtain
such curricula of major universities, we referred to one of the pop-
ular university rankings, titled “Times Higher Education (THE)
WORLD UNIVERSITY RANKINGS [23], Top 100 universities
for engineering and technology 2014–2015.” We analyzed the 47
universities of the top 50 ones because the curricula of three re-
maining universities could not be found on their own web sites.
Table 2 lists the universities and the departments related to CS.
We use the IDs in the rightmost column of the table to specify
universities hereafter. We manually downloaded web pages or
PDF files from each department’s website and extracted the syl-
labi of courses required to take a bachelor of CS. For simplicity,
we did not take the mandatory or prerequisite structures into con-
sideration. Though most of the universities in Table 2 offer their
curricula in English, six universities (TUDelft, UTokyo, TUM,
KUL, Kyoto, and ECOLE) offer their curricula in their own lan-
guages. We translated those non-English curricula into English
with Google Translate *1. Each syllabus is characterized as a bag
of words which is used in KUs of CS2013. We eliminated obvi-
ously unnecessary words such as HTML tags, header and footer,
and stop words. We also applied a simple stemming algorithm
to obtain nouns in a singular form. In addition, we excluded

*1 https://translate.google.com/

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

Table 2 CS related departments of universities.

Rank Country / University (Department) ID
1 us Massachusetts Institute of Technology (Electrical Engineering and Computer Science) MIT
2 us Stanford University (Computer Science Dept.) Stanford
3 us California Institute of Technology (Computing +Mathematical Science Dept.) Caltech
4 uk Princeton University (Dept. of Computer Science) Princeton
5 uk University of Cambridge (Computer Laboratory) Cambridge
6 uk Imperial College London (Dept. of Computing) Imperial
7 uk University of Oxford (Dept. of Computer Science) Oxford
8 ch ETH Zürich - Swiss Federal Institute of Technology Zürich (Dept. of Computer Science) ETH
9 us University of California, Los Angeles (Computer Science Dept.) UCLA

10 us University of California, Berkeley (Dept. of Electrical Engineering and Computer Sciences) UCB
11 us Georgia Institute of Technology (College of Computing) Georgia Tech
12 ch École Polytechnique Fédérale de Lausanne (School of Computer and Communication Sciences) EPFL
13 sg National University of Singapore (School of Computing) NUS
14 us University of Texas at Austin (Computer Science Dept.) UTAustin
15 us University of Michigan (Dept. of Electrical Engineering and Computer Science) Michigan
16 us Carnegie Mellon University (School of Computer Science) CMU
17 us Cornell University (Dept. of Computer Science) Cornell
18 us University of Illinois at Urbana-Champaign (Dept. of Computer Science) Illinois
19 nl Delft University of Technology TUDelft
19 us Northwestern University (Dept. of Electrical Engineering and Computer Science) Northwestern
21 hk Hong Kong University of Science and Technology (Dept. of Computer Science and Engineering) HKUST
22 us University of California, Santa Barbara (Dept. of Computer Science) UCSB
24 ca University of Toronto Scarborough (Dept. of Computer and Mathematical Sciences) UTSC
25 jp The University of Tokyo (Dept. of Information Science, School of Science) UTokyo
27 us University of Wisconsin-Madison (Dept. of Computer Science) Wisconsin
28 de Technical University of Munich (Dept. of Informatics) TUM
29 sg Nanyang Technological University (School of Computer Engineering) NTU
30 se KTH Royal Institute of Technology KTH
31 dk Technical University of Denmark (Dept. of Applied Mathematics and Computer Science) DTU
32 us Columbia University (Computer Science Dept.) Columbia
33 us University of Washington (Dept. of Computer Science and Engineering) Washington
34 be KU Leuven (Dept. of Computer Science) KUL
35 kr Seoul National University (Dept. of Computer Science and Engineering) Seoul
36 hk The University of Hong Kong (Dept. of Computer Science) HongKong
37 uk University of Manchester (School of Computer Science) Manchester
37 au University of Melbourne (School of Information) UNIMELB
39 au University of Queensland (School of Information Technology and Electrical Engineering) Queensland
40 us Rice University (Dept. of Computer Science) Rice
41 jp Kyoto University (Informatics and Mathematical Science, Faculty of Engineering) Kyoto
42 fr École Polytechnique (Computer Science Department) ECOLE
43 ca University of British Columbia (Dept. of Computer Science) UBC
45 us Purdue University (School of Electrical and Computer Engineering) Purdue
46 kr Pohang University of Science and Technology (Computer Science and Engineering) POSTECH
46 au University of Sydney (School of Information Technologies) Sydney
48 au Monash University (Faculty of Information Technology) Monash
49 us University of Minnesota (Dept. of Computer Science and Engineering) Minnesota
50 us University of California, San Diego (Dept. of Computer Science and Engineering) UCSD

the syllabi consisting of less than 10 words. The averaged ra-
tio of the excluded syllabi over all the curricula is 8.1%. In other
words, 91.9% of the actual syllabi include a high enough num-
ber of words (namely, ≥ 10) in the vocabulary of the BOK of
CS2013. It means that the words of CS2013 could largely cover
the actual syllabi. The averaged number of syllabi over the 47
universities was 65.5, and the averaged number of words over all
the syllabi was 39.2.

4. Method Projecting Syllabi to KA Space

In order to convert each syllabus to a quantitative data, we em-
ploy “simplified, supervised latent Dirichlet allocation” (ssLDA),
which was originally proposed in Ref. [19]. ssLDA estimates
the relative weights of the KAs for a given document (a bag of
words), where the sum of the weights is normalized to 1. The
weights can be regarded as a point in the KA space. In other
words, ssLDA can project each syllabus to the KA space. ssLDA
is an extension of the widely-used Latent Dirichlet allocation

(LDA) method [5] and its supervised version [4], [26]. Here, the
details of ssLDA are described.

4.1 Outline
Here, we will describe the outline of the method. First, ev-

ery syllabus is regarded as a set of used words (namely, the bag
of words model). Then, each syllabus is projected to a point in
the topic space defined by CS2013. LDA is employed for this
projection. LDA is widely used in natural language processing
and machine learning and is known to be useful for extracting
the topic space from a set of reference documents and projecting
other documents to the extracted space. However, the original
LDA is designed to extract the topics automatically. On the other
hand, the topic of a reference document is given in advance in
our target dataset (namely, the BOK of CS2013). Therefore, we
employed ssLDA for giving an approximate model to our target
dataset. Supervised LDA (sLDA) has been proposed in a differ-
ent context [4], [26] where classification labels are given as well
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Table 3 Term correspondence table between ssLDA model and curriculum
analysis.

ssLDA Model Curriculum Analysis

document syllabus

set of documents curriculum

topic KA

position of a document dominance ratios
in topic space of KAs of a syllabus

training data BOK of CS2013

allocated label KA allocated to
in training data each syllabus in CS2013

θ = (θi) true dominance ratios of KAs

zn = (zni) KA allocated to word n

β = (βi j)
Strength of relationship

between KA i and word j

c most dominant KA

as documents. However, the labels are not directly related to the
extracted topics in LDA. ssLDA is a simplified version of sLDA,
where each extracted topic is bound to a given topic label. Ta-
ble 3 shows the correspondence of terms between the proposed
ssLDA model and our curriculum analysis.

It is essential that ssLDA allows a syllabus to belong to mul-
tiple KAs because it is based on a probabilistic model. In the
training data (namely, CS2013), every syllabus belongs to a sin-
gle KA. Therefore, many classification methods, such as sup-
port vector machines (SVMs), would seem to be suitable for the
training phase. However, the syllabus in an actual curriculum is
often distributed over many KAs. According to the CS2013 re-
port, “Knowledge Areas are not intended to be in one-to-one cor-
respondence with particular courses in a curriculum:” (Ref. [1]
p.27). In addition, more than 60% of course exemplars of CS2013
cover multiple KAs. Therefore, methods that focus on classifica-
tion are not appropriate. On the other hand, since ssLDA learns a
probabilistic model from the training data, the dominance ratios
of multiple KAs can be estimated from an actual syllabus.

It is also essential that ssLDA can estimate a continuous prob-
abilistic model even from the sparse data because of the Dirichlet
prior. Simple probabilistic models, such as naive Bayes classi-
fiers, give a discontinuous probabilistic estimation because al-
most all words occur only a few times in CS2013. Therefore,
such simple models are not appropriate for syllabi belonging to
multiple KAs.

4.2 Generative Model
The probabilistic generative model of a document with a label

in ssLDA is given as follows:
( 1 ) The probability of occurrence of topics θ = (θi) (constrained

to
∑

i θi = 1) is generated by Dirichlet distribution with a
hyper-parameter α. Here, i = 1, . . . ,K and K is the number
of topics.

( 2 ) For each word w, a topic assignment zn = (zni) is given
by multinomial distribution with the parameter (θ = (θi)),
where n = 1, . . . ,N and N is the number of words in the
document. Each zn is the K-dimensional vector where the
assigned topic is 1 and the others are 0. Then, the word
is given by the multinomial distribution with the parame-
ter (β = (βi j)), where i is the assigned topic in zn and j

Fig. 1 Generative model of simplified, supervised LDA.

corresponds to the actual word wn in the vocabulary (where∑
j βi j = 1 for every i).

( 3 ) The allocated topic of the document c ∈ {1, . . . ,K} is given
by the following softmax distribution with the parameter
z̄ =

∑
n zn/N and a hyper-parameter η > 0: P (c|z̄, η) =

exp (ηz̄c) /
∑K

i=1 exp (ηz̄i). Here, z̄ = (z̄i) can be regarded
as the empirical distribution on the topic assignments of the
document.

The graphical model of the above generative model is shown in
Fig. 1.

This is an extension of the original LDA model [5] with c and
η. Because each label c corresponds to an internal topic assign-
ment z, the model is much simpler than the previous sLDA mod-
els [4], [26].

4.3 Inference and Parameter Estimation
For estimating the variables and parameters in the model, such

as θ and β, we use the maximum likelihood estimation with a
variational EM algorithm. Though the inference process can be
regarded as a special case of a more general method on a more
complicated model in Ref. [26], it is derived here under the sim-
plified model. The original likelihood of a document with a given
topic label is given as log P (w, c|α,β, η) where w = (wn) is a doc-
ument consisting of words wn’s. The estimation of this original
likelihood is intractable. Thus, the following lower bound is de-
rived by the variational Bayesian approach in a way similar to
that in the original LDA [5]:

log P(w, c|α,β, η)
= log

∫
dθ

∑
Z

P (w, c, θ, Z|α,β, η)

= log
∫

dθ
∑

Z

P (w, c, θ, Z|α,β, η) Q (θ, Z|γ,φ)
Q (θ, Z|γ,φ)

≥
∫

dθ
∑

Z

Q (θ, Z|γ,φ) log
P (w, c, θ, Z|α,β, η)

Q (θ, Z|γ,φ)

= Eq
(
log P (w, θ, Z|α,β)

)
+ Eq

(
log P (c|Z, η))

− Eq
(
log Q (θ, Z|γ,φ)

)
(1)

where Z = (zn), Q (θ, Z|γ,φ) = q (θ|γ)
∏

n q
(
zn|φn

)
is the vari-

ational distribution, and Eq() is the expectation operator over Q.
γ = (γi) and φ =

(
φn

)
are the free variational parameters. In ad-

dition, γ and φn = (φni) are the Dirichlet parameter and the multi-
nomial one (constrained to

∑
i φni = 1), respectively. The lower

bound in Eq. (1) is the same as that in the original LDA except for
the second term Eq

(
log P (c|Z, η)) in the last form, which is de-

rived from the softmax distribution of the topic label. The lower
bound of Eq

(
log P (c|Z, η)) is given as follows in a way similar to
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that in Ref. [26]:

Eq
(
log P (c|Z, η))

= Eq

(
log

exp (ηz̄c)∑
i exp (ηz̄i)

)

=
Eq

(
η
∑

n znc
)

N
− Eq

⎛⎜⎜⎜⎜⎜⎝log

⎛⎜⎜⎜⎜⎜⎝
∑

i

exp (ηz̄i)

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠

≥ η
∑

n Eq (znc)

N
− Eq

⎛⎜⎜⎜⎜⎜⎝log

⎛⎜⎜⎜⎜⎜⎝
∑

i

z̄i exp(η)

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠

=
η
∑

n Eq (znc)

N
− Eq

⎛⎜⎜⎜⎜⎜⎝log
(
exp(η)

)
+ log

⎛⎜⎜⎜⎜⎜⎝
∑

i

z̄i

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠

=
η
∑

n φnc

N
− η − Eq

⎛⎜⎜⎜⎜⎜⎝log

⎛⎜⎜⎜⎜⎜⎝
∑

i

z̄i

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ = η

∑
n φnc

N
− η (2)

Here, Jensen’s inequality on the exponential function is applied
under the conditions

∑
z̄i = 1 and z̄i ≥ 0. Eq (znc) = φnc is also

utilized. Then, the variational and model parameters (γ,φ,β) can
be estimated by the variational EM algorithm. Only the update
equations are shown here. γ and φ are estimated by

γi = α +
∑

n

φni , (3)

φni ∝ βiwn exp

⎛⎜⎜⎜⎜⎜⎝Ψ (γi) − Ψ
⎛⎜⎜⎜⎜⎜⎝
∑

k

γk

⎞⎟⎟⎟⎟⎟⎠ + ηδicN

⎞⎟⎟⎟⎟⎟⎠ (4)

where Ψ is the digamma function and δic is the Dirac delta func-
tion. β is estimated by

βi j ∝
∑

d

∑
n

1
[
j = wd

n

]
φd

ni (5)

where d = 1, . . . ,D corresponds to each document in the datasets
and 1

[
j = wd

n

]
is the function taking 1 only when the n-th word

wd
n in the document d is equal to the word j (or 0 otherwise). The

update equations for γ and β are almost exactly the same as those
in the original LDA [5]. The only difference is the additional term
ηδic/N in the update for φ. It strengthens φni only if i is equiva-
lent to the given topic label c. In addition, the weight depends on
η and N only. In this paper, α and η are treated as fixed hyper-
parameters. The settings on them are described in Section 5. Note
that η degenerates into 0 if it is optimized by the maximum likeli-
hood estimation because the penalty for misclassification is over-
estimated. Though it is a kind of overfitting problem, it can be
avoided by the cross-validation method described in Section 5.

4.4 Prediction
After the estimation of β of the generative model, a given docu-

ment with no label is projected to a position θ∗ =
(
θ∗i

)
in the topic

probability space with the expected topic label c∗. In order to
estimate θ∗ robustly, θ∗ is estimated as the expectation of θ over
the conditional probability with no label. In other words, θ∗ is
the mean over P (w, θ|α,β). This distribution is approximated as∑

Z Q (θ, Z|γ∗,φ∗) = q (θ|γ∗) by the variational approach, where
γ∗ =

(
γ∗i

)
and φ∗ =

(
φ∗nc

)
are the parameters estimated by the

original LDA with no label. In other words, the additional term
ηδic/N is omitted in the update process of γ∗ and φ∗ in the same
way as in the original LDA. Then, θ∗i = γ

∗
i /

∑
i γ
∗
i because

γ∗ is the Dirichlet parameter. Regarding c∗, it is given so that

log P (c = c∗|η) is the maximum over c. By Eq. (2), log P (c|η) is
approximated as

∑
n φ
∗
nc � γ

∗
c where constant factors are omitted.

Therefore, c∗ is given so that γ∗c∗ is the largest over γ∗c .

5. Verification of ssLDA and KA Space

Here, we describe the experimental results for determining the
hyper-parameters of ssLDA and verifying the appropriateness of
the KA space generated by ssLDA.

5.1 Determination of Hyper-parameters
Here, the setting of the hyper-parameters α and η in Section 4

is described. Though α is originally given as a K-dimensional
vector for the K-dimensional Dirichlet distribution, it is given as
a single parameter by assuming that α is the same constant over
all the topics. α was set to 1 in the same way as in Sekiya’s
previous work [18] by using some empirical and theoretical con-
siderations. To determine η we use a cross-validation method that
makes use of the classification accuracy of the topic labels. In this
paper, we utilize the leave-one-out cross-validation (LOOCV) es-
timation of the topic classification accuracy in the training data of
CS2013. In order to avoid the effects of local maxima, the opti-
mizations of ssLDA were carried out in five trials from random
initial values for each η. Then, the result with the largest likeli-
hood estimation was used. The LOOCV estimations of various η
are shown in Table 4. It can be seen from the table that η = 50 is
the best setting.

5.2 Verification of KA Space Generated by ssLDA
Here, the appropriateness of the generated KA space is verified

from the following three viewpoints: the comparison with other
classification methods in the training data of CS2013, the classi-
fication accuracy in the test data of the actual syllabi (the course
exemplars in the appendix of CS2013), and the words with high
probability in each KA.

First, we compared the proposed method with other classifi-
cation methods by the LOOCV estimations of the classification
accuracy in the training data of CS2013. Table 5 shows the re-
sults for naive Bayes classifier and SVMs (with the linear, radial,
and sigmoid kernels). We used the R e1071 package *2 which

Table 4 Parameter η and LOOCV classification accuracy.

η Accuracy
5.0 0.172

10.0 0.399
20.0 0.638
50.0 0.663

100.0 0.595
200.0 0.534

Table 5 Comparison of LOOCV classification accuracy with other methods
(naive Bayes classifier and SVMs with various kernels).

Classifier Accuracy
Naive Bayes 0.656
SVM (linear) 0.264
SVM (radial) 0.325
SVM (sigmoid) 0.620
ssLDA (η=50) 0.663

*2 Package ’e1071’, http://cran.r-project.org/web/packages/e1071/e1071.
pdf (accessed 2017-06-03).
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Table 6 The top 10 words with the highest probability in each KA of CS2013.

AL algorithm, graph, tree, complexity, automatum, solve, implement, algorithmic, class, strategy
AR instruction, memory, architecture, familiarity, assembly, level, organization, processor, representation, machine
CN simulation, modeling, science, information, including, datum, model, algorithm, computational, processing
DS proof, probability, induction, propositional, relation, predicate, usage, bayes, counting, theorem
GV rendering, visualization, graphic, surface, image, representation, animation, rasterization, light, color
HCI user, interface, interaction, design, motivation, HCI, evaluation, technology, quantitative, report
IAS security, attack, secure, forensic, cryptographic, threat, cryptography, familiarity, policy, SE
IM query, relational, database, information, index, datum, schema, transaction, file, mining
IS search, agent, reasoning, planning, classification, robot, representation, learning, implement, algorithm
NC network, platform, social, layer, familiarity, application, allocation, industrial, IP, describe
OS system, operating, memory, device, access, SF, virtual, OS, file, management
PD parallel, parallelism, distributed, shared, message, versus, race, algorithm, synchronization, SF

PBD function, programming, web, mobile, operation, class, constraint, variant, language, event
PL type, program, language, code, static, analysis, semantic, syntax, memory, optimization
SP social, professional, privacy, computing, ethical, computer, intellectual, policy, HCI, environmental

SDF design, program, software, component, principle, coding, programming, error, code, structure
SE software, requirement, team, risk, project, process, specification, testing, development, validation
SF performance, logic, scheduling, memory, machine, error, program, simple, resource, figure

was an implementation of naive Bayes classifier and SVMs. The
hyper-parameters of SVMs were tuned by the cross validation. It
shows that the highest accuracy in ssLDA (0.663 in Table 4) is
(more or less) superior to all the other methods. It verifies the
validity of the proposed method in CS2013.

Second, we used the course exemplars in the appendix of the
CS2013 report as the test dataset. These exemplars were marked
with the KAs that they most significantly cover by the lecturers of
those courses. There were 15 KA-marked syllabi in the collected
dataset. The proposed method calculated the values of each KA
for the 15 syllabi. Then, the rankings of the marked (namely cor-
rect) KAs in the values were utilized for the estimation. In the
eleven syllabi, the rankings are the 1st. The other four syllabi
have the 2nd, 7th, 9th, and 13th rankings. The rate of correctness
is 73 percentage (11/15). Considering that there are the 18 KAs,
it can be regarded to be quite high. The mean reciprocal rank is
0.79, which is quite high also.

Third, we show the words with high probability in each KA,
where the probability is estimated as β in the proposed method.
Table 6 shows the 10 words with the highest probability in each
KA. Intuitively, the extracted words seem to be strongly related
to the corresponding KA.

6. Investigation Results

Here, the characteristics of the actual curricula are investigated
in the KA space. Each curriculum of the CS department of a uni-
versity is characterized by the center of gravity (the mean) of its
included syllabi in the KA space.

6.1 Investigation of Actual Syllabi by Basic Statistics in KA
Space

Here, the basic characteristics of the actual syllabi in the KA
space are investigated, and the appropriateness of CS2013 is
verified. If the KA space is appropriate, the syllabi should be dis-
tributed “widely” with a low-biased center in the KA space. First,
Fig. 2 shows the distributions estimated by their histograms along
each axis of KA over all the collected syllabi. The mode (namely,
the peak), the mean (the center) and the standard deviation of the
distribution are shown also. The means of the distributions seem
to be near to the unbiased point (1/18 � 0.056, 0.056, · · · , 0.056)

although some KAs (such as CN, GV, HCI and SP) are a little
high. Regarding the modes, they are around 0.03 in every KA.
The value of 0.03 is smaller than the unbiased point. In addition,
every histogram is a long-tailed distribution. It shows that there
are a few dominant KAs in many syllabi. Regarding the standard
deviations, they are similar although some KAs are a little high.
In order to investigate the correlations among the KAs, Fig. 3
shows the bar graphs of the rank-ordered eigenvalues (the per-
centage over the sum) of the covariance matrix among KAs. Note
that the rightmost (and the smallest) eigenvalue on each bar graph
is always 0 because of the constraint

∑
i θ
∗
i = 1 in the KA space.

In Fig. 3, the bar graph seems to be flat and the largest value is
not extremely high. It shows that the distribution of the syllabi
is not concentrated in any directions. In summary, all the syllabi
of the actual universities are distributed within an area of the KA
space. The distribution in each KA is long-tailed and there is no
KA which is always dominant. In addition, the distributed area
is not concentrated in any directions. These results suggest that
CS2013 is appropriate for analyzing the actual syllabi.

6.2 Investigation of Actual Curricula by Basic Statistics in
KA Space

Here, the basic characteristics of the actual curricula are in-
vestigated in the KA space, and it is shown that there is some
university bias in the actual curricula. We will show that there
is a structure in the distribution of the curricula. In Fig. 4, the
bar graphs of the rank-ordered eigenvalues (the percentage over
the sum) of the covariance matrix among KAs for the curricula
are shown. Comparing it with Fig. 3, there are several dominant
principal components in Fig. 4. On the other hand, Table 7 shows
the averaged Euclidean distance among syllabi within a curricu-
lum and that over all the syllabi. They correspond to the degree
of the deviation of syllabi within each curriculum and the total
deviation over all the syllabi. There was only a slight difference
between them. In other words, each university offers a variety of
courses in its CS curriculum to a degree. However, Fig. 4 shows
that the curricula are concentrated in a few different directions.
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Fig. 2 The distribution of syllabi (with the mode (peak), the mean, and the standard deviation (STD))
along each KA.

Fig. 3 Bar graphs of rank-ordered eigenvalues of covariance matrix of the
distributions for all the syllabi.

Fig. 4 Bar graphs of rank-ordered eigenvalues of covariance matrix for the
universities.

Table 7 Averaged distance within each university and that over all the syl-
labi.

within university all syllabi

0.302 0.315

6.3 Discovery of Structure Embedded in Actual Curricula
by HCA and PCA

Here, we applied hierarchical cluster analysis (HCA) and
principal component analysis (PCA) to the actual curricula in the
KA space in order to find out their embedded structure. Regard-
ing HCA, the distance among the curricula is measured as the
usual Euclidean one. Then, Ward’s method is utilized for con-
structing the hierarchical cluster tree of the curricula. The four
clusters (denoted by C1, C2, C3, and C4) were extracted from
the tree. The number of clusters was set experimentally for the
analysis. Regarding PCA, the covariance matrix of KAs is cal-
culated over the curricula and is decomposed. The bar graph of
the rank-ordered eigenvalues (the percentage over the sum) of the
covariance matrix among KAs is shown in Fig. 4, where there
are several dominant principal components. The three principal
components (denoted by P1, P2, and P3) were investigated in this
paper. Figure 5 shows the extracted hierarchical tree. The four
clusters are colored (C1:cyan, C2:red, C3:magenta, C4:green).
Figures 6 and 7 show the one-dimensional and two-dimensional
plots of the curricula along the three principal components, where
each curricula is colored also by its cluster. They show that the
four clusters are divided in the three-dimensional principal com-
ponent space. C1 is separated from the others along the first prin-
cipal component (Fig. 6). The other clusters are divided in the
two dimensional space along the second and third principal com-
ponents in Fig. 6, where C2, C3, and C4 are around the upper left,
the upper right, and the lower, respectively. Figure 8 shows the
center of each cluster in the KA space. The values along each
KA are centered in advance by subtracting their mean from them.
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Fig. 5 Hierarchical cluster tree of the universities by Ward’s method: Each university is represented by
its ID with the country code in Table 2 and its assigned cluster (C1-C4) when they are divided into
four clusters. Each cluster is colored (C1:cyan, C2:red, C3:magenta, C4:green).

Then, the center of each cluster in the KA is calculated as the
mean over all the curricula in the cluster. The positive or nega-
tive value of each KA corresponds to the degree of prioritization
or the deprioritization of the KA in the cluster, respectively. Fig-
ure 8 suggests the properties of the clusters as follows:
• C1 tends to prioritize HCI, SE, and SP (quite intensively),

which are strongly related to the human and social aspects.
On the other hand, it tends to deprioritize GV and PL, which
are related to the computational aspect. It shows that the uni-
versities in C1 give high priority to the human aspect in their
education.

• C2 tends to prioritize AL and CN, which are related to the
computational and theoretical aspects. On the other hand, it
tends to deprioritize GV, HCI, and SP, which are related to
the human aspect. It shows that the universities in C2 en-
courage the theoretical aspect.

• C3 tends to prioritize AL, DS, GV, and PL, which are related
to the computational and application aspects. Though C3 is
similar to C2, the universities in C3 encourage the applica-
tion aspect.

• C4 has no prioritized or deprioritized KA. In other words,
the universities in C4 tend to include all the KAs evenly. It
shows that the universities in C4 provide “balanced” curric-
ula.

Similarly, Fig. 9 shows the three principal components on the
KAs. The three components account for over 50 percentage of
the total variance. Figure 9 suggests the properties of the axes as
follows:
• P1: The KAs with higher values are HCI, SE, and SP, which

are related to the human aspect. The other KAs are related

Table 8 Relation of clusters and countries of locations: This is the contin-
gency table between country codes and the four clusters (C1-C4).

country
code

us uk au ca jp sg hk ch kr be dk fr se nl de Total

C1 1 1 4 0 0 0 1 0 0 1 0 0 0 0 0 8
C2 1 0 0 2 2 0 0 1 0 0 1 0 0 0 0 7
C3 2 3 0 0 0 0 0 1 1 0 0 1 1 0 0 9
C4 17 0 0 0 0 2 1 0 1 0 0 0 0 1 1 23

Total 21 4 4 2 2 2 2 2 2 1 1 1 1 1 1 47

to the computational aspect. Those observations suggest that
P1 could be interpreted as the weight between the human as-
pect and the computational one.

• P2: The KAs with higher values are GV and HCI, which are
related to the application aspect. On the other hand, those
with lower values are CN, which are related to the theoreti-
cal aspect. It shows that P2 could be interpreted as the weight
between the application aspect and the theoretical one.

• P3: The KAs with higher values are AL, PL and SP, which
are related to the software aspect. On the other hand, those
with lower values are AR, which are related to the hardware
aspect. Therefore, P3 seems to correspond to the weight be-
tween the software aspect and the hardware one.

Note that the properties of the axes P1 and P2 are consistent with
those of the clusters C1, C2, and C3. In addition, we will show
that the discovered clusters are strongly related to the countries.
Table 8 shows the contingency table between the countries and
the extracted four clusters (C1-C4). The p-value of the Chi-square
test of this table was 1.8 × 10−5. It shows that the clusters signifi-
cantly depend on the countries. C1 includes all the universities in
Australia. C2 includes all the universities in Canada and Japan.
C3 and C4 include almost all the universities in UK and US, re-
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Fig. 6 One-dimensional plot of the universities along the first principal
component where the colors correspond to the clusters (C1:cyan,
C2:red, C3:magenta, C4:green).

Table 9 Averaged distance within each country and that over the world.

within country over the world

0.0644 0.0777

spectively. It is surprising because no information about the lo-
cations and the countries is used for constructing the hierarchical
cluster tree. Regarding the distance among the universities, Ta-
ble 9 shows that the averaged distance among the curricula within
a country is smaller than the averaged distance over the world.
The p-value in the single-tailed paired Student’s t-test for the av-

eraged distances was 3.0×10−15. Thus, it was verified statistically
that the universities in the same country tend to be localized in the
KA space.

6.4 Extraction of Actual Core-Tiers by NMF
Here, the Core-Tiers of KAs are estimated from the actual cur-

ricula by the non-negative matrix factorization (NMF) [13]. It is
one of the most important processes in the curriculum design to
allocate the appropriate weights to the KAs in a curriculum. In
contrast to PCA, the factors extracted by NMF are guaranteed to
be non-negative. Therefore, they are easily used as the weights of
the KAs. The original CS2013 provides two Core-Tiers of KAs
(in Fig. 10) and recommends that a weighted sum of the two Tiers
is utilized in order to design an appropriate curriculum.

The Core-Tiers of CS2013 are constructed by a bottom-up ap-
proach where the importance of many topics in each KA is dis-
cussed and estimated. Figure 10 shows the core hours for the KAs
in the first and second Core-Tiers. For example, CS2013 recom-
mends that a CS curriculum should include the topics in SDF and
it should take 43 hours to complete those topics. Though they are
derived from detailed discussions, it is hard to employ them in
practice because they fluctuate largely and there seems no clear
relation among the KAs. Actually, there was no actual curriculum
represented suitably by a weighted sum of Core-Tiers of CS2013.
Now, the Core-Tiers of KAs are estimated from the actual curric-
ula instead of CS2013 by utilizing NMF, which is given as the
following model

X �WH (6)

where X = (xi j) was given as an 47×18 matrix (note that 47 is the
number of curricula and 18 is that of KAs). Each row of X was
given as a curriculum in the KA space. NMF estimates W = (wik)
and H = (hk j) so that X is as near to WH as possible under the
constraints that all the elements of W and H are non-negative. In
order to extract the two factors, W and H were given as 47×2 and
2×18 matrices. Therefore, W and H correspond to the factors on
the curricula and those on the KAs, respectively. The best esti-
mation over 100,000 replicates was employed for avoiding local
minima. Moreover, the constraints of

∑
j h1 j = 1 and

∑
j h2 j = 1

were added. The ordering of the rows of H was determined so
that

∑
i wi1 (= 30.5) >

∑
i wi2 (= 16.6), which means that the first

row of H is dominant. Figure 11 shows the ratios of KA in the
first and second rows of H. It shows that there are a few salient
KAs in each tier and the other KAs are distributed approximately
uniformly. The ratios of AL, CN, GV, IS, and PL are relatively
high in the first factor. It suggests that the first factor emphasizes
the application-programming aspect. On the other hand, the ra-
tios of HCI, SE, and SP are relatively high in the second aspect.
It means that the second factor emphasizes the human-social fac-
tor. In summary, the dataset from the world’s top-ranked univer-
sities shows that the appropriate curricula should include all the
KAs and it should emphasize the application-programming and
human-social aspects. Note that the factors are consistent with
the components of PCA in Fig. 9 though there are slight differ-
ences. The weighting of the two factors characterizes each cur-
riculum. These guidelines seem to be utilized much more easily
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Fig. 7 Two-dimensional plot of the universities along the second and third principal components where
the colors correspond to the clusters (C1:cyan, C2:red, C3:magenta, C4:green).

Fig. 8 The center of each cluster in the KA space.

Fig. 9 The three principal components in the KA space.

than the Core-Tiers of CS2013 shown in Fig. 10.

7. Discussions

Here, we discuss the two key features of the actual syllabi,
which were discovered quantitatively and statistically from the
above observations.
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Fig. 10 Bar graphs of the core hours of KAs in Core-Tier1 and Core-Tier2
provided by CS2013.

Fig. 11 Bar graphs of the ratios of KAs in Core-Tier1 and Core-Tier2 esti-
mated from actual syllabi.

First, HCA and PCA discovered that there is a strong relation
between the clusters of the curricula and the countries. In other
words, we could observe a kind of locality bias in the curricula
of the leading universities over the world. This observation does
not assert that the curricula should be designed to be similar to
those in the neighborhood areas. On the one hand, it may be
useful for promoting the collaboration in the prioritized fields in
each country. From the viewpoint of students, on the other hand,
it may narrow their choices because studying abroad is expen-
sive for many students even today. Actually, there were often
some exceptions in each country. Nevertheless, this seems to be
a key feature to be considered carefully for designing an appro-
priate curriculum. Though the locality bias may have been found
empirically, the proposed approach discovers it quantitatively and
statistically significant. Moreover, the weights of the KAs in each
area can be estimated quantitatively.

Second, NMF discovered that the actual curricula can be re-
garded as a “combination of two simple factors.” The first and
second factors correspond to the “application-programming” and
“human-social” aspects, respectively in Fig. 11.

Lastly, we propose the following guidelines for designing a CS
curriculum from the above features:
• Determine the weights of the “application-programming” as-

pect and the “human-social” one. Then, give roughly the
weights of all the KAs in the curriculum.

• Investigate the CS departments in the neighborhood area
and estimate the corresponding cluster. Then, modify the

weights of KAs according to the designing policy which de-
cides whether the curriculum follows the regional tendency
or not.

The proposed guidelines may be helpful to curriculum designers
utilizing CS2013 in the following two points. One is that the pro-
posed two factors (the “application-programming” and “human-
social” aspects) are clearer and easier to use than the Core-Tiers
of CS2013. Another is that the proposed guidelines can con-
sider the regional effects which are neglected in CS2013, and
helps faculty members and instructors to design a characteristic
curriculum.

8. Conclusion

In this paper, we applied a curriculum analysis method to in-
vestigating the actual curricula offered by CS departments of the
top-ranked universities. The analysis method projects each cur-
riculum to the KA space by ssLDA. By utilizing the three well-
known data analysis methods (HCA, PCA, and NMF), we discov-
ered the two important features of the actual curricula: “locality
bias” and “combination of several simple aspects.” We also pro-
posed the guidelines for designing an appropriate curriculum on
the basis of the discovered features. We are now using the anal-
ysis method to the set of actual syllabi directly and investigating
the interconnections among the KAs.

We are now planning to develop a public web-based tool imple-
menting the proposed analysis method, and to evaluate the use-
fulness of our proposed guidelines by providing them widely for
curriculum designers. We are also planning to collect a larger
number of actual curricula in a semi-automated manner.
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